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Abstract We study a dynamic version of the Unruh effect
in a two dimensional collapse model forming a black hole. In
this two-dimensional collapse model a scalar field coupled
to the dilaton gravity, moving leftwards, collapses to form
a black hole. There are two sets of asymptotic (t → ∞)
observers, around x → ∞ and x → −∞. The observers at
the right null infinity witness a thermal flux of radiation asso-
ciated with time dependent geometry leading to a black hole
formation and its subsequent Hawking evaporation, in an
expected manner. We show that even the observers at left null
infinity find themselves in thermal ambiance, without expe-
riencing any change of spacetime geometry all along their
trajectories. They remain as inertial observers in a flat region
of spacetime where curvature tensor identically vanishes in
a portion of full spacetime. These observers find the state of
the quantum field in a late time thermal configuration, with
exactly the same temperature as measured by the observers
at right null infinity, despite being inertial in flat spacetime
region throughout their history. This is very closely related
to the standard Unruh effect in the flat spacetime, except
for a key difference – since they are inertial throughout and
have no causally connected source in the past light cone to
account for what they see. The result arises from quantum
correlations which extend outside the past light cone and is
conceptually similar to the EPR correlations.

1 Introduction

Hawking radiation from a black hole [1–10] and the Unruh
radiation [3,6–8,11,12] in the Rindler frame have very simi-
lar mathematical properties. In the context of an eternal black
hole, the Hartle–Hawking vacuum state of a quantum field
will appear as thermal for static observers in the right wedge.
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This arises because the modes of the quantum field in the
region inaccessible to the observer are traced out. Similarly,
a uniformly accelerated observer in the right wedge of the flat
spacetime will associate a thermal nature to the global, iner-
tial, vacuum state, again obtained by tracing out the modes
inaccessible to her (on the left wedge).1 Both situations are
time-reversal invariant; while the relevant observers see an
ambient thermal radiation, they do not associate a flux of
particles with this radiation. In the rest of the analysis, by the
word “radiation” we will imply scenarios where the wave
modes are thermally populated but there may not be any
physical energy momentum tensor (and hence flux) associ-
ated with it.

A somewhat different situation arises in the case of a
black hole formed by collapsing matter, with the quantum
state being the Unruh vacuum (or, the In-vacuum) at very
early times. In this case, at late times, observers far away
from the collapsing body detect a flux of particles with a
spectrum which is thermally populated. The energy carried
away by the particles is ultimately obtained from the mass
of the collapsing body and this leads to the concept of black
hole evaporation. The mathematical description of this pro-
cess takes into account; (1) the change in geometry due to
the collapse process and (2) the formation of event horizon
leading to inaccessibility of a region from future asymptotic
observers. With future applications in mind, let us briefly
recall the key concepts. In standard 3 + 1 dimensional col-
lapse, in which classical matter collapses to form a black
hole, an apparent horizon is formed, which grows and – at a
certain stage – an event horizon is formed thereby producing
a black hole region. The last null ray originating from the
past null infinity J − at the null co-ordinate u = d, in the
double null co-ordinate system [1,3,6–8], reaching future
null infinity J + defines the location of the event horizon.

1 By tracing out we mean that the relevant mode function will have only
a compact support on the Cauchy surface and the behaviour outside the
region of support would not contribute in integrations to be performed.
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Fig. 1 Penrose diagram For Schwarzschild collapse

Note that we have taken u as the advanced time coordinate,
which is different from the standard choices, where usually
v is referred to as advanced coordinates. We will follow this
convention throughout. An asymptotic observer on J + has
no causal connection with events inside the event horizon.
Further, whole of J + derives its complete past causal sup-
port (e.g., the thick orange line in Fig. 1) from only a part of
J −, which lies prior to the ray forming event horizon.2

A wave mode which originates from J − and reaches
J + also experiences a change in background geometry in
the process. In order to obtain the Bogoliubov coefficients
between the asymptotic observers3 on J − and J +, we need
to re-express a set of complete mode functions vω suited to
observers on J + in terms of complete set of mode functions
uω, defined equivalently on J −. When we trace back the
out-going modes vω on J + through the center, (i.e., through
r = 0 with r being the Schwarzschild radial co-ordinate)
onto J −, we see that the mode functions suited to J + have
support only on the portion of mode functions uω on J −.

Therefore the Bogoliubov coefficients are obtained by tak-
ing inner products ofuω andvω on a portion ofJ −, i.e., below
the line u = d [1,3,7,8]. (This has an effect similar to that
of partial tracing out of modes in the case of eternal black
hole.) Furthermore, we now also have to take into account
the change of geometry experienced by the mode function
uω when we trace it back to the past null infinity. However,
if we are interested only in the late time behavior of uω,
we can use ray-optics approximation [1,3,7,8] for tracing
back the mode functions. Thus, the late time behavior of the
out going asymptotic future modes is essentially controlled

2 Since the rays suffering gravitational lensing do not undergo any fre-
quency shift, they are typically discarded in the standard Hawking effect
and we will also not be concerned about them in this paper hereafter.
3 We can think of observers moving with large speeds and reaching
future timelike infinity. These observers, in an approximating limit,
may be mimicked through late time observers on J+.

by only a portion of J −, rather than the direct effects of
change in the geometry, which is already discarded in the
ray-optics approximation. This is the mathematical reason
why the dynamics of the collapse is irrelevant to obtain the
temperature and one obtains the same result as in the case
of an eternal black hole and Hartle–Hawking vacuum state.
The exact Bogoliubov coefficients, obtained by going beyond
the ray optics, will, of course, be sensitive to the geometry
change as well. Further, it is the loss of time reversal invari-
ance during the collapse which leads to a non-zero flux of
energy, which is absent in the case of an eternal black hole
and Hartle–Hawking vacuum state.

A combination of these effects arise in the case of CGHS
black hole in 1+1 dimension [5,13]. The collapse of quantum
matter leads to the standard black hole evaporation scenario
with observers at i+R (t → ∞, x → +∞) detecting a flux of
thermal radiation, which is well-known in the literature. This
situation is mathematically identical to what happens in the
case 1 + 3 spherically symmetric collapse. But it turns out
that there is another effect in the same spacetime which is
unnoticed in the literature, which is conceptually very sim-
ilar to Unruh effect in its structure: Observers at future left
asymptotic J +

L (t → ∞, x → −∞) find themselves in a
thermal environment at the same temperature as seen by
observers at J +

R (but without any associated flux!), how-
ever these observers do not have to necessarily accelerate
unlike their right moving counterparts. This result is rather
curious because these are inertial observers in a flat region of
the spacetime who see no change in geometry as they reside
in the causal past of the collapsing shell. This shows one
instance of Unruh effect in flat spacetime without any classi-
cal source, which we will argue originates through quantum
correlations in analogy with the standard EPR phenomenon.

