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Abstract Most dark energy models have the ΛCDM as
their limit, and if future observations constrain our universe
to be close to ΛCDM Bayesian arguments about the evidence
and the fine-tuning will have to be employed to discriminate
between the models. Assuming a baseline ΛCDM model
we investigate a number of quintessence and phantom dark
energy models, and we study how they would perform when
compared to observational data, such as the expansion rate,
the angular distance, and the growth rate measurements, from
the upcoming Dark Energy Spectroscopic Instrument (DESI)
survey. We sample posterior likelihood surfaces of these dark
energy models with Monte Carlo Markov Chains while using
central values consistent with the Planck ΛCDM universe
and covariance matrices estimated with Fisher information
matrix techniques. We find that for this setup the Bayes factor
provides a substantial evidence in favor of the ΛCDM model
over most of the alternatives. We also investigated how well
the CPL parametrization approximates various scalar field
dark energy models, and identified the location for each dark
energy model in the CPL parameter space.

1 Introduction

It is well established that our universe is undergoing an accel-
erating expansion today [1–3]. Several observations suggest
that this accelerated expansion started relatively recently at
z ∼ 0.7 [4,5]. One of the possible explanations is to assume
the presence of dark energy as a dominant component of the
total energy density budget in the universe today (i.e. around
70% of the universe matter–energy content today is a sub-
stance with negative pressure that drives today’s accelerated
expansion). Dark energy is characterized by an equation of
state (EOS) parameter w defined by as a ratio between the

a e-mail: olga.avsajanishvili@iliauni.edu.ge

pressure (p) and the energy density (ρ), w ≡ p/ρ. The
accelerated expansion requires that w < −1/3. Generally
speaking w parameter might be time dependent. In the frame-
work of the standard cosmological (concordance) model,
dark energy is represented by the cosmological constant Λ

(that was originally introduced by Albert Einstein, and it is
assumed to be associated with the vacuum energy density).
This cosmological model is referred as ΛCDM model, in this
case the EOS parameter is constant, w = −1. The ΛCDM
model is simple and easy to constrain through observations,
but besides good agreements with existing observational
data, the model has a number of shortcomings (the cosmolog-
ical constant problem, the coincidence problem, the matter
– anti-matter asymmetry, the weakness of gravity compared
to other forces, etc.) [6–10]. The most notable of these puz-
zles is the cosmological constant problem which stems from
the fact that the theoretically expected value (based on quan-
tum field theory approach and on dimensional arguments)
of the cosmological constant associated energy density is
determined by M4

pl (where Mpl = 1.2211 × 1019 GeV is
the Planck mass), while the actual value (suggested through
observational data) is order of 120 magnitudes lower [11–
13]. In order to overcome this (and other) difficulties (the
coincidence problem, for example), dynamical dark energy
models were proposed [14,15], and see Ref. [16] for a recent
review.

Several large scale structure surveys missions, such as e.g.
Dark Energy Spectroscopic Instrument (DESI), Wide-Field
Infrared Survey Telescope (WFIRST) and Euclid are sched-
uled to start operating within the next decade. Upon com-
pletion of these missions, very accurate measurements of the
expansion velocity, angular distance and growth rate in the
universe to redshifts of z ∼ 2 will be obtained [17–21]. These
measurements cumulatively have a very strong constraining
power on the behavior of both dark energy and gravity on
large length scales. If the ΛCDM model is not the correct
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cosmological model, we should be able to see this in upcom-
ing data. If, however, the ΛCDM model or a model very close
to it, is the correct model, the interpretation of the data will
be less straightforward. One reason for this is that the most
viable dark energy models have the ΛCDM model as their
limit so the Bayesian arguments about the fine-tuning of the
extra parameters will have to be employed. In this work we
refer to a simulated DESI data and study how these mod-
els would perform when compared to the baseline ΛCDM
model. The main question we ask is if the ΛCDM were the
correct model of cosmology would we be able to unambigu-
ously discard alternative models based on DESI data.

