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Abstract In a black hole, hair and quantum information
retrieval are interrelated phenomena. The existence of any
new form of hair necessarily implies the existence of features
in the quantum-mechanically evaporated radiation. There-
fore, classical supertranslation hair can be only distinguished
from global diffeomorphisms if we have access to the inte-
rior of the black hole. Indirect information on the interior
can only be obtained from the features of the quantum evap-
oration. We demonstrate that supertranslations (T~, TT) e
BMS_® BM S, canbe used as bookkeepers of the probabil-
ity distributions of the emitted quanta where the first element
describes the classical injection of energy and the second one
is associated to quantum-mechanical emission. However, the
connection between T~ and T is determined by the interior
quantum dynamics of the black hole. We argue that restrict-
ing to the diagonal subgroup is only possible for decoupled
modes, which do not bring any non-trivial information about
the black hole interior and therefore do not constitute phys-
ical hair. It is shown that this is also true for gravitational
systems without horizon, for which both injection and emis-
sion can be described classically. Moreover, we discuss and
clarify the role of infrared physics in purification.
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1 Introduction and summary

The puzzle of black holes

A black hole is an extraordinary physical system. While
in a classical theory, it is extremely simple for an out-
side observer, as a consequence of the no-hair-theorem (see
e.g. [1]), its internal quantum complexity measured by the
Bekenstein—-Hawking-entropy [2,3] N = M? /Mz is enor-
mous. Both properties are obviously interrelated. The black
hole entropy appears because many different matter configu-
rations can collapse into the same black hole geometry. The
no-hair-theorem prevents an outside observer from resolving
these differences which remain hidden behind the horizon.
Quantum-mechanically, the black hole evaporates [3] and
unitarity requires that along the evaporation process the black
hole should deliver back the information which was classi-
cally hidden in its interior [4]. This means that although the
classical metric has no hair, the evaporation products should
have features which compensate for this lack of information.
In other words, the quantum radiation emitted during the
black hole evaporation should carry the same information
which the classical no-hair-theorem prevents us to extract
from the geometry.

In the last twenty years it has become popular to use the
AdS/CFT correspondence as strong indication of the unitar-
ity of black hole evaporation. However, this hope will not be
fulfilled until counting with the CFT dual of a small evapo-
rating black hole has been achieved. More generally, we shall
argue in this note that the solution to the evaporation problem
requires to have a microscopic model of the black hole as a
quantum system — whether obtained from AdS/CFT or differ-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5799-8&domain=pdf
mailto:cesar.gomez@uam.es
mailto:sebastian.zell@campus.lmu.de

320 Page2of 18

Eur. Phys. J. C (2018) 78:320

ently. In [5,6], we have developed such a model that, among
other things, indicates the existence of forms of quantum hair
effects of order 1/N. Moreover, and in a model independent
way, it is easy to see that taking into account the change of
the black hole mass due to Hawking evaporation leads to
deviations from featureless emission on precisely this order
of magnitude [7].

Classical BMS-hair

Recently, a new way to attack the problem has been sug-
gested [8,9] based on asymptotic BMS-symmetries [10—12].
This approach has received widespread attention (see e.g.
[13-24]). In particular, a potential new form of classical hair
for a black hole has been proposed [25,26]. The idea is sim-
ply the following. One starts with a black hole of mass M
and injects an energy u in the form of incoming radiation
with some angular features.! This incoming radiation can be
associated with a supertranslationin BM S_ which we denote
by T ~. Classically, the resulting system is a black hole with
total mass M + p but supertranslated by 7. One can do the
same construction with identical x but with different angu-
lar features, i.e. different supertranslations 7, to obtain a
family of different metrics all of them with the same ADM-
charges. Thus, it seems that one can indeed define classical
hair if all these metrics sharing the same ADM-charges are
physically inequivalent. At the classical level, this means that
those metrics are not just the same metric written in different
coordinate systems, i.e. that they are not related by a globally
defined diffeomorphism. As we shall elucidate, the problem
with this form of classical hair is that for an observer outside,
there is no way to decide if all these metrics are different or
simply the same metric in different coordinates. In order to
decide that, the observer needs to have information about
the interior of the black hole. In summary, defining hair by
means of the classical gravitational memory associated to
some incoming radiation is only operative if somehow we
can have extra information about the memory effects in the
interior of the black hole which is, in a different guise, the
essence of the no-hair-theorem.

Fortunately, there is an indirect way to decide from the
outside whether two black hole metrics defined by injecting
the same amount of energy but with different angular fea-
tures are physically different or not. We can just wait until
the black holes emit some radiation and compare the radiation
produced by the two black holes. For simplicity, we restrict
ourselves in our discussion to a pure theory of gravity in
which only gravitational radiation can be emitted. The corre-
sponding process is depicted in Fig. 1, where we distinguish
the classical, semi-classical and purely quantum contribu-
tions. The first thing to be noticed is that this test is purely
quantum in the sense that only quantum-mechanically, the

1" All quantities will be properly defined at the beginning of Sect. 2.
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black hole can emit radiation. The second thing is that the
information we can get on the emitted quantum radiation by
actual measurements is necessarily encoded in the form of
probability distributions. Thus, if those black holes defined
by different 7' are indeed different, we should expect that
the corresponding quantum probability distributions are also
different.

Insufficiency of calculation in classical background met-
ric

It is natural to expect that this difference has a non-trivial
projection on deviations from isotropy, i.e. that the emitted
quanta carry angular features. Then we obtain quantum prob-
ability distributions P; (0, ¢) from the measurement of the
radiated quanta. We can use those to define a classical super-
translation Ti+. By that we simply mean a classical super-
translation with the flow of emitted radiation determined
by the measured quantum probability functions P; (6, ¢). In
this sense, the former experiment produces a set of couples
(7, Tl.+) where the first supertranslation in BM S_ is clas-
sical and the second one in BM S, is determined by the
quantum probability distribution. From this point of view,
if the classical 7, really implants hair, then the quantum
TI.+ should be non-trivial, i.e. contain spherical harmonics
with [ > 2. The crucial point is that this behavior cannot be
achieved by the standard Hawking computation performed
in a supertranslated Schwarzschild metric, i.e. as pair cre-
ation in the background vacua defined by the near horizon
geometry. The reason is that the supertranslation acts as a dif-
feomorphism near the horizon and does not change the local
geometry. Therefore, it does not suffice if the P; only depend
on the injected radiation and the geometry of the black hole.
Instead, they must also depend on its internal dynamics.

We can make the argument a bit more quantitative and
assume that from the whole energy w injected a fraction &
is associated to angular features. This means that the part
of the incoming classical flow Fj, with angular labels [ > 2
contributes to | d*Q F;, with a value equal to fi. Clearly, ji =
0 would correspond to the injection of featureless radiation.?
In order to parametrize how the P; depend on ft and the
internal structure of the black hole, we shall use the typical
number of quantum constituents of the black hole. In this
sense, we expect P; (0, ¢; (i, N) where the label i refers to
the dependence on the incoming 7;~ and where we identify
the number of quantum constituents of the black hole with
the entropy N.

Then the natural dimensionless parameter measuring the
dependence of P; on the internal structure is fi/+/N where
/N is the black hole mass in Planck units. In this setup,
angular features in the evaporation, i.e. finite N effects in

2 In this case, the associated supertranslation will not support angular
features and will only project on the / = 0, 1 spherical harmonics.
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Fig. 1 Absorption of a wave
with energy profile i, by a
black hole of mass M and
possible subsequent evaporation
in the classical, semi-classical
and fully quantum treatment
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(a) In the classical limit, the change of the black hole only depends on the total absorbed
energy W, in line with the no-hair-theorem. The black hole cannot emit.
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(b) Also in the semi-classical limit, the change of the black hole only depends on the
total absorbed energy u. The black hole can evaporate, but the evaporation products are
featureless. In particular, they are distributed isotropically.
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(c) In the fully quantum treatment, the incoming radiation Fi, interacts with the micro-
scopic description of the black hole. In doing so, it changes the microstate of the black
hole so that it can emit radiation F,, with non-trivial angular profile.

P; (0, ¢; 1, N),depend on the black hole microscopic model.
Those will define a couple (7}, Ti+) generically not in the
diagonal subgroup BM Sy of BM S_® BM S . Thus, the first
important message of our note will be that the information
about T, cannot determine the quantum probability distri-
bution Tl.+, i.e. we cannot predict the quantum probability
distribution solely from the incoming radiation implanting
the hair.