There are cases, in which a geodesic observer witnesses
particle excitations in the vacuum state, e.g., thermal radi-
ation witnessed by an inertial observer in flat spacetime in
presence of a receding mirror [3]. The acceleration of the mir-
ror modifies the boundary conditions of the quantum field,
which the inertial observer will ascribe as the source of the
radiation. Other instances of geodesic observers experienc-
ing radiation arise in special geodesic trajectories in curved
spacetime, like e.g., the r = 0 observer in de Sitter space-
time (for another interesting example, see [14]). But if the
observer measures the curvature tensor at r = 0 in de Sitter
spacetime she will find it to be non-zero and thus will know
that something nontrivial is happening to the geometry [15].
Here gravity plays the role of acceleration, as evident from
the equivalence principle.

The effect we discuss in this paper on the other hand, arises
for geodesic observers in a flat region of spacetime, i.e., if the
observers measure the curvature tensor in a finite neighbor-
hood around their trajectory, they will find that it is zero. The
effect arises due to oblivion of the physics in the portion of
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interest, to a part of the modes on past Cauchy surface (which
we will be calling J −

R ) and the mathematics closely parallels
standard Unruh effect. But, unlike the standard Unruh effect,
the necessity to trace over modes arises due to the dynamics
of collapse, which takes place in a region of the spacetime
which is not causally connected to the observers! Thus, what
we have is a setting where:

1. A family of inertial observers in a flat portion of space-
time experience thermal ambiance in the vacuum state of
the field.

2. There is no classical source, (e.g., moving mirror, a dis-
tant black hole, local curvature, acceleration, time depen-
dent geometry etc.) which can classically explain the
source of such a thermal effect.

This effect (which, as far as we know, has been missed in
the CGHS literature) constitutes a dynamics realization of
Unruh effect in flat spacetime.

2 A picture book representation

In order to explain the concepts involved in this, rather pecu-
liar result, we will first provide a picture-book description of
how the result arises, which should demystify it.

We start with the Minkowski spacetime, for which the
Penrose diagram corresponds to Fig. 2. The full spacetime is
bounded by four null lines depicting future and past left/right
null infinities, viz J +

R , J −
R , J +

L and J −
L . In this spacetime

any inertial (geodesic) observers will start from past time-
like infinity i− at t = −∞ and would reach future time-
like infinity i+ at t = ∞. Two such geodesic observers
moving leftwards and rightwards respectively, are shown by
dashed curves in Fig. 2. In addition, there can also be some
accelerated observers. An important set of such accelerated
observers is the eternally accelerating Rindler observer. The
trajectory of the Rindler observer starts on J −

L and acceler-
ates along a hyperbolic path to reach J +

L (shown in the thick
green curve in Fig. 2). Let us consider the past causal support
of the trajectories of the Rindler observer vis-á-vis the iner-
tial observer. The inertial observer has causal access to the
full spacetime, whereas the spacetime region accessed by the
Rindler observer is only a part of the full Minkowski space-
time. Thus the vacuum state for the inertial observer (who
can access the full spacetime) would be different from that
of the Rindler observer (for whom only a part of the space-
time is allowed) leading to non zero Bogoliubov coefficients,
given as
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Fig. 2 Rindler trajectory in Minkowski spacetime
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with a being the acceleration of the Rindler observer [6].
Therefore the Rindler observer sees the vacuum of the inertial
observer, denoted by |0〉inertial to be thermally occupied, i.e.,

inertial〈0|N�|0〉inertial =
∫
ω

|β�ω|2 = 1

e
2π�
a − 1

. (3)

where N� stands for densitized particle number operator,
essentially removing an overall volume factor from the com-
putation. The thermal ambiance of the Rindler observer can
further be verified through correlations among the various
modes which can be shown to be thermal as well. In partic-
ular for a two-point correlation we obtain

inertial〈0|N�1 N�2 |0〉inertial =
⎛
⎝∫

ω

|β�1ω|2
⎞
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⎛
⎝∫
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|β�2ω′ |2

⎞
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= 1

e
2π�1

a − 1

1

e
2π�2

a − 1
. (4)

Since we are considering a free field theory, using Wick’s
theorem for free fields, one can compute all the higher order
correlators as well using the two point correlator and verify
that these are exactly thermal [5].

Alternatively, the observations carried out by the Rindler
observer can be described using a density matrix obtained
by tracing out modes inaccessible to her. If the field is in
the inertial vacuum state, the resulting density matrix will
be thermal. As an illustration let us consider Fig. 3, where
three observers are shown. The dashed observer is an inertial
observer and, as in the earlier figure, has access to the full
spacetime; the dotted trajectory is that of the standard, eter-
nally accelerating Rindler observer; the third trajectory (rep-
resented by thick magenta line) represents an observer who
originally started as inertial but then changed her mind and
accelerates uniformly to end up on J +

L just like the Rindler
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Fig. 3 Non-geodesic observer in Minkowski spacetime

observer. This observer also has past causal connection only
to the past domain of dependence of J +

L ′ , which being only
a portion of the full manifold, will lead to a mixed density
matrix having thermal character at late times. At finite times,
its trajectory will be different from the Rindler observer and
unlike the Rindler observer will have a future causal link to
the right wedge. Hence the density matrix will be different.
The same can be seen through the Bogoliubov coefficients,
which will be similar to those of the Rindler observer for
high frequencies at late times only. The exact form of the
Bogoliubov coefficients will differ for small frequencies as
the large wavelengths will take them on different trajectories.

Let us now consider a hypothetical scenario in which some
portion of Minkowski spacetime becomes inaccessible, as
shown in Fig. 4 by the dashed triangular region. (Right now
this is the Penrose diagram of some hypothetical spacetime;
we will soon see how it actually arises in the CGHS case.)
Further, we assume this truncation of spacetime is such that
it requires left-moving geodesic observers to terminate on
i+L instead of i+ as in Fig. 3. Since these observers derive
their causal support only from the past of J +

L ′ , they are com-
pelled to trace over a portion of field configuration on J −

R
and hence they will end up using a density matrix which is
mixed. Whenever any observer, geodesic or not, who derives
her past causal support from a subset of the full spacetime,
the global vacuum state will appear to be non-vacuous at late
times.