In this paper we investigate a representative family of dark
energy models that are based on the idea of a cosmologi-
cal scalar field [22–26]. If the scalar field, φ, has a slowly
rolling stage, the energy density associated with this field
can mimic the presence of the cosmological constant at late
stages. There are many proposals for the functional form
of the self-interacting potential of the scalar field that are
allowed by the current observational data [27–40]. In this
paper we consider two types models: the quintessence (dark
energy is presented in the form of a canonical scalar fields)
and the phantom models (dark energy is presented in the
form of a non-canonical scalar field). As of now, there is no
consensus on which of these models is preferable based on
the results obtained from the different observations [41–45].
We study the scalar field models with 10 quintessence and 7
phantom potentials in the Bayesian framework [46–48]. We
also limit ourselves by considering the flat scalar field dark
energy (so called φCDM) models. This is justified by the fact
that large deviations from the spatial flatness of the universe
seem to be well constrained by the CMB data [44]. We have
found that under these assumptions a vast majority of the
scalar field dark energy models will be characterized by low
enough Bayes factors to suggest a substantial preference for
the ΛCDM model.

The paper is organized as follows: in Sect. 2 we review the
dark energy models (including the scalar field quintessence
and phantom models); in Sect. 3 we describe observational
tests, our results are presented in Sec. 4, and we conclude in
Sect. 5. We use natural units: c = 1 = kB = 1 throughout
the paper.

2 Dark energy models

We will consider two families of scalar field dark energy (flat)
models: the quintessence (canonical) and the phantom scalar
field (non-canonical) models. These models have opposite
properties in their manifestation today: (1) in the range of
the EOS parameter values (w < −1 for the phantom field
and −1/3 < w < −1 for the quintessence field); (2) in
the sign of the kinetic term in the Lagrangian (the nega-

tive sign for the phantom field and the positive one for the
quintessence field); (3) in the dynamics of the scalar fields
(the quintessence field rolls to the minimum its potential, the
phantom field rolls to the “uphill” its potential); (4) in the
dynamics of the dark energy density (increases over time for
the phantom field and almost doesn’t change over time for
the quintessence field); (5) in the forecast for the future evo-
lution of the universe: for the phantom models violent future
events (such as big/little/pseudo rips) are predicted, while in
the quintessence models either an eternal expansion or a re-
collapse depending on the spatial curvature of the universe
is predicted.

The action associated with the scalar field, φ, is given field
by [49]:

S = M2
pl

16π

∫
d4x

[√−g
(
±1

2
gμν∂μφ∂νφ − V (φ)

)]
, (1)

where “+” sign before the kinetic term (gμν∂μφ∂νφ/2) refers
to the quintessence models, while “−” stands for the phantom
models; gμν is the background metric,1 and V (φ) is the self-
interacting potential of the scalar field, φ. The scalar field is
assumed to exhibit the negligible spatial variations, so that the
spatial derivatives are small compared to the time derivatives,
and thus we assume the scalar field to be an homogeneous
field.

Varying the action Eq. (1), the Klein–Gordon scalar field
equation of motion can be obtained [50]:

φ̈ + 3
ȧ

a
φ̇ ± ∂V (φ)

∂φ
= 0, (2)

where again “+/−” sign corresponds to the quintessence/
phantom model respectively, the over-dot denotes a deriva-
tive with respect to the physical time, t .

The energy density and the pressure of the scalar field are
expressed [51]:

ρφ = M2
pl

32π

(
±φ̇2/2 + V (φ)

)
, (3)

Pφ = M2
pl

32π

(
±φ̇2/2 − V (φ)

)
, (4)

and the effective EOS parameter for the scalar field is then

given by wφ = ±φ̇2/2 − V (φ)

±φ̇
2
/2 + V (φ)

. If the time-derivatives of the

scalar field, φ, are small enough to make the magnitude of
the kinetic term small compared to the potential |± φ̇2/2| �
V (φ) (the “slow roll” condition [22]), the EOS parameter is

1 We assume the flat (suggested by current observations [44]), homo-
geneous and isotropic universe that is described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) spacetime metric, ds2 = dt2 −
a2(t)dx2, where a(t) is the scale factor (normalized to be unity today
a0 ≡ a(t0)), and t is the physical time.
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very close to negative one2 and the scalar field behaves like a
slowly-time-varying cosmological constant (sometimes the
scalar field is referred as a slowly rolling scalar field Ref.
[10]). Below we list the potentials of the quintessential and
phantom models considered in this work:

2.1 The quintessence models

• Ratra–Peebles potential: V (φ) = V0M2
plφ

−α; α =
const > 0 [23]

• Ferreira–Joyce potential:3 V (φ) = V0 exp(−λφ/Mpl);
λ = const > 0 [27]

• Zlatev–Wang–Steinhardt potential:V (φ)=V0(exp(Mpl/φ)

− 1) [28]
• Sugra potential: V (φ) = V0φ

−χ exp(γ φ2/M2
pl); χ, γ =

const > 0 [29]
• Sahni–Wang potential: V (φ) = V0(cosh(ςφ)−1)g; ς =

const > 0, g = const < 1/2 [30]
• Barreiro–Copeland–Nunes potential: V (φ)=V0(exp(νφ)

+ exp(υφ)); ν, υ = const ≥ 0 [31]
• Albrecht–Skordis potential: V (φ) = V0((φ − B)2 +

A) exp(−μφ); A, B = const ≥ 0, μ = const > 0
[32]

• Urẽna–López–Matos potential:V (φ)=V0 sinhm(ξMplφ);
ξ = const > 0,m = const < 0 [33]

• Inverse exponent potential: V (φ) = V0 exp(Mpl/φ) [34]
• Chang–Scherrer potential: V (φ) = V0(1 + exp(−τφ));

τ = const > 0 [35]

2.2 The phantom models

• Fifth power potential: V (φ) = V0φ
5 [36]

• Inverse square potential: V (φ) = V0φ
−2 [36]

• Exponent potential: V (φ) = V0 exp(βφ); β = const >

0 [36]
• Quadratic potential: V (φ) = V0φ

2 [37]
• Gaussian potential: V (φ) = V0(1 − exp(φ2/σ 2)); σ =

const [37]
• Pseudo Nambu-Goldstone boson potential: V (φ) =

V0(1 − cos(φ/κ)); κ = const > 0 [38]
• Inverse hyperbolic cosine potential: V (φ) =

V0(cosh(ψφ))−1; ψ = const > 0 [39]

In both cases of the quintessence and the phantom models,
V0 is the model parameter with the dimension of GeV4. This

2 More precisely, for the freezing quintessence scalar fields the EOS
parameter is very close to negative one today, while for the thawing
quintessence/phantom scalar fields the EOS parameter deviates slightly
from minus one in either direction [37].
3 This potential was investigated earlier by Lucchin and Matarrese [52],
as well as by Ratra and Peebles [23]. Although the complete detailed
description of the model was given by Ferreira and Joice [27].

parameter is obviously related to the dark energy density
parameter today.

3 Testing dark energy potentials

3.1 Model description

To see how well we will be able to discriminate between
these dark energy scalar field potentials after upcoming dark
energy surveys, we generate a set of the simulated data (theo-
retical model predictions) for the Hubble expansion rate, the
angular distance, and the growth rate, in the redshift range
of 0.15 < z < 1.85 (with z = 1/a − 1 is the redshift)
expected from DESI mission [17]. The measurements are
centered around their true values in our fiducial cosmology
with the errorbars based on the Fisher matrix predictions.
We compute the theoretical expectation for the angular dis-
tance, Hubble parameter, and the growth rate and treat them
as measurements for our mock data set. We use the standard
Fisher matrix predictions for the covariance of these mea-
surements. The real DESI data will, of course, be a random
realization from the likelihood space that doesn’t necessarily
sit on top of the maximum likelihood, and the Fisher matrix
predictions tend to overestimate the constraining power of
the data. We don’t expect these effects big enough to signif-
icantly affect our conclusion. We fit this synthetic data by
using the standard MCMC analysis method to estimate the
multidimensional posterior likelihood of the model parame-
ters.