Subleading soft modes

We can investigate how this situation changes in the semi-
classical limit M — oo, i.e. N — 00, in which the Hawk-
ing computation becomes exact. In this case, the energy
associated to features becomes zero so that angular features
can only be encoded in zero-energy modes. The effective
decoupling of these modes will lead to a P; identical to
the incoming radiation. This produces couples (7", Tl.+)
in the diagonal subgroup BM Sy. In more concrete terms,
the limy_, o P; (6, ¢; ft, N) will only capture local horizon
physics or zero-energy modes.>

This brings us to our second point, namely how the actual
features of the quantum probability distribution P; depend
on infrared physics.* We know that in gapless theories such

3 Itis important to stress that the pseudo Goldstone—Bogoliubov modes
identified in [27] are not equivalent to near horizon diffeomorphisms
and consequently are good microscopic candidates to describe the low
energy effective changes of the microstate of the black hole during the
process of absorption and evaporation.

4 See [28] for a recent suggestion for purification by infrared modes.

as gravity, evaporation interpreted as a S-matrix process has
a zero probability amplitude without any accompanying soft
gravitons. In order to obtain a finite answer, one has to include
the emission of a certain class of soft radiation, namely IR-
modes. However, this fact by no means implies that this com-
panion radiation should carry the angular features that we
need to purify the evaporation. On the contrary, we know
from infrared physics that IR-radiation is only sensitive to
the initial and final scattering states. It is independent of the
details of the process or in our case of the microscopic details
of the black hole, i.e. cannot resolve the microstate.
Independently of the question to what extent IR-radiation
and hard quanta are correlated, we can quantitatively esti-
mate the amount of information we could lose when we inte-
grate over unresolved IR-modes. From well-known results of
infrared physics it follows that their number only grows log-
arithmically with the resolution scale €, i.e. ngof ~ —Ine.
However, what we have discussed implies that the natural
resolution scale of features should be € ~ 1/N. Thus, the
second important message of our note is that unresolved IR-
modes cannot account for the bulk of information in black
hole evaporation, but could only contribute as a subleading
logarithmic correction. The part which carries features is the
part of the radiation that can be resolved and that depends
not on the infrared divergences but on the inner structure of
the black hole, or in scattering language, on the details of
the scattering process. A possible candidate is soft non-IR
radiation, which is independent of infrared divergences. As

@ Springer
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it should be, non-IR radiation depends on the details of the
scattering process so that it cannot be predicted without a
microscopic theory of the black hole.

Summary and outline

In summary, non-trivial hair can be only defined by cou-
ples (T, Tﬁ) € BMS_ ® BMS, where the element in
BMS_ is classical and carries some finite energy and the
element in BM S is defined as a bookkeeper of the quan-
tum probability distribution of the radiated quanta. What con-
crete element Tl.+ is associated with a given 7, cannot be
derived solely from the classical geometry, but depends on the
internal quantum structure of the black hole. This non-trivial
mapping is precisely what makes the quantum hair informa-
tive. For a system with non-trivial dynamics, it is therefore
impossible to restrict to a subgroup of BMS_® BM S . Pre-
dictivity on this quantum output can be only achieved in the
zero-energy (or equivalently N = oo limit) where we only
get elements in the diagonal subgroup BM Sy.> But since
the soft modes are decoupled once the infrared divergences
of the theory are properly taken into account [29-34], they
cannot lead to observable features.®

The outline of the paper is as follows. In Sect. 2, we
first recap some properties of BMS-gauge. In particular, we
show how angular features of radiation define a supertrans-
lation, which can be measured as a memory effect. More-
over, we discuss the role of soft modes. Then we use a
combination of injected and emitted radiation of the same
total energy to define Goldstone supertranslations as element
(T, Tt) e BMS_ ® BM S, . In Sect. 3, we first concen-
trate on a gravitational system without horizon, which we
shall call planet for concreteness, and show how we can use
Goldstone supertranslations to change its angular distribu-
tion of mass. In doing so, the key point is that it is impossible
toinfer 7" from T~ unless one knows the internal dynamics
of the planet. Moreover, we highlight the importance of angu-
lar features by showing that it is impossible to determine the
angular mass distribution of the planet without access to its
interior. Subsequently, we apply Goldstone supertranslations
to a black hole. We demonstrate how supertranslations can
be used as bookkeeping tool for the emitted quanta. How-
ever, without knowledge of the microscopic dynamics of the
black hole, they have no predictive power. We also point out

5 In[25] and [26] itis suggested to constraint the potential values of Ti+
using an infinite set of conserved charges. Imposing these conservation
laws makes the corresponding S-matrix completely insensitive to the
internal structure of the black hole and consequently, in the language
we are using here, can only capture unobservable zero-modes.

6 This decoupling of soft modes is a quantum effect that should not be
confused with the existence, for instance in asymptotically Minkowski
space time, of a non-trivial family of asymptotically flat connections
defining a representation of the BM S-group (see [35] and references
therein). This multiplicity of classical inequivalent vacua is quantum-
mechanically reabsorbed in the cancellation of infrared divergences.
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how we can use Page’s time to estimate the magnitude of
deviations from featureless evaporation. After concluding in
Sect. 4, we provide a more detailed discussion of IR-physics
in Appendix A. In Appendix B, we discuss the matching of
the supertranslation field in advanced and retarded coordi-
nates and finally we explicitly calculate a Goldstone super-
translation of a planet in Appendix C.

2 Quantum hair
2.1 Recap of BMS-gauge and memory effect

Retarded coordinates
We first recap some properties of BMS-gauge, which is
defined by the four gauge conditions [10-12]

g1 =814 =0, detgap=r’sin’0, 1))

where A, B, ... = 2, 3. Typically, BMS-gauge is used to
study a spacetime asymptotically, i.e. for r — oo, but it is
possible to extend the metric to the bulk by imposing the
conditions (1) to all orders in 1/r. In a typical situation,
however, a metric in BMS-gauge does not cover the whole
spacetime.

A metric in BMS-gauge exists both in retarded time
u, which is suited to describe outgoing radiation, and in
advanced time v, which is suited to describe incoming radia-
tion. The matching between these two metrics will be crucial
for our treatment. Explicitly, an asymptotically flat metric in
retarded time takes the form [10-12]:

+
dsZ — (_1 + m_B + O(r_z)) du2 — (2 + O(r_z)) dudr
r

2
+r? (yAB +Chpr '+ 0(r*2)) dx*dx®
+ O(rfz)dxAdu, 3

where the metric on the sphere has to fulfill the requirement
det gap = r*sin’6. Here m}; is the Bondi mass, y4p the
standard metric on the sphere and

Cip = (20aDs — yasD?) C* @)

is determined by the supertranslation field C™, where D is
the covariant derivative on the sphere. It is helpful to expand
the supertranslation field in spherical harmonics. Then the
mode / = 0 represents a time shift and the mode [ = 1 cor-
responds to spatial translations. Therefore, all modes with
| > 2 define proper supertranslations. Metrics with different
values of C are connected via asymptotic diffeomorphisms,
i.e. the choice of the supertranslation field constitutes a resid-
ual gauge freedom of BMS-gauge. These diffeomorphisms
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are the famous supertranslations. Therefore, we can define
a supertranslation TV by the change it induces in the super-
translation field:

TH:=AC™. 3)

In order to analyze the effect of supertranslations, we will
need the constraint equation Goo = 87 G Ty, whose leading
order reads in BMS-gauge:

1
dumy = ED%Dz +2)0,C" — Four, (6)
where
1 .
Fou = g@uCp)@uCAE) + 4 lim (2 Tou) ™

is the total incoming null energy, composed of gravitational
waves (first summand) and other forms of gravitating energy
(second summand).

Advanced coordinates
The situation in advanced coordinates is very similar. The
metric takes the form

ds? = (-1 + 28y O(r_z)) dv? + (2 + O(r‘z)) dvdr
r
®)
+ r? ()/AB +Coupr '+ 0("72)) dxdx®
+ O(rfz)dxAdv, 9

where the supertranslation field and the supertranslations in
advanced coordinates are defined as in (4) and (5). The con-
straint equation becomes

1
dumy = EDZ(DZ +2)0,C” + Fin, (10)

where Fi; is the incoming energy, in analogy to (7).

Measurement of the supertranslation field: memory
effect

As already discussed, one can change the value of the
supertranslation field by a diffeomorphism. Therefore, it fol-
lows by general covariance that the value of the supertrans-
lation field cannot have in general any experimental impli-
cation. However, since it corresponds to physical outgoing
or ingoing radiation, the difference of the supertranslation
field at different times does have experimental implications:
It describes the memory effect caused by the radiation, i.e.
a permanent displacement of test masses after the radiation
has passed [8,36,37].