The geodesic part of the above statement might appear
perplexing. One may wonder how a geodesic observer can
ever experience such a nontrivial effect usually associated
with accelerated observers. The role of acceleration is only
to make part of the spacetime region inaccessible; if we can
achieve this by some other means, we will still have the same
result. Indeed, there can be various other scenarios where
geodetic observers can witness thermal radiation. However,
in this construction, the left moving observers are unable to
even associate any classical source to these radiations.

Fig. 4 Observers in a hypothetical spacetime

Fig. 5 Penrose diagram For Schwarzschild null shell collapse

The situation as depicted in Fig. 4 appears unphysical as
presented – because we have artificially removed part of the
spacetime —, but we will later discuss a situation in which
a portion of spacetime is indeed dynamically denied to a
geodesic observer, very much like in the spirit of the observer
in Fig. 4 (shown in thick magenta curve).

But before we do that, we will consider another example
in the next section which might make all these less surprising.
This will involve the collapse of a null shell forming a black
hole (see Fig. 5). In the case, a timelike geodesic observer at
r = 0, will remain entirely in the flat spacetime until being
eaten up by the singularity and receives causal signals only
from a part of J − (see Fig. 5 below). This study will provide
us useful insights towards the constructs to be used in the
later sections of the paper.

3 A null shell collapse

For a closer look at the above mentioned features, we will
first consider a null shell collapse forming a Schwarzschild
hole [3,7,16–18] (see Fig. 5). In this case, the singularity gets
originated from the co-ordinate u = ui , the co-ordinate point
of introduction of the null-shell. (This collapse model will be
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Fig. 6 Schwarzschild in isotropic co-ordinates

relevant for comparison with the null shell collapse in 1 + 1
dimensional dilatonic gravity, forming a black hole, which
is discussed later on.) The singularity starts forming from
the co-ordinate u = ui , while the event horizon is located
at r = 2M , with M being the mass of the shell. The co-
ordinate r = 2M can be reflected back through r = 0 on to
J − at u = d. As discussed previously, the out-going modes
vω on J + derive their past causal support completely from
the portion u < d on J −. Therefore the Bogoliubov coeffi-
cients of mode transformation, should be evaluated through
the portion of mode functions uω in the regime u < d. Fur-
ther, all the null rays emanating from J − region u < ui also
experience a change of geometry, i.e., they start moving in
flat spacetime inwards, get reflected at the origin (r = 0)
and then encounter the collapsing shell to feel the geometry
changed into a Schwarzschild one.

This can be more clearly seen in an isotropic co-ordinate
system (see Fig. 6) which uses a Cartesian x coordinate with
−∞ < x < ∞ instead of the usual radial coordinate r
with 0 < r < ∞. The relevant Penrose diagram is shown in
Fig. 6. In these coordinates, (see Fig. 6) there will be two past
null infinities, namely left (J −

L ) and right (J −
R ), as well as

two future null infinities J +
L and J +

R . The location of event
horizon in these co-ordinates is marked to (say) �M , which
corresponds to r = 2M in Schwarzschild co-ordinates. It is
usual to define the modes as left moving or right moving in
these co-ordinates. A right moving mode originates fromJ −

L
and ends up onJ +

R and vice versa for the left-moving modes.
Due to spherical symmetry, consideration of any set of past
and future asymptotic observer pairs will be equivalent to
any other. A time-like observer (thick green curves in Fig. 6),
similarly starting from past time like infinity and escaping the
black hole region, either end up on i +

L or on i +
R depending

upon whether the observer moves leftwards or rightwards.
Let us consider a set of modes moving rightwards. Any

null ray originating fromJ −
L and ending up onJ +

R will expe-
rience a change of geometry after it crosses the collapsing
null shell. For observers on J +

R , the isotropic co-ordinate
|x−| = �M marks the location of event horizon. Therefore,

the modes reaching J +
R derive their past causal support from

the region I in Fig. 6. No event in the region II is connected
to J +

R . An exactly similar picture is there for the left-moving
modes.

In the standard black hole analysis, the out-going mode
functions on J +

R are given as

vω = 1√
2ω

e−iωu; u ∈ (−∞,∞). (5)

These mode functions provide an orthonormal basis across
complete J +

R . Similarly the right-moving modes on J −
L are

spanned by

uω = 1√
2ω

e−iωv; v ∈ (−∞,∞). (6)

The Bogoliubov transformation coefficients between these
modes can be evaluated by taking the covariant inner products
onJ −

L . However, in order to do that we need to express mode
functions vω on J −

L in terms of uω. For that purpose we
need to track the out-going modes at J +

R all the way down to
J −
L . In principle, this a formidable job, since the exact form

of modes in the whole spacetime is complicated at best, if
obtainable in closed form. However, appealing to ray-optics
approximation [1,7] for modes very close to the horizon, we
in a sense, avoid this issue. This approximation gives us the
expression of modes vω close to |x−| = �M , i.e., u = d in
terms of uω. We obtain the Bogoliubov coefficients readily
as

α�ω = −2i

0∫
−∞

dx−u�∂−u∗
ω,

β�ω = 2i

0∫
−∞

dx−u�∂−uω. (7)

However, as we discussed this integration has to be truncated
to within the region u < d, which gives it a Rindler kind of
appearance, making it [1,3,7]
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. (8)

where C = C1C2 is a product of affine parameters for in-
going (C1) and out-going (C2) null geodesics withκ = 1/4M
being the surface gravity associated with the black hole hori-
zon. Subsequent computation of the expectation value of den-
sitized number operator in the ‘in’ vacuum yields,

123



433 Page 6 of 14 Eur. Phys. J. C (2018) 78 :433

in〈0|N�|0〉in =
∫
ω

|β�ω|2 = 1

exp( 2π�
κ

) − 1
(9)

which is definitely thermal. Along identical lines one can
immediately verify that the higher order correlations will also
be thermal in nature and justifying the thermal ambiance of
black holes. From the rather general nature of the analysis we
expect this result to give the Bogoliubov coefficients for the
timelike geodesic observer stationary at r = 0 if we replace d
by ui . Such an observer is engulfed by a true singularity when
the shell collapse to r = 0, it results in geodesic incomplete-
ness, something we will come back to, in a subsequent work.