For all dark energy models we compute:

1. The Hubble parameter H(z):
The first Friedmann equation for the flat universe is [10]:

E2(z) = Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωφ(z), (5)

here E(z) = H(z)/H0 is the normalized Hubble param-
eter, and H0 is the Hubble parameter today; Ωi (z) ≡
ρi (z)/ρcr is the energy density parameter for “i”-th com-
ponent (characterized by the energy density, ρi (z)).4

2. The angular diameter distance Assuming a flat universe,
the angular diameter distance is given by [49]:

dA(z) = 1

H0(1 + z)

∫ z

0

dz′

E(z′)
(6)

4 The critical energy density today ρcr = 3H2
0 (z)/(8πG), where

G = M−2
pl is the Newton constant. The current value of the radia-

tion (relativistic component) and the matter (non-relativistic compo-
nent) density parameter are designated as Ωr,0 and Ωm,0 respectively;
Ωφ(z) is the dark energy density time dependent parameter. We denote
Ωφ,0 ≡ Ωφ(z = 0). The condition of the background metric flatness is
given, Ωr,0 + Ωm,0 = 1 − Ωφ,0.
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3. The combination of the growth rate and the matter power
spectrum amplitude, f (a)σ8(a)

The growth rate is given as, f (a) = dlnD(a)/dlna, where
D(a) is the growth function defined through the ratio of
overdensities, δ(a), at different scale factors, as D(a) =
δ(a)/δ(a0), normalized to be unity today, (D(a0) = 1), and
it is a solution of the following linear perturbation equation
[53]:

D
′′ +

(3

a
+ E

′

E

)
D

′ − 3Ωm,0

2a5E2
D = 0, (7)

here a prime denotes a derivative with respect to the scale
factor, a, (′ = d/da). The matter power spectrum amplitude
can be characterized through the σ8(a) function, σ8(a) ≡
D(a)σ8, where σ8 ≡ σ8(a0) is the rms linear fluctuation
in the mass distribution on scales 8h−1 Mpc (with h is the
today Hubble constant in units of 100 km/s/Mpc) today. We
fix the value of σ8 to its current best-fit ΛCDM value of
σ8 = 0.815 from the Plank 2015 data [44], (see Ref. [54]
for model-independent cosmological constraints on σ8 from
growth and expansion).

The EOS parameter of the dark energy models is often
characterized by the Chevallier–Polarsky–Linder (CPL)

w0 − wa parametrization [55,56]:

w(a) = w0 + wa(1 − a), (8)

where w0 = w(a = 1) and wa = −a−2(dw/da)|a=1/2.
This parametrization fits the EOS parameters for most of

the dark energy models well enough for some effective values
of w0 and wa , but may fail to describe the arbitrary dark
energy models to a good precision (few percents) over a wide
redshift range.5

In addition, the structure growth (in the most dark energy
models) tends to be sensitive (only) to the fractional matter
density, Ωm(a) = Ωm/E2(a), with Ωm = Ωm,0a−3 and as
a consequence, the matter perturbation growth rate function,
f (a), with high accuracy can be parameterized as [58]:

f (a) ≈ [Ωm(a)]γ (a), (9)

where γ (a) is so called the growth index, and in general it is a
time-dependent function. 6 In the case of the wCDM models
(or any dark energy models which are the well approximated
by the w0 − wa parametrization), the growth index, γ (a),

5 Dark energy is sometimes characterized by the EOS parameter only,
and the corresponding cosmological model is referred as wCDM model
[57].
6 For the ΛCDM model the effective values of the growth index, γ (a),
have a quasi-constant behavior [59]. For the scalar field models the
growth index, γ (a), changes in the narrow interval of its values [59,60].

scale factor dependence on can be determined from Eq. (9),
see Ref. [61]:

γ (a) = ln f (a)

ln Ωm(a)
. (10)

On the other hand, the function, γ (a), can be parameterized
by a scale factor independent manner, so called the Linder
γ -parametrization, see Ref. [63]:

γ =
{

0.55 + 0.05(1 + w0 + 0.5wa), if w0 ≥ −1;
0.55 + 0.02(1 + w0 + 0.5wa), if w0 < −1.

(11)

This parametrization is accurate up to redshift of z = 5 (a =
0.2) [60]. The numerical value of the γ itself depends on
the dark energy model characteristics (w-parameter), being
equal to 0.55 for the ΛCDM model [63].

We don’t use the Linder γ -parametrization or CPL one
in our MCMC chains. Instead we fit directly to the model
predictions by solving the fundamental differential equa-
tions. We do however, as an independent exercise, check how
well these parametrizations work for the dark energy models
that we consider. We find that all dark energy models under
consideration can be approximated very well by these two
parametrizations.