We will restrict ourselves to a simple situation in which
we start with some stationary metric gllw and we finish in a
different stationary metric 8,2w- In between, there is a radia-
tion epoch, i.e. Fiy/oue Only has support during this time span.
Asymptotically on 7%, the process defines a non-stationary

metric interpolating between g llw and glzw which should be a
solution to the Einstein equations.

Since Birkhoff’s theorem implies that we can set d Am§ =
0 1in a stationary metric, we can single out the zero-mode from
(6) by integrating over the sphere:

2
M+=_fdu f4d Qfout’ (11
4
where we first consider retarded time and u+ = m'g 5 —mg 1
is the total change of Bondi mass due to the radiation epoch.
This formula shows explicitly that the Bondi mass m“g is
monotonically decreasing, i.e. it measures the energy which
has not yet left the bulk. Defining the emitted energy with
non-trivial angular distribution as A Fyy = [ du Fou—u™,

the constraint (6) becomes

1 3
0= EDz(D2 + )Tt — AFou. (12)

Thus, angular features in the outgoing radiation induces a
supertranslation 77 = AC™. Note that it is independent of
the total emitted energy pu ™.

In advanced coordinates, we get from the constraint (10):

_ v [d*QF,

4 (13)

n

The advanced Bondi mass mj is monotonically increas-
ing, i.e. it measures the energy which has already entered the
bulk. Defining AF;, := [ dv Fin — p~, the constraint (10)
becomes

1 5
0= E1)2(1)2 + 2T~ + AFi. (14)

This formula implies that an advanced supertranslation
T~ tracks angular features in the incoming radiation.

2.2 Goldstone supertranslations

As already pointed out, we shall define hair on the basis
of scattering processes where some injected gravitational
energy is radiated back by the system. The hair will be
encoded in the angular features of the injected radiation and
the outgoing radiation. In this sense, we define hair as a typ-
ical response function. Through these formal scattering pro-
cesses we define a map relating gravitational systems, black
holes or planets, in different states sharing the same values for
all the ADM-conserved quantities. We denote this induced
map a Goldstone supertranslation since it relates states which
are degenerate in energy. Note that this scattering definition
of hair is tied to the mechanism of radiation whatever it could
be.

Relationship to antipodal matching
As a first step, it is important to discuss whether there are
general constraints on this scattering process. Namely, it has

@ Springer
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been suggested in [38,39] that any gravitational S-matrix in
an asymptotically flat spacetime must satisfy the following
relation for an arbitrary initial quantum state |c):

ST |a) = P(TH)S|a), (15)

where (T~,TT) € BMS_ ® BM S, and P is the antipodal
map on the sphere:

P(TT)0,9) = TT(PO, ). (16)

Imposing this invariance implies that if a matrix element
(B|S]e) is non-vanishing, then

(@ T o) = (BIP(T)|B). )

This means that the memory effect of the outgoing wave,
parameterized by T, must match the memory effect of the
incoming wave, parameterized by 7, antipodally at each
angle. Because of the constraints (12) and (14), this is equiv-
alent to the statement that the outgoing energy A Fou matches
the ingoing energy AFin antipodally at each angle, in partic-
ular that A Foy is fully determined in terms of AFin.

This criterion has a very interesting connection to IR-
physics. As discussed in Appendix A, we know that in a
gapless theory such as gravity most process in which no soft
modes are emitted have zero probability [40,41]. In order
to obtain a finite answer, one has to include the emission
of a certain class of soft radiation, namely IR-modes. The
sole exception are processes for which the kinematical fac-
tor By, g defined in [41] is zero. The crucial point is that this
happens if and only if the ingoing energy matches the outgo-
ing energy antipodally at each angle, as discussed in detail
in [42]. Thus we conclude that’

(@ T o) = (BIP(T)IB)

This means that restricting to processes which fulfill the
condition (16) is equivalent to only considering processes
that are IR-finite even without including IR-emission.

A priori, there is nothing wrong with solely considering
such processes. However, they only form a set of measure
zero of those processes that occur in reality. Namely any
realistic scattering is accompanied by the emission of soft
IR-modes. Once we include soft IR-emission, we know that
all processes — with an arbitrary non-zero value of By, g —are
IR-finite. Thus in reality, any process can occur, i.e. also ones
that do not fulfill the antipodal matching condition (16). For
this reason, we will not restrict ourselves to processes that
obey (16).

& By p=0. (18)

Role of soft IR-gravitons

Since we consider processes that include the emission of
soft IR-modes, it is natural to ask if those modes could carry
information about the black hole state and if they could even

7 We will elaborate on this point in [43].
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suffice to purify black hole evaporation. This is only possible
if two conditions are fulfilled. First, IR-modes would have
to be sensitive to the microstate of the black hole. We expect
this not to be the case since they only depend on the initial
and final scattering state, but not on the details of the process.
While we leave the above question for future work, we now
focus on the second condition, namely that the number of
resolvable IR-modes would have to be big enough to be able
to carry the whole black hole entropy.

In contrast to the proposal made in [28], we argue that
generic properties of IR-physics imply that this is not the
case. As follows from Eq. (37), the number of unresolved soft
modes scales logarithmically with the IR-resolution scale.
Thus, when we lower the energy scale of resolution from €
to €3, the number of additional IR-modes that we can resolve
is:

n'S, ~ By, pln L, (19)

€2

where By g ~ Gs is determined by the energy scale s of
the process. We apply this formula to the single emission of
a Hawking quantum of energy r, ! It will be crucial in this
argument that Hawking radiation gets softer for bigger black
holes. The worst resolution scale compatible with observing
this process is €] = r, ! The key point is that the resolution
scale in this process cannot be arbitrarily good. Namely, it
is set by the time-scale of the process, €2 ~ 1, . }11 Since the
life-time of a black hole scales as #,., ~ Nrg, we get

1
nen S v InN. (20)
Thus, after the black hole has evaporated by emitting N
Hawking quanta, the maximal entropy contained in the soft
IR-modes is

Ssoft S In N. 21

Independently of the question whether IR-modes are
strongly correlated with the Hawking quanta, this shows that
they cannot account for the whole entropy of the black hole,
but could only give a logarithmic correction. Of course, this
leaves open the possibility that non-IR soft modes could
account for the bulk of black hole information. However,
since they are independent of IR-divergences and accompa-
nying dressing tools, the results of infrared physics do not
constrain them.

Role of zero-energy gravitons

Finally, we briefly discuss the role of zero-energy gravi-
tons. To this end, we consider the process of a Goldstone
supertranslation in the limit of zero energy injected and zero
energy radiated. This is equivalent to the scattering with a
graviton of zero energy. Since those carry no energy, they can-
not emit IR-modes and therefore obey the antipodal match-
ing condition (16). This fact simply reflects the well-known
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decoupling of soft modes [29-34]. The physical interpreta-
tion of this phenomenon is that any bulk configuration is
transparent for decoupled soft modes so that the energy pro-
file of the outgoing wave is antipodally related to that of
incoming energy.

But when the emitted/injected radiation does not carry
energy, u= = 0, then the constraint (11) (or respectively
(13)) implies that f d2Q Finjour = 0. Since Fipjout represents
real gravitational radiation, it follows by the requirement of
positive energy that Fip/our = 0. Thus, only supertranslations
with D>(D?42)T* = 0 can occur in such a zero-energy pro-
cess. This means that only the angular modes/ = 0, 1 are left,
i.e. time- and space-translation. Hence zero-energy radiation
cannot lead to a physical memory effect that is observable
in finite time. In other words, it is impossible to measure a
zero-energy graviton in finite time.

The upshot is that predicting 7" from the knowledge of
T~ is only possible for zero-energy modes. Those are, how-
ever, unphysical since they cannot be measured in finite time.
So we will only consider processes of non-zero energy in our
paper. As explained, it is not possible for them to constrain or
even predict TV from 7~ without detailed knowledge of the
dynamics in the bulk. The response function, which deter-
mines 77 in terms of 77, is trivial only for modes of zero
energy.

Physical hair with non-zero energy

So from here on, we consider the case where after we inject
radiation Jj, of non-zero total energy u, the system radiates
back the same total amount of energy, but with a possibly
different distribution Foy.3 While such systems are of course
special, we will see that black holes can be one of them. This
is a zero-energy process in the sense that the total energy
of the system does not change. Thus, this process, which
is depicted in Fig. 2, constitutes a transformation between
degenerate systems and therefore defines hair.