In the limit M → 0, the portion being denied causally,
becomes small. Further the geometry change as well as the
formation of the singularity does not occur, making J + a
Cauchy surface, which is not the case when M 
= 0. Since
the effect of causal denial is intimately tied with the effect
of geometry change, it is difficult to account for these effects
individually in a general case in 1 + 3 dimension. Neverthe-
less, one can argue that the “tracing over” of modes, which
are causally not accessible, alone leads to Unruh effect with
zero flux, whereas the geometry change makes the thermal
radiation more ‘real’ with a non-zero flux [19–22]. The non
vanishing of flux can be associated with moving of the geom-
etry away from being a flat one. We will see below that these
two effects can nicely be segregated in a 1 + 1 dimensional
collapse model in dilaton gravity.

4 (1 + 1)-dimensional dilatonic black hole

The CGHS black hole [5,13] is a 1 + 1 dimensional gravita-
tional collapse model of a dilatonic field φ interacting with
gravity in the presence of cosmological constant λ and matter
fields fi , described by the action,

A = 1

2π

∫
d2x

√−g

[
e−2φ

(
R + 4(∇φ)2 + 4λ2

)

−1

2

N∑
i=1

(∇ fi )
2

]
. (10)

This action, when compared with the standard Hilbert Ein-
stein action, can be viewed as written in a conformally related
frame. In standard Einstein frame, obtained through confor-
mal transformation, the dilaton field makes appearance as a
canonical scalar field. Since all two dimensional space-times
are conformally flat the metric ansatz will involve a single
unknown function, the conformal factor ρ, which is written
in double null coordinates as,

ds2 = −e2ρdx+dx−, with,

x+ ∈ (0,∞), and x− ∈ (−∞, 0). (11)

For the matter fields, the classical solutions are those in
which, fi = fi+(x+)+ fi−(x−). Given some particular mat-
ter fields one can obtain corresponding solutions for φ and
ρ respectively from the equations of motion. A simple static
solution corresponds to e−2ρ = e−2φ = (M/λ) − λ2x+x−,
representing a black hole of mass M , with a line element

ds2 = − dx+dx−
M
λ

− λ2x+x− . (12)

In absence of the mass, M = 0 and we obtain linear dilaton
vacuum line element from Eq. (12).

We consider, for the collapsing scenario, a simplistic case
where only one scalar field f is present. The matter moving
leftwards collapses to form a black hole [13,23]. If the matter
distribution starts at x+

i and extends up to x+
f , then the line

element corresponding to this matter configuration turns out
to be,

ds2 = − dx+dx−
M(x+)

λ
− λ2x+x− − P+(x+)x+ , (13)

where the functions M(x+) and P+(x+) correspond to the
integrals,

M(x+) =
x+∫

x+
i

dy+y+T++(y+), (14)

P+(x+) =
x+∫

x+
i

dy+T++(y+). (15)

The matter field satisfies the null energy condition and hence
the quantity defining the mass M(x+) remains positive semi-
definite. The region outside x+

f is a black hole of mass M ≡
M(x+

f ) [5]. There is a curvature singularity at e−ρ = 0. The
singularity hides behind an event horizon (which is located at
x− = −P+/λ2) for future null observers receiving the out-
moving radiation. The location of the event horizon can be
obtained starting from the location of the apparent horizon,
see Fig. 7. This can be obtained using ∂+A ≤ 0, where
A stands for the transverse area of the horizon in a 3 + 1
dimensional setting. Borrowing this idea to 1+1 dimension,
this equality would lead to the location of the event horizon
at x− = −P+/λ2, in the out region, i.e., after x+ > x+

f .
Thermodynamics as well as Hawking evaporation of such

black hole solutions have been extensively studied [5,23–27].
We introduce a co-ordinate set z± suited for the in-regionJ −

L

± λx± = e±λz± , (16)
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Fig. 7 Penrose diagram for a CGHS black hole

which maps the entire J −
L into z− ∈ (−∞,∞). We also

introduce another co-ordinate system suited forJ +
R as σ±

out ∈
(−∞,∞) where the transformation between (z+, z−) and
(σ+

out, σ
−
out) is given by:

z+ = σ+
out; z− = −1

λ
ln

[
e−λσ−

out + P+

λ

]
. (17)

The horizon located at x− = −P+/λ2, will get mapped
to z− = z−i = − 1

λ
log (P+/λ) in these co-ordinates. ‘In-’

state modes are defined on the asymptotically flat region J −
L

moving towards J +
R and the convenient basis modes defined

correspond to,

uω = 1√
2ω

e−iωz− , (18)

where ω > 0. The ‘out’ region corresponds to J +
R which

receives the state from J −
L after the black hole has formed.

The basis modes in the out region at J +
R are

vω(σ−
out) = 1√

2ω
e−iωσ−

out ; (19)

vω(z−) = 1√
2ω

e−iωσ−
out(z

−)�(z−i − z−), (20)

where � is the usual step function marking the fact that the
out modes are supported by states on J −

L between the region
(−∞, z−i ) only. These mode functions provide a complete
orthonormal basis on J +

R in terms of σ−
out, however. Again

the field can be specified fully on J −
L or jointly on J +

R and
the event horizon HR . Since the mode functions at HR cor-
respond to part of the field falling into the singularity and
such interior modes cannot be observed by observers at J +

R ,
they need to be traced over. Thus, the precise form of mode
decomposition on HR does not affect physical results for
J +
R . Therefore, we can expand the dilaton field in different

mode basis as,

f =
∞∫

0

dω
[
aωuω + a†

ωu
∗
ω

]
, (in) (21)

=
∞∫

0

dω
[
bωvω + b†

ωv∗
ω + b̂ωv̂ω + b̂†

ωv̂∗
ω

]
, (out) (22)

where a†
ω corresponds to creation operator appropriate for the

‘in’ region. Similarly b†
ω and b̂†

ω stand for the creation oper-
ators for the ‘out’ region and the black hole interior region
respectively. The inner product between v� and u∗

ω corre-
sponds to,

α�ω = − i

π

z−i∫
−∞

dz−v�∂−u∗
ω = 1

2π

√
ω

�

z−i∫
−∞

dz−

× exp

[
i�

λ
ln

{(
e−λz− − P+

λ

)}
+ iωz−

]

= 1

2πλ

√
ω

�

(
P+

λ

)i(�−ω)/λ

× B

(
− i�

λ
+ iω

λ
, 1 + i�

λ

)
, (23)

while the inner product between v� and uω gives

β�ω = i

π

z−i∫
−∞

dz−v�∂−uω = 1

2π

√
ω

�

z−i∫
−∞

dz−

× exp

[
i�

λ
ln

{(
e−λz− − P+

λ

)}
− iωz−

]