3.2 The definition of the starting points for the MCMC
chains

To find the starting points for our MCMC chains, we solve
jointly the scalar field equation for the quintessence and phan-
tom models, Eq. (2), the Friedmann equation, Eq. (5), and
the linear perturbation equation, Eq. (7), for a wide range of
the free parameters and the initial conditions for matter dom-
inated epoch. For each potential we have found the plausible
solutions, for which the following three criteria were simul-
taneously fulfilled:

1. The transition between the matter and dark energy equal-
ity (Ωm = Ωφ) happens relatively recently z ∈ (0.6 −
0.8) [64].

2. The matter perturbation growth rate, f (a), and the frac-
tional matter density, Ωm(a), are parameterized by the
Linder γ -parametrization (Eq. (11)).

3. The EOS parameter predicted by the different dark
energy models should be in the agreement with the
expected EOS parameter value today (for the phantom
models w0 < −1; for the quintessence models with
−1 < w0 < −0.75: for the freezing type wa < 0 and
for the thawing type wa > 0).

For all potentials we found the range for (1) the allowed
initial conditions and (2) the model parameters, which we
then used as the starting points for the MCMC chains.
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This is done to make sure that the MCMC chains con-
verge faster by starting them close to the peak of the posterior
likelihood. The actual likelihood surface from the converged
MCMC chains of course doesn’t depend on the starting point.

4 Results

We computed the projected covariance matrix of DA(z),
H(z), and f σ8(z) measurements following standard Fisher
matrix approach described in Ref. [17]. We assumed 14,000
sq. deg. of sky coverage and wavenumbers up to kmax =
0.2 Mpc/h. Our variances matched the numbers in Table V
of [17]. We also accounted for covariances between the mea-

surements within the same redshift bin. DA(z) and H(z)mea-
surements are negatively correlated by approximately 40%,
while correlations with f σ8(z) are below 10% for all redshift
bins.

All dark energy models considered in this work have the
following free parameters, Ωm,0 and H0. In addition, the
scalar field models have the extra parameters describing the
strength and shape of the potential, V (φ). These free param-
eters along with the prior ranges considered in our MCMC
runs are presented in the Tables 1 and 2. We have found
these priors using the phenomenological method, which is
described in the previous section, i.e. they correspond to the
three conditions imposed on the solutions for each potential.
We have explicitly checked that most of the high likelihood

Table 1 The list of the dark
energy quintessence potentials
and the free parameters

The quintessence potentials Free parameters

V (φ) = V0M2
plφ

−α H0 (50–90) V0 (3–5)

Ωm0 (0.25–0.32) α (10−6–0.7)

V (φ) = V0 exp(−λφ/Mpl) H0 (50–90) λ (10−7−10−3)

Ωm0 (0.25−0.32) φ0 (0.2−1.6)

V0 (10−103) φ̇0 (79.8−338.9)

V (φ) = V0(exp(Mpl/φ) − 1) H0 (50−90)

Ωm0 (0.25−0.32) φ0 (1.5−10)

V0 (10−102) φ̇0 (350−850)

V (φ) = V0φ
−χ exp(γ φ2/M2

pl) H0 (50−90)

Ωm0 (0.25−0.32) γ (6.5−7)

V0 (10−2−10−1) φ0 (5.78−10.55)

χ (4−8) φ̇0 (680.6−879)

V (φ) = V0(cosh(ςφ) − 1)g H0 (50−90)

Ωm0 (0.25−0.32) g (0.1−0.49)

V0 (5−8) φ̇0 (360−685)

3ς (0.15−1) φ0 (1.8−5.8)

V (φ) = V0(exp(νφ) + exp(υφ)) H0 (50−90) ν (6−12)

Ωm0 (0.25−0.32) φ0 (0.014−1.4)

V0 (1−12) φ̇0 (9.4−311)

V (φ) = V0((φ − B)2 + A) exp(−μφ) H0 (50−90) B (1−60)

Ωm0 (0.25−0.32) μ (0.2−0.9)

V0 (40−70) φ0 (5.8−8.45)