As far as we reduce ourselves to gravitational radiation,
we can generically describe this process in terms of two
supertranslations: At J~, T~ is determined by the angu-
lar distribution AF;, of incoming energy according to the
constraint (14) and at J*, TT follows from the angular
distribution A]}Om of outgoing energy via the constraint
(12). Thus, the whole process is associated to an element
(T—, T*Y) € BMS_ ® BMS... It describes a zero-energy
transition which interpolates between two spacetimes of the
same total energy, but contrary to the case of a zero-energy
mode, this transformation is non-trivial and it is not decou-
pled.

Itis crucial to note that for an asymptotic observer, 7~ and
T are independent. Whereas one is free to choose T~ by

8 We recall that we restrict ourselves for now to a pure gravitational
radiation, which propagates along null geodesics. Therefore, all emitted
energy is bound to reach future null infinity J .

Fig. 2 A Goldstone supertranslation on a generic system of mass
M. Radiation with angular distribution Fj, scatters so that radiation
with angular distribution Foy is returned. Since [dv [d*’QF, =
Jdu d?Q Fou, the total energy of the system remains unchanged. Here
Fin can be described in terms of the supertranslation 7~ and Foy in
terms of T+

preparing an appropriate incoming radiation, 77 is sensitive
to the properties of the system in the bulk. In other words,
T is a response of the system which does not only depend
on the ingoing radiation, parameterized by 7', but also on
the state of the system and its particular dynamics, which
are not entirely visible asymptotically. In particular, there
is no reason why (T, TT) should be in any subgroup of
BMS_® BMS,.

Coordinate matching

In order to compare ingoing and outgoing radiation, i.e.
T~ and T, we need to relate the supertranslation field C ™~
in advanced coordinates to the supertranslation field C™ in
retarded coordinates. Namely, we assume that we are given
a classical spacetime whose asymptotic behavior is fully
known to us. Then it is possible to describe this space-
time both in advanced and retarded BMS-gauge. Given an
advanced coordinate system gl”w, we want to know if there
is a unique retarded coordinate system g;,,, we can associate
to it. If we have such a mapping, it determines the relation of
the advanced supertranslation field C~, defined as the 7l part
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of g% . and the retarded supertranslation field C*, defined
as the r! part of g4n-

Given g,,,,, we therefore have to find a diffeomorphism D
such that g, := D(g,,,) is in retarded BMS-gauge. Then
we can read off from g, the C * associated to C~. How-
ever, we could have instead considered the diffeomorphism
D =Tt oD, where Tt is a supertranslation diffeomor-
phism in retarded coordinates. Also D’ transforms the met-
ric in advanced BMS-gauge to a metric in retarded BMS-
coordinates. Clearly, if T is a nontrivial supertranslation,
the supertranslation field in the resulting metric differs from
the one in g“. From this consideration it is obvious that the
matching between the advanced and the retarded supertrans-
lation field is in general not unique.

The only hope we could have is that there is a natural way
to identify C~ and C™. In a static situation, a natural pre-
scription is to require that the spatial part of the two metrics
matches, i.e.

84 = 8B (22)

As is shown explicitly in Appendix B for the example of
the Schwarzschild metric, we can achieve this by identifying
Ct(@,9) = —C~ (8, ), as also proposed in [20]. Up to a
sign, we match the supertranslation field angle-wise. Conse-
quently, the same matching holds for the supertranslations:

T+, 9) =-T76,9). (23)

There are several reason why the coordinate matching (23)
is natural. First of all, the prescription (22) comes from a sim-
ple intuition. For an observer in a static spacetime who lives
on a sphere of fixed radius, the description of the sphere
should be the same independently of the choice of time
coordinate. More generically, it is possible to require that
the action of advanced and retarded supertranslations is the
same in the bulk. This was done in [20,21] for the cases of
Schwarzschild and Minkowski.

Moreover, we can consider a detector at big radius which
is sensitive to gravitational memory. Then we investigate a
process of back scattering, in which the angular distributions
of incoming and outgoing energy are identical at each angle.
This corresponds to a wall in the bulk which reflects the wave
without further modifying it. In this case, the memory effect
the ingoing wave causes, parameterized by 7, is exactly
canceled by the memory effect of the outgoing wave, param-
eterized by T, so that there is no overall memory effect
after the process. In that case, if we match 7~ and T at
each angle as in (23), it is possible to simply describe the
overall memory effectas T~ + TF.

However, itis crucial to stress that the coordinate matching
(23) does not have any constraining power on the physical
process. It does not predict outgoing from ingoing radiation,
but only shows how one and the same setup can be described
in different coordinates. This is also evident from Fig. 2.
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The matching condition at i only relates the absolute values
of the supertranslation fields. In contrast, processes of non-
zero energy solely determine a change of the supertranslation
field, as is clear from Egs. (12) and (14). Thus, radiation of
non-zero energy is independent of the coordinate matching.

3 Application of hair
3.1 Planetary hair

In order to make the ideas presented above concrete, we dis-
cuss an explicit example, namely the application of a Gold-
stone supertranslation to a certain class of planets. We start
from a spherically symmetric nongravitational source T},
which sources a spherically symmetric spacetime g,,, with
ADM-mass M. In such a spacetime, we want to realize a
Goldstone supertranslation, i.e. we send in a wave with total
energy w1 and angular distribution AFi, in such a way that
after some time, the planet emits a wave of the same energy
u but with a possibly different angular distribution AFou.
Of course, only a special class of planets behaves in that way.

We explicitly construct such spacetimes in Appendix C, to
which we refer the reader for details of the calculation. First,
we consider the incoming wave. As discussed, the angular
distribution A Fi, of injected energy determines an advanced
supertranslation 7. As derived in Eq. (51), we can use it to
describe the change of the metric due to the injected radiation:

_ 2uG
88510 = Tup, 0y (V)™ (1) (Lgv(r-)g,”w - 75,‘188), (24)

where L (7-)g},, is an infinitesimal supertranslation which
changes the supertranslation field by a small amount 7.
Whereas the asymptotic supertranslation 7~ only depends
on the leading part of the incoming energy, it is crucial to note
that the transformation (24) also depends on a careful choice
of the subleading components of the incoming wave.” Only
with a particular choice, the wave acts as a diffeomorphism
not only asymptotically but also in the bulk outside the planet.

We observe that the effect of the wave is twofold. First, it
adds the total mass u to the planet and secondly, it supertrans-
lates the metric by T~ . However, these effects are localized
both in space and time. The function 7, ,, (v) describes the
smooth interpolation between g, and g, + dg,,,, i.e. we
have 7y, v, (v < vo) = 0 and 7y, (v > v1) = 1. The
function s~ (r) describes the absorption of the wave, namely
absorption takes place whenever s~ (r) < 0. There is no

9 Subleading terms are the 1/ r3-term in Tyg and the whole Ty, in (52).
If one does not insist that the wave acts as a supertranslation also in the
bulk, one is free to choose the coefficient of one of the two terms. The
other one is determined by energy conservation: Ty, " = 0.
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absorption outside the planet, i.e. s~ (r > R) = 1, where
R is the radius of the planet, and the wave is fully absorbed
before it reaches the center, s~ (r = 0) = 0. It will be crucial
to note that the transformation s~ (r) L, (7-) g, only acts as

a diffeomorphism when s~ ' (ry=0.

Moreover, the transformation (24) shows that we focus on
planets which have a second very special property aside from
the fact that they emit as much energy as they receive: Namely
there is no transport of energy between different angles. This
means that the mass of the planet does not redistribute after
absorption (the same will be true after emission). The fact that
this assumption is unnatural and not true for generic systems
will contribute to our conclusions.

As a second step, we consider the emission of a wave
by the planet. Of course, the properties of the emitted wave
depend on the internal dynamics of the source T},,. It is cru-
cial to note we cannot resolve them in our purely gravita-
tional treatment, i.e. we cannot predict what wave will be
emitted. From the point of view of gravity, any emission
process is possible as long as it respects energy-momentum-
conservation. However, we can study the effect of a given
emitted wave. As derived in Eq. (57), it can be described
in terms of the supertranslation 7% induced by the angular
distribution A Fy of outgoing energy:

88l = Tug.u, (W)s™ (r) (/:&(Tﬂgzu - @3238) . (25)

As for the case of absorption, the emission has two effects:
It decreases the total mass by p and it supertranslates the
metric by 7. Moreover, it is localized in space and time in
an analogous manner.

We want to compare the planet before and after the Gold-
stone supertranslation, i.e. we are interested in the combined
effect of the transformations (24) and (25). To this end, we
have to specify a mapping between the advanced and retarded
supertranslations. As explained in Sect. 2.2, we employ the
angle-wise matching (23). Thus, we obtain the static final
state of the planet:

tot

88,y = 0(r — R) L, (7+-1-)8pv
+ OR =) (sT () Ly, r+)8uv — 5~ () Ly (7-)8uv) -
26

We get a planet which has the same ADM-mass but a
different angular distribution of mass. This is clear from the
fact that the transformation (26) acts as a diffeomorphism
only outside the planet.