= 1

2πλ

√
ω

�

(
P+

λ

)i(�+ω)/λ

×B

(
− i�

λ
− iω

λ
, 1 + i�

λ

)
, (24)

with B(x, y) being the Beta function. Therefore, we can ver-
ify that the late time right moving observers (such a observer
is depicted by the thick magenta curve in Fig. 7) do obtain a
thermal spectrum [5] with a temperature λ/2π , such that the
expectation value of the densitized number operator in the
‘in’ vacuum becomes,

in〈0|N�|0〉in =
∫
ω

|β�ω|2 = 1

exp( 2π�
λ

) − 1
, (25)

which is certainly thermal. Similarly the higher correlations
are also thermal with identical temperature. In two dimen-
sions, the parameter λ has dimension L−1 and is a legitimate
quantity to set the scale of the frequencies of emission. Fur-
ther, λ also turns out to be the surface gravity of the black
hole. Interestingly, the effect of mass of the black hole can
be eliminated in the redefinition of the co-ordinates in the
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Fig. 8 Left moving modes in a CGHS black hole

region exterior to the black hole [5]. As a result, M does not
explicitly appear in the expression for the temperature, which
is essentially related to the surface gravity.

Further, all references to the matter content which formed
the black hole, appears only in the phase [see Eq. (23) and
Eq. (24)], through P+ and gets wiped out when we take the
modulus. If we follow a null ray originating from J −

L or a
timelike trajectory and moving rightwards, it suffers a change
of geometry once it crosses the collapsing null shell, as in
the case for Schwarzschild hole formation. Therefore, the
experiences of these observers are inclusive of both tracing
over and the geometry change. Hence, as associated with a
black hole formation, there is an associated flux of radiation
as measured by the observers attached to such trajectories
[5,23]. However, this model being asymmetric under left-
right exchange, provides an opportunity of studying the effect
of tracing over separately, if we consider the left-moving
modes, which we do next.

5 Dynamically generated Unruh effect for inertial
observers in CGHS black hole spacetime

The CGHS model is not symmetric under left-right exchange,
and hence the experiences of null ray originating fromJ −

R or
a timelike trajectory moving leftwards, will be different from
what we discussed above. Such trajectories do not suffer any
change in geometry in their course, hence, as we will see, the
only effect a late time observer (the dotted curve in Fig. 8) on
J +
L finds, is rooted only in the tracing over a part of Cauchy

surface J −
R . Therefore, these observers will also obtain a

thermal expectation value in Eq. (25) as we will see, but
there will be no associated flux for these thermal spectrum.
The spacetime metric in the region x+ < x+

i is given as flat,
given by Eq. (13) with M, P+ → 0, which on using the
co-ordinates

x+ = − 1

λy+ ; x− = − 1

λy− , (26)

can be written as

ds2 = − dy+dy−

−λ2y+y− . (27)

The singularity curve originates from the co-ordinate of the
point of matter introduction, i.e., from x+

i which is marked
through Eq. (26) as y+

i = −1/λx+
i . Under another set of

co-ordinate transformations, the metric on J −
R can also be

brought into flat form. On J −
R we adopt

e−λχ+ = −y+,

eλχ− = y−, (28)

such that the metric becomes

ds2 = −dχ+dχ−, (29)

with χ± ∈ (−∞,∞). Given the spacetime metric as in Eq.
(29) we can construct a co-ordinate system {x ≡ (T, X)}
χ+ = T + X

χ− = T − X (30)

to write Eq. (29) as

ds2 = −dT 2 + dX2 (31)

where, T plays the role of inertial time coordinate in this
spacetime. The left moving inertial observer is given by the
trajectory

dT

dτ
= γ ; dX

dτ
= −vγ,

where v is the inertial velocity and γ is the correspond-
ing Lorentz factor. It is clear that in flat spacetime such an
observer will have zero two-acceleration. We note that an
inertial observer sitting at X = −a, with a � 1 will have a
trajectory closely hugging J −

L and J +
L .

Therefore the complete set of left-moving mode functions
corresponding to the field f+(χ+) can be written in these co-
ordinates as

u+
ω (χ+) = 1√

2ω
e−iωχ+

. (32)

Whereas on J +
L we adopt to

e−λχ̃+ = −(y+ − y+
i ),

eλχ̃− = y−, (33)

such that these new co-ordinates range in χ̃± ∈ (−∞,∞)

in the region x+ < x+
i . The metric in these new co-ordinates

becomes

ds2 = − dχ̃+dχ̃−

1 − y+
i e

λχ̃+ . (34)
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Given the metric in the (χ̃+, χ̃−) coordinates, one can simply
solve the field equation for the minimally coupled massless
scalar field in these co-ordinates using conformal invariance
of the matter field in two dimensions. The resulting complete
set of left-moving modes corresponding to the field f+(χ̃+)

are again given as

v+
ω (χ̃+) = 1√

2ω
e−iωχ̃+

. (35)

Notably, the timelike observers corresponding to these null
co-ordinates χ̃± = T̃ ± X̃ will find the metric to be dynamic,
but will be well suited observers to define positive frequency
modes of the field. Thus, the relevant questions to ask to the
inertial observers are how many particle modes (i.e. e−iωT

excitations) were there at remote past and how many positive
frequency particle modes (i.e. e−iωT̃ ) excitations are present
at late times?

Clearly, on J −
R , v+

ω has support only in the region
x+ < x+

i . The point x+
i is mapped to χ+ ≡ χ+

i =
− 1

λ
log (−y+

i ). Therefore, the Bogoliubov transformation
coefficients between these two set of observers can be
obtained exactly as in Eqs. (23) and (24) but with the replace-
ment |y+

i | ↔ P+/λ as

α�ω = − i

π

χ+
i∫

−∞
dχ+v�∂−u∗

ω = 1

2π

√
ω

�

χ+
i∫

−∞
dχ+

× exp

[
i�

λ
ln

{(
e−λχ+ − |y+

i |
)}

+ iωχ+
]

= 1

2πλ

√
ω

�
|y+

i | i(�−ω)
λ

× B

(
− i�

λ
+ iω

λ
, 1 + i�

λ

)
, (36)

while

β�ω = i

π

χ+
i∫

−∞
dχ+v�∂+uω = 1

2π

√
ω

�

χ+
i∫

−∞
dχ+

× exp

[
i�

λ
ln

{(
e−λχ+ − |y+

i |
)}

− iωχ+
]

= 1

2πλ

√
ω

�
|y+

i | i(�+ω)
λ

× B

(
− i�

λ
− iω

λ
, 1 + i�

λ

)
. (37)

This form of the Bogoliubov coefficients results from the
integration of the positive frequency modes over J +