A (1−40) φ̇0 (681−804.5)

V (φ) = V0 sinhm(ξMplφ) H0 (50−90)

Ωm0 (0.25−0.32) ξ (10−2−1)

V50 (1−10) φ0 (0.5−2.5)

m (−0.1− − 0.3) φ̇0 (190−367)

V (φ) = V0 exp(Mpl/φ) H0 (50−90)

Ωm0 (0.25−0.32) φ0 (5.78−10.55)

V0 (102−103) φ̇0 (680.6−879)

V (φ) = V0(1 + exp(−τφ)) H0 (50−90) τ (10−102)

Ωm0 (0.25−0.32) φ0 (0.01−0.075)

V0 (1−102) φ̇0 (9.4−32)
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Table 2 The list of the dark
energy phantom potentials and
the free parameters

The phantom potentials Free parameters

V (φ) = V0φ
5 H0 (50−90)

Ωm0 (0.25−0.32) φ0 (3.37−3.94)

V0 (10−3−10−2) φ̇0 (523−563.6)

V (φ) = V0φ
−2 H0 (50−90)

Ωm0 (0.25−0.32) φ0 (2.83−5.15)

V0 (30−50) φ̇0 (471.4−600)

V (φ) = V0 exp(βφ) H0 (50−90) β (0.08−0.3)

Ωm0 (0.25−0.32) φ0 (0.2−9.14)

V0 (1−20) φ̇0 (79.8−830.9)

V (φ) = V0φ
2 H0 (50−90)

Ωm0 (0.25−0.32) φ0 (0.67−2.8)

V0 (1−20) φ̇0 (191−450)

V (φ) = V0(1 − exp(φ2/σ 2)) H0 (50−90) V0 (5−30)

Ωm0 (0.25−0.32) φ0 (0.67−2.8)

σ (5−30) φ̇0 (191−450)

V (φ) = V0(1 − cos(φ/κ)) H0 (50−90) κ (1.1−2)

Ωm0 (0.25−0.32) φ0 (2.3−3.37)

V0 (1−4) φ̇0 (420−500)

V (φ) = V0(cosh(ψφ))−1 H0 (50−90) ψ (10−3−1)

Ωm0 (0.25−0.32) φ0 (1.4−2.3)

V0 (10−3−102) φ̇0 (310−420.7)

Table 3 The list of the dark energy quintessence potentials, with cor-
responding AIC , BIC , and Bayes factors

Quintessence potentials AIC BIC Bayes factor

V (φ) = V0M2
plφ

−α 10 18.7 0.5293

V (φ) = V0 exp(−λφ/Mpl) 12 22.4 0.0059

V (φ) = V0(exp(Mpl/φ) − 1) 10 18.7 0.0067

V (φ) = V0φ
−χ exp(γ φ2/M2

pl) 14 26.2 0.0016

V (φ) = V0(cosh(ςφ) − 1)g 14 26.2 0.0012

V (φ) = V0(exp(νφ) + exp(υφ)) 14 26.2 0.0053

V (φ) = V0((φ − B)2 + A) exp(−μφ) 16 29.9 0.0034

V (φ) = V0 sinhm(ξMplφ) 14 26.2 0.0014

V (φ) = V0 exp(Mpl/φ) 10 18.7 0.0077

V (φ) = V0(1 + exp(−τφ)) 12 22.4 0.0024

regions are inside these priors in a way that the parameter
constraints will not be effected by adjusting the prior ranges.

5 The Bayesian statistics

The reconstruction (and constraining) of the dark energy
potentials with minimal priors is a challenging task (see e.g.
[65] for more details). To assess the quality of the different
models and to distinguish them from each other, we have

Table 4 The list of the dark energy phantom potentials, with corre-
sponding AIC , BIC , and Bayes factor values

Phantom potentials AIC BIC Bayes factor

V (φ) = V0φ
5 10 18.7 0.0921

V (φ) = V0φ
−2 10 18.7 0.0142

V (φ) = V0 exp(βφ) 22.4 12 0.0024

V (φ) = V0φ
2 10 18.7 0.0808

V (φ) = V0(1 − exp(φ2/σ 2)) 12 22.4 0.0113

V (φ) = V0(1 − cos(φ/κ)) 12 22.4 0.0061

V (φ) = V0(cosh(ψφ))−1 12 22.4 0.0056

applied the Akaike information criterion (AIC) [66] and
the Bayesian (or Schwarz) information criterion (BIC) [67].
The information obtained by these criteria complement each
other.