Since we used in our computation a planet with the spe-
cial property that its angular distribution of energy is frozen,
we can read off the distribution from difference of energy
distributions of the injected and emitted wave. In this case,
T~ — T encodes all information about the angular energy

distribution of the planet in the bulk.'” However, this is no
longer true for generic systems which exhibit non-trivial
dynamics after absorption and emission. In that case, 7~
and T merely encode the initial state. Only with full knowl-
edge of the theory which governs the internal dynamics of
the planet, we can infer the state of the planet at a later time
from the asymptotic data 7~ and 7.

The role of supertranslations

In summary, we obtain the following key properties of a
Goldstone supertranslation in the case of a planet: Outside
the planet, it acts as a diffeomorphism. In particular, it does
not change its ADM-mass. In contrast, it does not act as
a diffeomorphism inside the planet where absorption takes
place. Therefore, it is not a trivial global diffeomorphism
but changes the spacetime physically. Thus, the Goldstone
supertranslation encodes differences in the angular distribu-
tion among matter configurations degenerate with respect to
the ADM-conserved quantities.

It is crucial to discuss the role of supertranslations in this
process:

e For an asymptotic observer, (T, T™) can be used as
label for the angular features of ingoing and outgoing
radiation.

e An asymptotic observer, however, cannot infer T7 from
T~. This is only possible with knowledge of internal
dynamics of the planet.

e Thus, (T~, TT) is a bookkeeping tool but without
detailed information about the interior, it does not have
predictive power.

As we shall discuss in a moment, the same conclusions
hold in the black hole case. The only difference is that the
internal dynamics leading to emission are fully quantum
mechanical for a black hole. This will mean that in any clas-
sical description, supertranslation cannot constrain or even
predict black hole evaporation.

Using the example of the planet, it is easy to convince our-
selves that antipodal matching cannot play arole in processes
of non-zero energy. Namely if it did, this would mean that
the only planets which could exist would have the extremely

10 For the planet with frozen energy distribution, there is also a very
literal way in which one can interpret the quantity 7~ — T *: one can
imagine a gedankenexperiment where a source of light is located in the
interior of the planet after the Goldstone supertranslation and we collect
the light rays on the sky. The light sent from this common center point
determines in this way a section at infinity described by the supertrans-
lation field T~ — T+. Thus, the different redshift effects due to the
inhomogeneities of the planet matter distribution define a supertrans-
lated section in the sky as the one for which light rays originate from a
common spacetime point. This is reminiscent of Penrose’s concept of
“good sections” [44].
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special property that they emit all energy they receive from
one side exactly on the other side.

Hidden angular features

Finally, we discuss the transformation (26) when we do not
have access to (T, T™), i.e. when we do not record ingoing
and outgoing radiation but only compare the initial and final
state of the planet. In that case, the planet possesses an inter-
esting property, namely a special kind of no-hair-theorem.
Concretely, we take the perspective of an observer who has
no access to the interior of the planet and discuss the dif-
ference between two planets which have the same mass but
a different angular mass distribution. As we have observed,
the transformation (26) acts as a diffeomorphism outside the
planet. Therefore, an outside observer cannot distinguish the
two following cases when he is given a supertranslated out-
side metric. First, it could be the result of the transforma-
tion (26), where the planet was physically changed due to
a Goldstone supertranslation. Secondly, however, one can
also obtain the supertranslated metric by acting on the initial
planet with a global diffeomorphism. In this case, clearly, the
planet does not change. Thus, also for a planet, an outside
observer is not able to resolve angular features. In order to
decide whether two asymptotic metrics differing by a super-
translation describe two different distributions of matter or
the same distribution of matter in different coordinates, one
needs access to the whole spacetime, i.e. the interior of the
source.

We conclude that generic gravitational systems posses
physical angular features which are inaccessible for an
outside observer. This strengthens our believe that the
microstates of a black hole have a non-trivial projection on
angular features. The only difference is that while the restric-
tion to outside measurements was artificial in the case of the
planet, an outside observer has in principle no access to the
interior of a black hole. As we will discuss in the next section,
he can therefore never decide whether a supertranslated met-
ric corresponds to a physical change of the matter inside the
black hole or to a global and therefore meaningless diffeo-
morphism. This is the reason for the classical no-hair theorem
of a black hole and why we assign an entropy to the black
hole and not to the planet.

3.2 Black hole quantum hair

Supertranslations as bookkeeping device

Now we are ready to discuss the system of our interest,
namely black holes. Since absorption and emission are of
different nature in that case, we will discuss them separately.
For absorption, we can proceed in full analogy to the planet
and inject a wave with total energy p and arbitrary angu-
lar distribution A]:'in. By Birkhoff’s theorem, the spacetime
outside the black hole is the same as for the planet so that
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the wave behaves identically. As in the case of the planet, the
wave cannot be absorbed outside the horizon and acts as a
diffeomorphism everywhere outside the black hole and also
on the horizon.

For the planet, we observed that the knowledge of injected
energy alone does not suffice to predict what radiation the
planet emits. Instead, this can only be done with knowledge
of the interior dynamics of the planet. Those, however, can
be described classically in the case of the planet. For the
black hole, the situation is even worse. Not only do we not
have access to any interior dynamics, but these dynamics are
also fully quantum. It is impossible to describe them even
with full classical knowledge of the interior of the black
hole.

Before we elaborate on this point, we first show how it
is possible to use supertranslations as bookkeeping device
for black hole evaporation. Unlike for the case of the planet,
this is a non-trivial question since the evaporation products
are generic quantum states. In order to define an associated
supertranslation, we shall proceed as follows. We consider
an ensemble of quantum-mechanically identical black holes
of mass M.'! For each black hole, we wait until it has emitted
exactly one Hawking quantum. We only record their angu-
lar features, i.e. the deviation from an isotropic emission.
This means that we assume that the microstates of the black
hole have a non-trivial projection on angular features of the
evaporation products. As explained in the introduction and
illustrated for the case of the planet, we believe this assump-
tion to be natural. Thus, we record the Hawking quanta using
a filter for angular features, where we use one for each spher-
ical mode (I, m). This defines a probability distribution for
the angular features of the ensemble:

P, m). 27

Obviously, the probability distribution (27) only contains
a part of the quantum-mechanically available information.
However, we will only focus on it since it can be described
in terms of classical supertranslations. At this point, it is
crucial to point out that the probability distribution (27) does
not originate from a mixed state but as a result of an ordinary
quantum measurement. Thus, unlike in a description in terms
of a mixed state, it is not associated to any fundamental loss
of information.

Since we need to recover a featureless emission in the
semi-classical limit, it follows that

P0,0)=1—¢, (28)

where € — 0 in the semi-classical limit. This means that
only a fraction € of the emitted quanta carries features. For

Il Experimentally, we can realize this by preparing identical quantum
states in such a way that they collapse and form black holes.



Eur. Phys. J. C (2018) 78:320

Page 11 of 18 320

| > 2, we consequently get
P(l,m) = €A m, (29)

where Y /2, Zzil—z A;m = 1. The information contained
in the P (I, m) is purely quantum mechanical. At the semi-
classical level, we have that P (I, m) = §;9 and in the classical
limit, we have no emission at all.

Using the quantum probability distribution (27), we can
associate to every Hawking quantum an average energy flux:

m=I
1

o0
Fou =hry' Y " Y PUm)Yim, (30)
=0

m=—

where Y} ,, are the standard spherical harmonics. Just like
for the case of the planet, where we considered a classical
process of emission, we can use the flux (30) to define a
classical supertranslation T . Of course, this is only possible
as long as 7 # O since the energy flux is zero otherwise.
When we record the quantum-mechanically emitted energy
Fout, We can proceed in analogy to the planet and use the
supertranslation fields 7~ and T to track the evolution of
the black hole. Concretely, in order to perform a Goldstone
supertranslation, we first inject an energy © and then we wait
untilnyg = p/(hry 1) quanta have evaporated, as is depicted
in Fig. 3. Then we end up with a black hole of the same mass
as before the process. Of course, the sensitivity of the final
state on the initial state is suppressed by w/M but unitarity
dictates that the dependence is never trivial.

Insufficiency of supertranslation hair

However, it is impossible to predict 77 solely from the
knowledge of 7 ~. The reason is that the wave that we inject
acts as a diffeomorphism outside the horizon and also on the
horizon. Therefore, the geometry outside the black hole is
unchanged after the wave has passed. Since the semi-classical
Hawking calculation is only sensitive to the geometry on the
horizon and outside the black hole, its result cannot change
as a result of a supertranslation diffeomorphism. Therefore,
additional knowledge about the interior is required to predict
T+.