L , having
support in the past only on a portion of J −

R . The horizon
for J +

L is given as y+ = y+
i , which also marks the point of

singularity. More importantly, if one is interested in the late

Fig. 9 Unavailability of Cauchy surface for left-moving modes

time response, i.e., the observers reaching i+L , we need to take
the high frequency behaviour (ω/λ � 1) of the Bogoliubov
coefficients

α�ω −→ 1

2πλ

√
ω

�
|y+

i | i(�−ω)
λ exp

[
π�

2λ

]

× exp

[
− i�

λ
log

ω

λ

]
�

[
i�

λ

]
;

β�ω −→ − 1

2πλ

√
ω

�
|y+

i | i(�+ω)
λ exp

[
−π�

2λ

]

× exp

[
− i�

λ
log

ω

λ

]
�

[
i�

λ

]
, (38)

which are (upto overall phases) exactly the same as for the
Rindler observer Eq. (2). The overall phase factors are not
really important for identifying the field content, as seen in
Eq. (4). Therefore, just like the Rindler observer, the left-
moving observer at high frequencies, at late times sees the
‘in’ vacuum to be thermally occupied

in〈0|N�|0〉in =
∫
ω

|β�ω|2 = 1

e
2π�

λ − 1
. (39)

Again, as before, the thermal ambiance of such an observer
can be verified through correlations among the various modes
which also turn out to be thermal in these settings,

in〈0|N�1 N�2 |0〉in =
(∫

ω

|β�1ω|2
) (∫

ω′
|β�2ω′ |2

)

= 1

e
2π�1

λ − 1

1

e
2π�2

λ − 1
. (40)

Similarly, any observable can be evaluated in the ‘in’ vacuum
using these Bogoliubov coefficients and the result will turn
out to be as for a thermal state. Thus, the experiences of the
geodesic observer start resembling that of a Rindler observer
and the observer finds the field content to be thermal (albeit
at a temperature λ/2π ).

This effect can be more clearly understood using non-
availability of Cauchy surfaces for future asymptotic obser-
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Fig. 10 Freely falling observers in CGHS black hole spacetime

vers. For that purpose let us consider a left moving timelike
or null trajectory. Due to conformal flatness, a complete set
of orthonormal mode functions on any surface orthogonal to
them, can always be obtained as plane waves under a proper
co-ordinatization (which extends as (−∞,∞)) of that sur-
face. If we consider an orthogonal null surface for the left
moving modes, before the formation of singularity (the red
surface labeled ‘2’ in Fig. 9), the Bogoliubov transformation
coefficients between that surface and J −

R will be trivial, i.e.,
(α�ω = δ(�−ω), β�ω = 0). However, once the singularity
forms, any null surface relating a point on J −

L to the sin-
gularity (e.g., green surface labeled ‘1’ in Fig. 9)), fails to
causally connect with the entire spacetime. Also, any time-
like observer has a domain of dependence, which is not the
full spacetime. A portion of J −

R (right to the dashed green
line) is causally denied to the past of such surfaces. Therefore,
the Bogoliubov coefficients assume a non-trivial form, such
as in Eqs. (23), (24) or Eqs. (36), (37), with a phase factor
capturing the information about the region of the traced over
modes. This is dynamically similar to a Rindler trajectory
in a Minkowski spacetime, see Fig. 2, where an accelerated
observer (thick green curve) reaches the future null infinity
rather than future timelike infinity. For such observers too,
the domain of dependence is only a part of the full space-
time. There is a horizon masking a portion of spacetime and
hence the Bogoliubov transformation coefficients between
J −
R and J +

L ′ (rather than the full J +
L ) is non-trivial [3,6,8]

and the accelerated observers obtain a thermal spectrum for a
vacuum state defined on J −

R . However, there is no flux asso-
ciated with this spectrum as the vacuum expectation value of
the stress tensor vanishes identically in the flat spacetime.

Similarly in the CGHS model, the region of spacetime
y+ > y+

i is dynamically made inaccessible to any left-
moving time-like or null trajectories, which also is the
case with such trajectories in the null collapse forming a
Schwarzschild black hole Fig. 6. However, in contrast to
the Schwarzschild case, such observers in the CGHS model,
do not see any change of geometry hence they do not asso-
ciate any mass to the “black hole region” as seen by them.

The spacetime, they move in, throughout, is flat and such
observers do not receive any flux of radiation, as the vacuum
expectation value of the stress energy tensor which was van-
ishing on J −

R , stays put on zero, in the region y+ < y+
i . As

we discussed previously Eq. (25), the right moving observers
tuned to right moving modes, witness a thermal radiation flux
at a temperature 1/λ which is independent of the matter con-
tent of the forming black hole and depends only on the other
dimensionful parameter in the theory.

Following an identical path, the observers at J +
L coupled

to left-moving modes, observe a similar kind of Bogoliubov
coefficients as their right-moving counterparts Eqs. (23),
(24) but with the parameter exchange |y+

i | ↔ P+/λ which
mark the corresponding event horizons for such observers
and appear as overall phases in the transformation coeffi-
cients. Hence, we see that such form of Bogoliubov coef-
ficients Eqs. (36), (37) are entirely due to tracing over of
modes which lie in the causally denied region of spacetime,
to I+

L and not due to any geometry change. One can check
that if the fraction of tracing over vanishes, which is marked
by |y+

i | → 0, the Bogoliubov coefficients assume a trivial
form, i.e., α�ω → δ(� − ω) while β�ω → 0. Similarly, the
Bogoliubov coefficients for the right-moving observers Eqs.
(23), (24), assume a trivial form in the limit P+ → 0, mark-
ing the vanishing of event horizon, as well as, the amount
of change of geometry suffered by such observers. Hence,
for such observers effects of tracing over is indistinguish-
able from geometry change. Both these effects vanish simul-
taneously in that limit. Therefore, we see that the vacuum
response for both left-moving or right-moving observers is
indistinguishable from each other. Late time environment for
such observers on J +

L or on J +
R for vacuum state (of a test

field) is thermal.
However, unlike the left-moving observers, the right mov-

ing observers also associate a flux with the radiation and
hence the black hole region shrinks as a result of the evap-
oration. While left-moving observers do not associate any
mass to the region beyond their horizon, the location of their
horizon does not shrink and the “black hole region” does not
evaporate for them. Classically speaking it creates a casual
dilemma for the left moving inertial observers since they
can not associate any source to the radiation they observe.
Such observers are oblivious to an event horizon formed due
to collapsing matter, from which they are unable to get any
causal communication; nor does the geometry reveal such a
development. However, quantum correlations of the global
vacuum state seep through the horizon, which these observers
are able to tap (reminiscent of what happens in the famous
EPR paradox). It is these correlations which the left-moving
observers attribute, from their point-of-view, as due to an
excited state defined on the Hilbert space on their accessible
region. Had there been no dynamics in the region y+ > y+

i ,
the full Cauchy surface would have become accessible to
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the left-moving observers (as well), making them standard
inertial observers. Thus, the dynamics of the spacetime has
generated an Unruh (like) effect for a set of inertial observers.