AIC and BIC are defined respectively as,

AIC = −2 lnLmax + 2k, (12)

and

BIC = −2 lnLmax + k ln N , (13)

123



Eur. Phys. J. C (2018) 78 :773 Page 7 of 10 773

w0

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

w
a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

CPL contours
Ratra&Peebles
Ferreira&Joyce
Inverse exponent
Zlatev&Wang&Steinhardt
Sugra
Sahni&Wang
Urena-Lopez&Matos
Albrecht&Skordis
Chang&Scherrer
Barreiro&Copeland&Nunes

Fig. 1 The comparison of the possible (w0, wa) values of the
quintessence dark energy potentials with the CPL-ΛCDM 3σ confi-
dence level contours

where Lmax ∝ exp(−χ2
min/2) is a maximum value of the

likelihood function; N is a number of free parameters; k is a
number of data points.

We also computed the evidence integral defined as,

E =
∫

d3 pP( p), (14)

where p are all parameters of the model, P is the poste-
rior likelihood (proportional to the local density of MCMC
points), and the boundaries of the integral are given by the
prior. We explored how tight the prior on the extra parame-
ters needs to be for them to be competitive (in the sense of
the Bayesian evidence) with the standard Λ CDM model.

We explicitly checked that the priors incorporate most of
the high posterior area. Since all dark energy models have the
Λ CDM model as their limit, ruling them out simply based
on the posterior is technically speaking impossible. Since the
synthetic data was generated in the Λ CDM model that limit
will always result in high likelihood, and because of the finite
size of the errorbars there will always be a region around the
best-fit Λ CDM model that is consistent with the data. One
could however appeal to the Bayesian evidence and argue
that the extra parameters need to be extremely fine tuned.
We numerically integrated the posterior likelihood to get for
all models.

These results are presented in the Tables 3 and 4. All these
numbers are normalized with respect to the fiducial ΛCDM
model.

5.1 The φCDM potentials vs CPL parametrization

As a additional exercise we looked at how well the CPL
parametrization approximates these dark energy models and

w0

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7

w
a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 CPL contours
Phantom pNGb
Phantom inverse hyperbolic cosine
Phantom exponent
Phantom quadratic
Phantom Gaussian
Phantom the fifth power
Phantom inverse square power

Fig. 2 Similar to the Fig. 1, for the phantom models

where each dark energy model is mapped in the CPL param-
eter space. The CPL-ΛCDM contours in Figs. 1 and 2 repre-
sent 1, 2, and 3σ confidence levels for the CPL parametriza-
tion derived by fitting the same H(z), dA(z), and f (a)σ8

data. In order to check how well the CPL parametrization
Eq. (8) describes the dark energy models, we find the best-fit
effective values of w0 −wa for a range of the free parameters
of each model. These results are presented in Fig. 1 for the
quintessence models and in Fig. 2 for the phantom models.
For an easy visual representation of this information we pick
a parameter with respect to which the best fit w0 and wa

values are most sensitive and plot this range within priors.
In Fig. 1 we show that some of the dark energy models stay

very close to the ΛCDM for a wide range of parameter values
within our priors. The range of the EOS parameters for the
Ferreira-Joyce, the inverse exponent and the Sugra potentials
is very small, it almost coincides with the ΛCDM model EOS
parameter (w0 = −1, wa = 0) consequently the likelihood
of these model parameters is relatively flat and they can only
be distinguished from ΛCDM model by Occam’s razor type
arguments. The Chang–Scherrer, the Urẽna–López–Matos,
and the Barreiro potentials can result in up to 3σ offsets
from ΛCDM for some parameter values; the Zlatev–Wang–
Steinhardt, the Ratra–Peebles, the Albrecht–Skordis, and the
Sahni–Wang potentials even extend beyond 3σ confidence
level. This suggests that a significant fraction of the parame-
ter space can be distinguished based on posterior likelihood.
All phantom potentials in Fig. 2, except the quadratic poten-
tial, exhibit a similar behaviour. The quadratic potential lies
outside the 3σ contours of projected DESI constraints. This
happens because in this model it is difficult to get a ΛCDM
limit with a natural choice of parameter values and initial
conditions.
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Fig. 3 The 2σ confidence level contour plots for various pairs of the free parameters (α, Ωm0, h) for which the φCDM model with the Ratra-Peebles
potential V (φ) = V0M2