We can make this argument more concrete by taking the
perspective of an observer who lives in a Schwarzschild met-
ric supertranslated by 7. The observer has no record of
how the black hole was formed and is only allowed to make
experiment outside the horizon. Her goal is to determine the
microstate of the black hole. More specifically, she wants to
know if the black hole is in the bald microstate, whose evap-
oration products are featureless and in particular perfectly
isotropic, or in a non-trivial microstate, whose evaporation
products carry some angular features. By our definition of
microstate, one way to do so is to wait till the black hole has
evaporated and to determine the properties of the evaporation
products.

Fig. 3 A Goldstone supertranslation on a black hole of mass M. First,
it absorbs radiation with angular distribution Fi, and then it evapo-
rates radiation with angular distribution Fou. Since [dv [ d>Q F, =
Jdu d?Q Four, the total energy of the black hole remains unchanged.
Here Fj, can be described in terms of the supertranslation 7~ and Foy¢
in terms of 7+

The question we are asking is if there is another way to
determine the microstate of a black hole. The answer is nega-
tive, for the following reason: When an outside observer finds
herself in a black hole metric with supertranslation field 7,
this can happen because of two very distinct reason. Firstly,
it could be the result of injecting a wave with a non-trivial
angular distribution of energy into a black hole. In that case,
the black hole is in a non-trivial microstate and 7~ indeed
characterizes the microstate.

However, there is a second way in which we can obtain a
supertranslated Schwarzschild metric. Namely, we can con-
sider a featureless microstate, whose evaporation products
are isotropic, and apply a supertranslation diffeomorphism
to this setup. In this way, we do not change the physical state
of the black hole but only describe it in a different metric.
Thus, T~ can also correspond to a featureless microstate
described in different coordinates.

Without access to the evaporation products, the only way
to distinguish those two cases — injection of wave with angu-
lar features versus global diffeomorphism — is to enter the
black hole. There, the wave acts non-trivially, i.e. not as a dif-
feomorphism, whereas the global diffeomorphism still does.
Since the same exterior metric can correspond to both a trivial
and a non-trivial microstate, the metric alone cannot suffice
to predict the evaporation products. From the outside, it is
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therefore impossible to distinguish classical supertranslation
hair and global diffeomorphisms.

In summary, as in the case of a planet, we can use
(T~, T™) as anatural bookkeeping device for the black hole
to track the angular features of ingoing and outgoing radia-
tion. However, knowing 7~ does not suffice to predict T+,
i.e. an observer outside the black hole cannot infer 7+ from
T~ . This is only possible with a microscopic model of the
interior dynamics of the black hole.

Generalization to evaporation

Having discussed how we can implant hair on a black hole
with a Goldstone supertranslation, it is trivially to consider
the case of pure evaporation. We obtain it if we just leave
out the first part of the Goldstone supertranslation, namely
the injection of a wave. Therefore, it suffices to consider J
as screen, where the constraint (12) determines the retarded
supertranslation field 77 in terms of the angular distribution
Afom. In that case, the metric outside the black hole changes
according to (25):

(@ZV=1%JHW)(£&U+gZV—%%962£). (31)

This equation shows that the back reaction splits in two
parts. First, energy conservation dictates that the mass of
the black hole is reduced by the total emitted energy u =
[ du [d*Q Fou. This part of the back reaction is unde-
batable but does not suffice to ensure unitarity of the pro-
cess. Fortunately, Foy¢ contains more information than just
the emitted energy, namely the supertranslation 7+. Con-
sequently, we obtain the back reacted black hole not only
by reducing its mass, but by supertranslating it by 7.
This approach is only valid if the supertranslation acts non-
trivially in the interior of the black hole, e.g. because it is
induced by a physical wave. But in that case, the ability to
associate hair to a black hole is equivalent to the ability to
purify its evaporation.

3.3 A comment on Page’s time

So far, we have not specified the magnitude of deviations
from a thermal evaporation. We can estimate them by requir-
ing that we reproduce Page’s time in our approach. In its
most basic formulation, Page’s time is a direct consequence
of describing the black hole evaporation in a Hilbert space
of fixed dimension. In brief, if we keep the dimension of the
full Hilbert space, which describes at any time both the black
hole and the emitted radiation, fixed and equal to N , then
at t+ = tp, which corresponds to the half life-time, i.e. the
evaporation of ~ N /2 quanta, there is no place to continue
increasing the entanglement between the radiation and the
black hole internal degrees of freedom. At this time, entangle-
ment starts to decrease and information starts to be delivered.
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This makes clear why purification of black hole evaporation
relies on fixing N and keeping it finite.

Page’s time can be defined as the time-scale for the emis-
sion of the order of N quanta. Therefore, we first consider
an ensemble of N identical quantum mechanical black holes
and for each of them, we record the first emitted quantum. For
a measurement on a single black hole, the standard deviation
is

o1 ~ O(1) (32)

since the quanta are distributed isotropically to leading order.
However, when we average over N measurements, the stan-
dard deviation decreases as

ON ™~ L . (33)
VN
Features become visible as soon as their strength becomes
bigger or equal than the uncertainty of the measurement.
After Page’s time we can therefore resolve features with the
relative amplitude

1
€ N (34

In the formulation of the probability distribution (28), this
means that after O (N) measurement, those features becomes
visible which are only carried by a fraction 1/+/N of the
quanta.

So far, we have only considered one emission for N iden-
tical black holes. If we consider instead O (N) emissions of
a single black hole, the difference is that the probability dis-
tribution for each emission step is generically different. This
is true because of the back reaction of the previously emit-
ted quanta. However, the argument in terms of the resolution
stays the same, i.e. after Page’s time, we can still resolve those
features which are only carried by a fraction € ~ 1/+/N of
quanta. This argument provides evidence for the black hole
N-portrait [5] where features are 1/N-effects with a resolu-
tion scale O(1/+/N).'? In particular, in an S-matrix analysis
along the lines of [46], where black hole formation was stud-
ied as 2 — N-scattering process, angular features should
appear as 1/N-correction to the leading amplitude.

4 Conclusion

The main message of this note is easy to summarize. Any
form of black hole hair should imply the existence of fea-
tures in the black hole evaporation products, i.e. in the emit-
ted radiation. This obvious requirement immediately entails,

12° An interesting question that we shall not discuss in this note but that
can be worth to mention is the possibility that a quantum computer
designed using a Grover like algorithm [45] can reduce ¢p from O (N)

to O(v/N).
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given the intrinsically quantum nature of black hole radiation,
that black hole hair should be defined quantum-mechanically
and that such a definition is inseparable from the mechanism
through which the black hole delivers, in the radiation, infor-
mation about its internal structure.

In this note, we have suggested to define hair on the basis
of elementary processes of classical absorption followed by
quantum emission. Moreover, we specialized to angular fea-
tures in the radiation. This simplification has been done in
order to use the asymptotic symmetry group and the corre-
sponding supertranslations to parametrize both the incoming
and the emitted radiation. Since we have complete control
over the angular features of the injected radiation, we can
define hair on the basis of the angular features of the quantum-
mechanically emitted radiation. These features encode infor-
mation about the internal structure of the black hole which
can be measured by an external observer. In this sense, they
provide an operative and intrinsically quantum definition of
hair.

In principle, we can imagine two different sources of those
features of the emitted radiation. The first one is a classical
modification of the near horizon geometry that will mod-
ify the corresponding semi-classical Bogoliubov transforma-
tions. The second one is a real quantum interaction of the
injected radiation with the quantum constituents of the black
hole. The first possibility requires to define local changes
of the horizon geometry that preserve all the ADM-charges.
Thus, locally, they can be always tuned to be equivalent to
a diffeomorphism. Therefore, they cannot have observable
consequences, i.e. classical supertranslations do not suffice
to define observable black hole hair. So the only real possi-
bility of quantum emitted radiation with features is having
a non-trivial scattering between the injected radiation and
the microscopic constituents of the black hole. This means
that the features that define hair in the way we are suggest-
ing depend on the microscopic quantum structure, which we
can parametrize as a dependence on the black hole entropy
N. Thus, the hair that we are defining vanishes in the limit
N = oo.