All the geodesic observers moving rightwards or remain-
ing stationary at any finite value (with the exception of sta-
tionary observer at left infinity), on the other hand, end up
in singularity and in this process have to undergo a geom-
etry change (thick cyan curves in Fig. 10), so they witness
a combined effect and hence a flux of radiation, as in the
Schwarzschild scenario [17,18,28]. Whereas the left-moving
timelike observers end up at i+L , do not see any geometry
change but encounter flux-free thermal atmosphere due to a
dynamical emergence of a horizon, which washes out infor-
mation of a section of initial field configuration, exactly in
the spirit of the Rindler observer, as discussed previously.

Finally, we will comment on the back-reaction due to
black hole evaporation and its implications for our result.
To compute any kind of back-reaction in the spacetime in
Einstein gravity, one needs to use an equation of the form
Gab = 〈Tab〉. Neither side of this equation can be handled
without additional assumptions and, obviously, the result will
depend on the additional assumptions! The left-hand-side
identically vanishes in D = 2 because Einstein tensor iden-
tically vanishes in two dimensions. The right hand side is:
(1) divergent and needs to be regularized and (2) depends
on the quantum state which is chosen. The best we can do,
therefore, is to give prescriptions to define both sides and the
results will obviously depend on these prescriptions. We dis-
cuss our set of choices while describing the pertinent issues
in two-dimensional gravity below.

To get a non-zero left hand side, one postulates some non-
Einsteinian form of the gravity action (like the CGHS action
in Eq. (10)) and vary the metric to get the equations of motion.
Obviously, this is not Gab (which, of course, is zero) but can
possibly act as a proxy for the same. We stress the fact that we
are trying to model some gravitational features by some suit-
able dilatonic action and one cannot ignore the implicit ad-
hocness in the procedure. For example, in such an approach,
one also often takes the the normal ordered, non-covariant,
expectation value of the stress energy tensor as the classi-
cal source. However, in a two-dimensional spacetime, the
expectation value of the stress energy tensor comes with a
conformal anomaly term [5] as well. The anomaly term can
then act as an extra source of stress energy and may lead to an
evolution different from the classical case, if not accounted
for properly. A prescription used in the literature is to add
some extra terms (e.g., Polyakov action, RST action terms)
to the standard CGHS action corresponding to the confor-
mal anomaly terms and obtain these modified equations of
motion, as a result of the variational principle. But this new
action will correspond to a different physical system, though
one which can also be thought of as a proxy for gravity. But
in this prescription, flat spacetime will not be a solution to

the vacuum state for the semiclassical equations due to the
anomaly, which we consider somewhat unphysical. There is
no unique way of handling this issue because, as we stressed
before, Gab = 0 in D = 2 and the left hand side which
we work with to mimic Gab = 〈Tab〉 depends crucially on
the model we use, with the hope that it can mimic aspects
of D = 4 gravity. We have chosen simple, physically well-
motivated choices to do this as we describe next.

To analyze the right hand side, we need a scheme for defin-
ing a c−number stress tensor from the quantum operator and
the vacuum state has to be motivated from some specific (geo-
metric) considerations. We have defined the vacuum state by
a natural assumption: viz. that the geometry must remain flat
when sourced by such a (vacuum) state. This is important
because as we discussed, in two-dimensional spacetime, the
expectation value of the stress energy tensor has a conformal
anomaly term which can violate this criterion in general, if
this term is not accounted for in the source terms in the right
hand side. We will choose the state of the matter field such
that one recovers the classical flat geometry prior to x+

i , in
order to remain true to the classical consideration. Therefore,
we require exp(ρ) = exp(ρflat) = 1/λ2x+x− in the region
x+ < x+

i . Thus, the classical values of theT±± are being real-
ized by 〈T±±〉. We can further choose the boundary condi-
tions for the set of initial states judiciously such that the con-
tribution due to conformal anomaly exactly cancels out in the
region of interest leading to a flat spacetime semi-classically,
see for instance [29–31]. For this judicious choice of fam-
ily of quantum states [32], the spacetime region x+ < x+

i
remains unaffected by the conformal anomaly term. There-
fore the results discussed in this work, use stability of the
solution under these class of states. A more detailed analysis
of conformal anomaly modified evaporating black holes can
be found in [5]. Our scheme to deal with such terms will be
reported in details elsewhere [33].

6 FAQ: demystifying some aspects of the analysis

In this section we provide answers to some FAQ, which will
help the reader to understand the content of this work from
a better perspective.

1. What does the non-trivial Bogoliubov coefficients for the
left patch signify ?
The Bogoliubov coefficients essentially signify the “par-
ticle content” of a field configuration as measured by
suitable annihilation and creation operators between two
sets of observers who are entitled to declare positive fre-
quency excitations of the field. (In general, this “particle
content will be quite different from the particle content
determined by detectors; for a discussion see e.g. [34]).
If two set of observers are connected by trivial Bogoli-
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ubov coefficients, they must agree on the field content,
and, in particular, the notion of the vacuum state. In the
case we are interested in, the Bogoliubov coefficients are
non-trivial for the left moving observer and hence (s)he
will ascribe the ‘in’ vacuum state of the quantum field for
the spacetime to be filled by particles as determined by
the expectation value of a number operator. Notably, such
observers may well be left moving inertial observers.

2. Will such observers, therefore find a swarm of particles
hitting them ?
The answer, as in the case of Unruh effect, is no. Since the
left moving observer lives in a static patch of the space-
time, having time reversal symmetry, there is no outgoing
flux for the relevant observers. These observers will find
the state of the field to be just thermally populated. This
is very much analogous to the experience of the Rindler
observer, witnessing Unruh effect, but for the fact that
the left moving observers in this CGHS spacetime are
inertial observers.