plφ
−α is in the best fit with the ΛCDM model

Fig. 4 The 2σ confidence level contour plots for various pairs of the free parameters (V0, Ωm0, h, φ0, φ̇0) for which the φCDM model with the
Zlatev–ang–teinhardt potential V (φ) = V0(exp(Mpl/φ) − 1) is in the best fit with the ΛCDM model

6 Conclusions

We have derived projected constraints on a number of dark
energy models by fitting them to a mock H(z), dA(z),
f (a)σ8(z) data generated in a fiducial ΛCDM model. When
fitting to predicted data one has to choose a fiducial model. In
our case this fiducial model was a Planck normalised ΛCDM.
While it is obvious that under this scheme the ΛCDM can
never be inferior to its alternatives, it is not clear a priori

how strong the evidence in favour of the ΛCDM model be.
Our main goal was to see whether the various Bayesian cri-
teria would provide sufficient evidence in favour of ΛCDM
as opposed to considered alternatives. Our results seem to
suggest that even though all the scalar models have a ΛCDM
limit (which obviously remains a good fit to the data) DESI
is capable of providing enough evidence to reject them. Our
conclusions come with the caveat that they depend strongly
on the adopted assumptions about the priors. The kinds of
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Fig. 5 The 2σ confidence level contour plots for various pairs of the free parameters (k, Ωm0, h, V0, φ0, φ̇0) for which the φCDM model with the
phantom Pseudo Nambu-Goldstone boson potential V (φ) = V0(1 − cos(φ/κ)) is in the best fit with the ΛCDM model

Bayesian arguments that we employed can be very sensitive
to the assumed prior range of model parameters [68]. Our pri-
ors were reasonably wide and encompassed all of the param-
eter space that was in the general ΛCDM “neighbourhood”
and thus compatible with currently available data. Physically
motivated restrictions on the parameter space would make the
rejection of the alternative models more difficult.

In Figs. 3, 4 and 5 we show examples of the con-
straints that we obtain for the quintessence Ratra–Peebles,
the Zlatev–Wang–Steinhardt potentials and for the phantom
Pseudo Nambu–Goldstone potential. Since all models have
the ΛCDM model as their limit, strictly speaking it is impos-
sible to rule them out based on the likelihood arguments
alone. Therefore we also used commonly cited model com-
parison criteria in the Bayesian statistics such as the Bayes
factor, the AIC and BIC information criteria. Computing
AIC and BIC in our setup is straightforward. Since all mod-
els have the same maximum likelihood by the construction
the AIC and the BIC become simply functions of the num-
ber of the extra parameters. To compute the Bayes factors
we integrated the posterior within the bounds given in the
Tables 1 and 2. The results of the AIC , BIC , and Bayes
factors for all the dark energy models are summarized in the
Tables 3 and 4. These numbers clearly demonstrated that if
the ΛCDM model is the true description of dark energy, the
full DESI data will be able to strongly discriminate most
scalar field dark energy models currently under considera-
tion. These results however need to be taken with a grain of
salt. The evidence values are very sensitive to the prior ranges.
We only restricted the prior range based on constraints, by
using the phenomenological method developed by us. Fur-

ther restriction of the parameter ranges could significantly
increase the evidence value. The results were derived assum-
ing a fiducial ΛCDM model and the low value of evidence
simply means that the model would be easier to discriminate
if ΛCDM was the true model. The flip side of this is that if
instead the dynamic dark energy models were true that would
also show up more obviously in the data.

We also explored how the dark energy models are map-
ped to the CPL parameter surface. For the models considered
in our work this parametrization seems to work reasonably
well even for the wide redshift range in a sense that the model
predictions are always within one percent of of corresponding
CPL predictions.
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