As it is clear from the discussion, this way of address-
ing the definition of hair is what we can call an S-matrix
approach, where by that S-matrix we simply mean the
dynamics involved in the complex process of actual absorp-
tion and quantum emission. If we focus on angular features,
we can encode the properties of the hair in terms of the
commutators, as operators, of this S-matrix and the genera-
tors of the asymptotic symmetry group. Associating with the
injected energy a supertranslation 7~ in BMS_, a way to
approach the existence of hair is by considering the commu-
tator [S, T~]. Generically, the non-trivial hair will be asso-
ciated with the symmetry generators that are broken since
those are the ones that will create net differences between
the angular features of the injected and emitted radiation.

Although the infrared dynamics of gravity selects the zero-
energy modes as natural symmetries of S, they are not able to
tell us anything about the internal structure of the black hole
since they are decoupled. Zero-modes are unable to encode
observable features.

What we have presented in this note is just the general
framework to address the problem of quantum hair. In order to
go further, it is necessary to use a concrete model of the black
hole interior. The model in [5] provides, in principle, the tools
to address this questions in a quantitative way, something to
which we hope to come back in the future.
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A Recap of IR-effects

In this appendix, we shall collect some well-known facts
about infrared physics which could be useful to clarify some
controversial aspects on the meaning of soft modes. Some of
these issues have been revisited recently in a series of papers
[29-31,39,47-51].

e In QED, asymptotic physical states associated with freely
moving charged particles should be dressed in order to
satisfy the Gauss law constraints. This dressing simply
adds to the freely moving charge its companion elec-
trostatic field, i.e. the non radiative part of the retarded
Lienard—Wiechert-field behaving at large distances as
1/r%.In quantum field theory, this dressing can be defined
using a coherent state of off-shell photons [31] with dis-
persion relation w(k) = kv for v the velocity of the
charged particle. This coherent state dressing contains
an infinite number of k¥ = 0 modes and it is identical
to the dressing operator defined in [52-56]. In scattering
theory, one can define physical asymptotic states and an
IR-safe S matrix using this dressing operator.

e Alternatively, one can use no dressing. Then, in pertur-
bative QED as well as in perturbative gravity, we find IR-
divergences due to virtual photon/graviton loops. These,
after a careful analysis of overlapping divergences, can
be resummed and exponentiated [40,41]. When we con-
sider the transition from an initial state |«) to a final state
|B), we obtain
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S0P = eBus1/250 (35)

where S0 B is the amplitude without taking into account

soft loops whereas S 'g contains them. Here A is a UV-
cutoff that defines What is soft, A is a IR-cutoff and By, g
is a non-negative number, which only depends on the
initial state |«) and the final state |8). It is zero if and
only if the ingoing current in |o) matches the outgoing
current in |f) antipodally at each angle. In the case of
gravity, it scales as By, g ~ Gs, where s is the energy of
the process.'? For By, g # 0, soft loops clearly lead to a
vanishing amplitude in the limit A — 0.

e In order to cancel the IR-divergences due to virtual pho-
tons/gravitons, the Bloch—Nordsieck-recipe [60] requires
to add a certain class of soft emission processes. Again
the effects of emitting theses soft IR-modes of energies
below € can be resummed and exponentiated, yielding
the rate [40,41]

U

= eBer 1N £ (B, )| SiB 1.

(36)

where f(By pg) is due to energy conservation and
f(Bg, g) =~ 1 for small By, g. Combing the contribution
from (35) and (36), one obtains a rate which is indepen-
dent of the IR-cutoff X and in particular finite for A — O.
This cancellation leads to the connection, highlighted in
[52-56], between the soft photon theorem and the elec-
trostatic coherent state dressing. In QED, we do not have
new symmetries besides the decoupling of zero-energy
photons. The same is true in perturbative gravity.

e Inthe correction factor e 810 % in (36), the n'* summand
of the exponential series comes from the emission of n
IR-modes. Therefore, we can estimate the number of soft
modes from the term which gives the biggest contribution
in the series. This gives

unres

€
Ngore ~ B, gln —. (37)

A

We conclude that the number of unresolved soft modes
only scales logarithmically with the infrared resolution
scale €.

B Matching in Schwarzschild coordinates

In this section, we demonstrate explicitly how we can trans-
form a Schwarzschild metric with non-trivial supertransla-

13 That this scaling also holds for graviton scattering at an ultra-
Planckian center of mass energy was shown in [57-59].

@ Springer

tion field from advanced to retarded coordinates. In this way,
we show how we can naturally identify the advanced super-
translation field C~ with the retarded one C . We start from
the Schwarzschild metric gl‘ilf) in advanced coordinates with-
out supertranslation field:

2GM
ds? = — (1 ; ) dv? + 2dvdr + r2dQ2. (38)

The corresponding generators of supertranslations are

& =f", (39a)

& =- %szi (39b)
— A

£l L —, (39¢)

which are characterized by an arbitrary function f~ on the
sphere. Thus, the supertranslated metric is

8l () = ghl + Le, -8k (40)

In retarded coordinates, the Schwarzschild metric g;‘i}?
without supertranslation field is:

2GM
ds? = — (1 - ) du? — 2dudr + r2dQ>. (41)
r

The corresponding generators of supertranslations are

& =", (422)

£ =%D2f+, (42b)
+,A

£l =— A, (42c)

r

where it is important to note that the signs of £/ and £ have
changed with respect to (39). The supertranslated metric is:

g (1) =gl + Le,rhgln- (43)

The task now is to transform g, to retarded coordinates.
As explained in section 2.2, there can in general not be a
unique way to match the advanced and retarded supertrans-
lation fields. However, a natural choice in a static metric
is to require that the spherical metrics match: g% ,(f7) =
gip(f T). Therefore, we use the diffeomorphism D,, defined
by

r 1 , D2f—
v=u+2 1_2GMdr T _2GM
ro r r

—2f". (44)

Then it turns out that

Dy (20 (f 7)) = 85 — Ley(r8l = & (= 7). (45)
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Thus, we identify
fr=-r". (46)

Up to a sign, the supertranslation field in advanced coordi-
nates matches the retarded one angle-wise. With this choice,
not only the spherical metrics match, but also the goo-
components, i.e. the Newtonian potentials.

C Explicit solution for Goldstone supertranslation of a
planet

Step 1: absorption

The Goldstone supertranslation consists of two steps:
First, an initially spherically symmetric planet absorbs as
wave. As is well-known (see e.g. (9.3) in [61]), the metric of
a static spherically symmetric spacetime can be cast in the
general form

ds* = —A(r)dt* + B(r)dr® 4 r*dQ?, (47)

where all physical information is contained in the 77- and
rr-components. Since we want to describe a planet, there
should neither be a surface of infinite redshift, i.e. A(r) >
0V r, nor an event horizon, i.e. B(r) < ooV r. Furthermore,

. . . r—00 r—00
asymptotic flatness implies that A(r) — 1 and B(r) —
1 sufficiently fast. Using the transformation

r B
v=t+ | dr'\/—, 48
/ro Vi (43)

we obtain the metric g, in advanced BMS-gauge:

ds? = —Adv? + 2V ABdvdr + r2dQ2, (49)

which is suited to describe incoming radiation. Note that
this metric describes the whole spacetime and not only its
asymptotic region, i.e. r — 00.

We will restrict ourselves to infinitesimal supertransla-
tions. In advanced time, these are generated by

& =f", (50a)
r 1 B

%‘u = ErDBEU ’ (50b)

g =4 [ - dr'(WABr' ), (50¢)

where an arbitrary function f~ on the sphere determines
the change of the supertranslation field. We denote it by
f~ instead of T~ in this appendix to avoid confusion
with the energy-momentum-tensor of the wave. The minus-
superscript indicates that we deal with a supertranslation in

advanced coordinates. Our goal is to realize the infinitesi-
mal diffeomorphism defined by (50) in a physical process,
i.e. outside the planet, we want to have the stationary metric
8,,,, before some time vo and after some point of time v, we
want to end up in the stationary metric g,,,, + L¢, (r-)&p0-
For vy < v < vy, physical radiation interpolates between the
two metrics. Inside the planet, the wave should be absorbed
so that the transformation fades out and the metric around
the origin remains unchanged. Adding as final ingredient a
change of the Bondi mass u, which is necessary to ensure
the positive energy condition, we obtain

_ 2uG
885, = Tup. v (V)5 (1) (ﬁgv(f)g;;v + Taﬁaﬁ) . (5D

where 0 < 1, ,,(v) < 1 parameterizes the interpolation,
1.e. Tyy, v (v < v9) = 0 and 7y, »; (v > v1) = 1. The func-
tion s~ (r) describes the absorption of the wave by the planet.
It has the property that it is monotonically increasing with
s7(0) = 0 and s~ (c0) = 1, where s~ (0) = 0 ensures that
the wave is fully absorbed before the origin and no black hole
forms. Moreover, s~ (r) # 0 is only permissible whenever
the local energy density of the planet is non-zero. The magni-
tude of s~ () determines how much absorption happens at r.
It is crucial to note that the transformation s~ (r) L, (r—) v
is a diffeomorphism only where s~ (r) is constant. Thus, the
transformation (51) acts as a diffeomorphism only outside the
planet, but not inside. This reflects the fact that we want to
obtain a physically different planet. A transformation which
acts as a diffeomorphism everywhere could not achieve this.