3. There are other inertial observers too, such as asymptotic
observers in Schwarzschild spacetime, r = 0 observer in
de Sitter. What is so special in this particular observa-
tion?
Indeed there are other observers who do witness ther-
mal radiations, in one way or another, despite being iner-
tial. However, they are mostly in a spacetime with non-
vanishing curvature. Any exploration of the spacetime
region in the vicinity of their location will reveal the non-
zero curvature to them. On the other hand, the observers
discussed in this paper, live completely in a flat space-
time region throughout their lifetime. They do not have
any spacetime curvature or acceleration to explain their
experiences.

4. The non-trivial Bogoliubov coefficients tell us that these
observers declare the initial vacuumas excited state. This
happens because of a null shell collapsing in their causal
future. Is this not in violation of causality?
The single most important thing to notice is that, the
notion of Bogoliubov coefficients is global rather than
local. In order to evaluate the Bogoliubov coefficients,
one must have a knowledge regarding the full global
geometry beforehand. So it is premature to contest
causality from the non-triviality of the Bogoliubov coef-
ficients. Causality in quantum field theory is protected by
the commutation relations, which in this context, across
the horizon, still vanishes. So based on that one can con-
clude that there is no breakdown of causality. The left
moving observers just have access to (or get a signal
from) the field configuration in a portion of the space-
time, which remains insufficient for them to conclude the
field to be in the vacuum state. Just like based on non-

trivial Bogoliubov coefficients of a Rindler observer, one
can not object that the Unruh radiation lets the observer
know what it will be doing in the future (i.e., observer
will be eternally accelerating, making her incapable of
changing her mind of whether to accelerate or not) in
violation of causality, one can not object to causality in
this set-up as well.

5. Then how should one interpret these Bogoliubov coeffi-
cients?
In the same spirit as the Bogoliubov coefficients in the
case of Rindler observer. For example if we consider an
accelerated observer in the right wedge of the Minkowski
spacetime, that observer will be oblivious to the field con-
figuration in the left wedge. Still if the field configuration
is distorted only in the left wedge, it will carry imprints of
that in the right wedge too, without breaking any causal-
ity. The crucial thing is that no information can propagate
from left to the right wedge.

6. How does the collapsing shell affect the left moving
observers then?
The collapsing shell ensures that the left moving observers
do not have infinite proper time in the future. The global
geometry is modified due the collapse of the null shell,
making the left moving observers trajectory only finitely
extendible in the future. Therefore, the mode-functions
which provided a complete basis in past do not remain
relevant in the future and one needs to find mode func-
tions which provide a complete orthonormal basis for left
moving observers in the future. Therefore the vacuum
viewed in the light of new orthonormal basis appears as
if it is excited. Again to stress the central point, the quan-
tum correlations between events in the future and past of
the shell remain non-zero, but their commutator vanishes,
thus there is no causal violation.

7. What are the requirements which go into deriving the
form of mode functions suited for future observers?
For future observers, one needs to get a complete basis in
the region accessible to them (just like Rindler observers,
or for late time observers in black hole case for that mat-
ter). Further, we require a complete range of co-ordinates
over which the variable characterizing the plane wave
runs, in order to get a complete basis (i.e., eikx provides
a complete basis only if x ∈ (−∞,∞). Given this fact,
one can decompose the positive frequency modes in the
future in terms of positive frequency and negative energy
modes in the past to obtain the Bogoliubov coefficients
between them. In the co-ordinate system which yield a
complete basis, we also have a positive frequency mode-
function in terms of co-ordinate time (just like e.g., early
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time mode function during inflation). Though this co-
ordinate time is not a Killing one.

8. What does the reduced density matrix for the left moving
observer look like?
Again, since the left moving observers are totally igno-
rant about the field configuration in the region which
is future to the shell, they will have to trace over those
configurations to obtain a reduced density matrix. How-
ever, the Bogoliubov coefficients are of the form that
they pronounce thermality only for high frequencies (like
in Hawking radiation). For low frequencies, i.e at long
wavelengths, one is able to see that the region explored
by left moving observers is different from an eternally
accelerated observer, leading to departure from thermal-
ity. The reduced density matrix is also expected to bear
these features.

9. Can such effects be present in other dimensions ?
Our result depends essentially on chirality of the dynam-
ics in 2-dimensional dilaton gravity. In D = 2 we have a
solution in which observers moving in one direction do
not feel the presence of black hole which has formed as
a result of a collapse. Currently, we do not know of any
other solutions in any theory of gravity which has such
a feature. Evidently, due to the existence of standard no-
hair theorems, Einstein gravity will not lead to such an
asymmetric black hole configuration. However, whether
any other theory of gravity can lead to such a solution
in higher dimensions, is a question which we hope to
address in a future study.

7 Concluding remarks

In this work, we have shown that pure quantum correlations
can play the role of a source of a thermal bath in a flat region of
spacetime. There is no classical source otherwise, to describe
the thermal ambiance of the quantum field, which a section
of inertial observers in the spacetime and into. The inertial
observers in the flat region are unaware of an event horizon
formation due to the collapsing matter, which lies to their
causal future. Therefore, unlike their right moving counter-
parts, they are unable to witness any black hole formation,
and do not have a explanation to their thermal environment
other than describing the state to be a non-vacuum one. It
is well known that, quantum correlations (e.g., of the global
vacuum state) do not vanish beyond the light cone and it is
these fluctuations, which these observers are actually detect-
ing. It is the partially traced over quantum correlations (due to
presence of an horizon the existence of which these observers
do not know), which the left moving observers falsely asso-
ciate with an excited state, defined on the Hilbert space on
their accessible region, since clearly the quantum fluctuations

of the vacuum state defined on their Hilbert space would have
had different signatures.

This thermality she gets is not through any geometry
change, or through any artifact of her non-inertial motion
but through quantum correlations of the ambient field. How-
ever by no means is this a case of causality violation any more
than there is causality violation in the EPR situation, with the
counterpart of the thermal excitations lying beyond the hori-
zon. Only a pair of observers across the horizon will have the
complete information about the vacuum structure, not any
one of them individually. This is, of course, in stark contrast
to the right moving observers, who, knowing the field equa-
tions of dilaton gravity, will be able to associate a change of
geometry and hence interpret it as the source, essentially as
the phenomenon of black hole evaporation with no apparent
surprise.

Thus, we have shown quantum correlations as a probe of
maximal extendibility of the spacetime. Any probe of such
quantum correlations will reveal the differences between the
vacuum of a maximally extended and maximally extensi-
ble spacetime, which remain hidden classically. In addition
to these correlations, if some classical channels [35,36] are
also present, we can in principle utilize them to probe the
geometry of causally inaccessible regions more effectively
in higher dimensions as well. We will pursue these issues in
a subsequent work.
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