Since we work with infinitesimal supertranslations, it is
important that we stay within the regime of validity of this
first-order approximation, i.e. that terms linear in f~ dom-
inate. As it will turn out in the calculation, this is the case
if maxg,) | f~| < vi — vo. This means that the time-shift
induced by the supertranslation must be much smaller than
the time-scale of the process, i.e. the supertranslation must
be performed slowly. We will choose v{ — vg such that this
is the case and so that we can neglect all higher orders in f~
when we calculate the Einstein equations.

We have to show that the transformation (51) leads to
a valid solution of the Einstein equations. Thus, if we cal-
culate the Einstein G, and consequently the new energy-
momentum-tensor 7},,,, we have to demonstrate that this is
a valid source. To this end, we have to perform two checks.
First of all, it must be conserved, T}, ‘" — 0. This is triv-
ially true in our construction because of the Bianchi identity,
G ,w;“ = 0. Secondly, we have to show that 7}, fulfills an
appropriate energy condition. For that purpose, we first note
that this perturbation only depends on the local geometry,
except for £ and s~ (r), which also depend on spacetime
points at bigger radii. Thus, outside the planet, we have the
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same solution as in [26], except for the fact the we perform
our supertranslation slowly:

_ ISP L 3M o
Too = ) [M 4D (D"+2)f™ + > D f i|""vo,v1(v)’
(52a)
3M
Toa = 7DAf_TI/)0,v1(U)’ (52b)

8mr?

where we used that there is no absorption outside the planet:
s~ (r > R) = 1. Obviously, the energy condition is fulfilled.
At this point, we remark that leaving out all subleading parts,
which are proportional to M, would also lead to a valid wave
in the metric (49), i.e., Ty, " would also be true to all orders
if one only considered the leading order of (52). This means
that we add the subleading parts to (52) not because of energy
conservation but since we want to realize the transition (51)
not only to leading order in 1/r, but to all orders.'*

Fortunately, we do not either have to worry about the
energy condition inside the planet. For a small enough pertur-
bation, this is true since the energy condition inside a planet
is not only marginally fulfilled. This means that s~ (r) can
be non-zero inside the planet: This corresponds to absorption
of the wave by the planet.

Lastly, we have to show that the wave is still a valid solu-
tion after it has been partly absorbed. For the purpose of
illustration, we model the planet as a sequence of massive
shell with vacuum in between, T,, = 0. In that case, the
only non-trivial question is whether (51) fulfills the energy
condition after it passed some or all of the shells. Therefore,
we calculate the energy-momentum-tensor in this region.
By Birkhoff’s theorem, the local geometry corresponds to
a Schwarzschild solution with diminished mass M (where
M can be zero). It only depends on the matter which it has
passed via £}'. We parameterize the difference of £)' and the
vector field one would get in a pure Schwarzschild geometry
of mass M by

Rmax
o ::/ dr'(WAB — 1)r'™2), (53)
Rmin

where we have no matter for r > Ruax and between r and
Rumin. " Explicitly, this means that we can write

g =f—A <;+a>,

where it is important that o does not depend on r in our
region of interest. Of course, o = 0 corresponds to the case
when there is no matter outside.

14 Of course, energy conservation relates the two subleading parts of

Too and Tp4. When we choose one, it determines the other.

15 We use that AB = 1 in a Schwarzschild geometry of arbitrary mass.
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With the help of Mathematica [62], we compute:

1. 1 5 5 . 3M 5 -
Too = — [A=(+on) | DX (D°+2)f " = S=D°f

4 2r
X Ty vy (), (54a)
3M s o 5 -~ |,
Toa = |:87”2DAf + EDA(D +2)f i| Ty, vy (V)
(54b)
Tap = —g- (20405 = vasD?) f~ |7}y 1, ), (54c)
where f T =s" (r)f~ is the supertranslation which is atten-

uated because of absorption in the outer shells. It is crucial to
note that s~ (r) = Ointhis calculation since we are not inside
one of the shells of the planet and likewise ot = s~ (r)u.
As we can estimate o very crudely as 0 < 1/R, we see
that for sufficiently large u, the energy condition is fulfilled.
With a more accurate estimate, we expect that the freedom
of choosing w is not restricted when the wave passes a mas-
sive shell. In summary, we have shown that the metric (51),
which describes the dynamical transition from a spherically
symmetric planet to a counterpart with nontrivial angular
distribution of mass, is a valid solution.

Step 2: emission

The second step is to describe the emission of the wave by
the planet. Thus, our initial metric is the one after absorption,
as determined by Eq. (51):

_ 2
88, =5 (r) (%(f)gfiv + 7525(3) : (55)

As we want to consider emission, our first step is to trans-
form it to retarded coordinates. Intuitively, it is clear that it
should be possible to describe a slightly asymmetrical planet
also in retarded coordinates. While it is generically hard to
write down the corresponding diffeomorphism which con-
nects the two metrics, we can use that the metric of a planet
does not differ from Schwarzschild in the exterior region.
Therefore, we can use the diffeomorphism (44) to obtain

gh, =g +57 () (Lgu(, 8 +O(R — r)dev) ,
(56)

where gﬁ;}o is the metric of the initial, spherically symmetric

planet in retarded coordinates. This means that we apply a
supertranslation in retarded coordinates which is defined by
the function f~ used to defined the advanced supertransla-
tion. The function dev accounts for the fact that we do not
know the continuation of the matching diffeomorphism (44)
to the interior of the planet. Therefore, g;, might deviate
slightly from BMS-gauge but only in the interior. We expect,
however, that the matching diffeomorphism can be contin-
ued such that dev = 0. Finally, we want to point out that
g, (r =0) = g0 = 0) since s~ (r = 0) = 0, i.e. the
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wave does not reach the center and the mass distribution of
the planet is still spherically symmetric around r = 0.

The case of the planet provides us with another justifi-
cation why the matching (46) is natural. With this identifi-
cation, both the metric (55) in advanced coordinates and the
metric (56) in retarded coordinates cover the whole manifold.
Extrapolating the results of [20,21], where finite supertrans-
lations of Schwarzschild and Minkowski are discussed, we
expect that for any other matching, i.e. for any other value
of the supertranslation field, this is no longer the case. If
this is true, the requirement that the BMS-coordinate system
covers the whole manifold singles out a unique value of the
advanced supertranslation field as well as a unique value of
the retarded supertranslation field, and therefore a coordinate
matching.

Next, we want to describe how the metric (56) emits a
wave. This wave should realize a supertranslation described
by fT, which is generically different from f~:

2uG
884, = Tug,u, W)sT(r) (ﬁgu(mg;;f - Tsﬂs‘j) , (57)

where we used that L, (r+)8);, = ﬂ&,(f*)gﬁ’uo to first order
in f* and f~. Thus, working only to first order simplifies
our calculations significantly since we can simply use the
calculations for the absorption. The wave (54) becomes:

Too = —— [ﬂ —(1+or) (iD%DZ +2)f - 321;402/”)}

4r
X Ty oy (1), (58a)
3IM ~ o - ,
Toa = — [SWZDAﬁ + 1o DA+ 2)f+} Tug, 1y (1)
(58b)
Tap = —g [(ZDADB — yagD?) f+:| iy (). (58¢)

As for the absorption, we have shown that we can realize
the transformation (57) with a physical wave.

Finally, we analyze the joint effect of absorption and emis-
sion. Combining the transformations (51) and (57), we get
total change of the metric:

Sejiy =00 = R)Le, (8

TOR-—T) (‘+<’)£su<.f+>gﬁ'v° =T Lg, (8 + deV) :
(59)

where we used retarded coordinates. As desired, the mass of
the planet stays invariant. Moreover, § g}fﬁ acts as a diffeo-
morphism outside the planet, namely it is the difference of the
advanced supertranslation, described by f ~, and the retarded
supertranslation, described by f . If we furthermore assume
that the term dev, which reflects our incomplete knowledge

of the matching between advanced and retarded coordinates

in the planet, is zero, we see that the metric does not change
for f~ = f. We obtain a trivial transformation if the angu-
lar energy distribution of ingoing and outgoing radiation is
angle-wise the same.
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