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Abstract We revisit a recently proposed scale invariant
extension of the standard model, in which the scalar bi-linear
condensate in a strongly interacting hidden sector dynami-
cally breaks scale symmetry, thereby triggering electroweak
symmetry breaking. Relaxing the previously made assump-
tion on U (N f ) flavor symmetry we find that the presence
of the would-be dark matter candidate opens a new anni-
hilation process of dark matter at finite temperature, such
that the model can satisfy stringent constraints of the future
experiments of the dark matter direct detection.

1 Introduction

What is the origin of mass? This question has attracted a lot
of interests as a big mystery in elementary particle physics.
It has been established by the Large Hadron Collider (LHC)
[1,2] that there exists a scalar particle, namely, the Higgs
boson, which, as a result of the spontaneous symmetry break-
ing, gives the particles in the standard model (SM) a finite
mass. It is, however, unknown how the Higgs field acquires
a finite vacuum expectation value. This is still an open ques-
tion for a deeper understanding of the origin of the mass of
the SM particles.

The Higgs boson mass parameter is the only dimension-
ful parameter and breaks the scale invariance in the SM. Its
breaking is soft and from this reason Bardeen [3] argued that
“the SM does not, by itself, have a fine tuning problem due to
the approximate scale invariance of the perturbative expan-
sion”.1 The recent idea of a scale invariant extension of the

1 This fact within the renormalization group was discussed by
Wetterich [4].
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SM in fact goes back to this observation of Bardeen. Since
the scale invariant classical SM action does not provide the
EW scale, it has to be generated by quantum effects. We here
call it “scalegenesis”.

A possible way to realize scalegenesis in perturbation the-
ory is the Coleman–Weinberg mechanism [5], where the
origin of scale is the renormalization scale that has to be
introduced unless scale anomaly is cancelled. This mecha-
nism cannot, however, yield a stable EW vacuum in the SM
without contradicting with the observed Higgs boson mass.
Therefore, extensions of the Higgs sector are required. Along
this line of thought, numerous studies have been dedicated
to explain the origin of the EW vacuum.

An alternative approach to realize scalegenesis relies on
non-perturbative dynamics. As is well known, in Quantum
chromodynamics (QCD), whose action is given as a scale
invariant form except for the current quark mass term, a non-
trivial vacuum is generated by the strong dynamics of non-
Abelian gauge interactions in the infrared energy regime. The
classically scale invariant extensions of the SM based on the
hidden QCD and their phenomenological implications have
been recently discussed in [6–19].

In this paper, we consider scalegenesis realized by another
non-perturbative dynamics. We introduce a scale invariant
hidden sector, which is described by an SU (Nc) non-Abelian
gauge theory coupled with N f complex scalar fields Si in the
fundamental representation of SU (Nc), where the index i
denotes the flavor species. Due to the strong dynamics in the
hidden sector, the scalar bi-linear condensate 〈S†

i S j 〉 forms,
triggering the EW symmetry breaking via the Higgs por-
tal coupling λHS,i j S

†
i S j H†H [20,21]. That is, the dynami-

cal scale symmetry breaking takes place in the hidden sec-
tor. Even though analytic treatments of non-perturbative
dynamics are highly complicated, several approaches are
available: One of the possibilities is an effective theory
approach to the non-perturbative dynamics. Indeed, the
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Nambu–Jona-Lasinio (NJL) model [22,23] has been success-
fully employed to understand the dynamical chiral symmetry
breaking in QCD. It seems obvious that the basic idea of the
NJL model in QCD can be applied to formulate an effective
theory that describes the dynamical scale symmetry breaking.
The first attempt was made in Ref. [21], in which the hidden
sector is effectively described by a scale invariant scalar field
theory. Since the U (N f ) flavor symmetry is unbroken by the
scalar bi-linear condensate (i.e., 〈S†

i S j 〉 ∝ δi j ), the excited

states above the vacuum with 〈S†
i S j 〉 �= 0 are stable and

can be identified with a weakly interacting massive particle
(WIMP) dark matter (DM). The DM relic abundance �h2

and its spin-independent cross section off the nucleon σSI

have been computed by using the mean-field approximation
[21]. It has been found there that σSI of the model is bounded
from below and is just at the border of the experimental upper
bound of XENON100 [24,25]. Since then there have been
progresses in experiments [26–28], so that the minimal model
may be running into problems with experimental constraints
in future. The reason why σSI cannot be made small while
maintaining a correct value of �h2 is that the portal coupling
λHS acts on �h2 and σSI in an opposite direction. Therefore,
as long as the U (N f ) flavor symmetry is intact, we cannot
avoid this problem.

The main feature of the modified model presented in the
present work is that the U (N f ) flavor symmetry is explicitly
broken by the quartic scalar couplings. Specifically, we con-
sider the case of the U (2) flavor symmetry, which is broken
by the quartic scalar couplings down to U (1) ×U (1). In the
U (1)×U (1) invariant model there is one complex scalar for
the DM candidate, while there are three real stable scalars in
the U (2) invariant model. The benefit of the explicit break-
ing of U (2) is that due to the presence of the would-be DM
candidate (the third scalar in theU (2) invariant model) a new
annihilation process for DM at finite temperature becomes
available, which is independent of λHS .

In the following section we start by modifying the minimal
model and elucidate our mean field approximation to the
strong dynamics, which is successively applied to compute
effective interactions of DM in Sect. 4. They are finally used
to obtain �h2 and σSI in Sect. 5. The last section is devoted
to our conclusion.

2 The model

We extend the classical scale invariant extension of the SM,
which has been studied in [21,29,30]. The hidden sector, in
which the EW scale originates, is described by an SU (Nc)

gauge theory with the scalar fields Sai (a = 1, . . . , Nc, i =
1, . . . , N f ) in the fundamental representation of SU (Nc).
Instead of the U (N f ) flavor symmetry, which was assumed

in [21,29,30], we assume here only U (1)N f symmetry. The
total U (1)N f invariant Lagrangian for the extended model is
given by

LH = −1

2
tr {FμνF

μν} +
(
[DμSi ]†DμSi

)

− λ̂Si j (S
†
i Si )(S

†
j S j )

− λ̂′
Si j (S

†
i S j )(S

†
j Si ) + λ̂HSi (S

†
i Si )H

†H

− λH (H†H)2 + L′
SM, (1)

where the parenthesis ( ) stands for SU (Nc) invariant prod-
ucts, DμSi = ∂μSi − igHGμSi , Gμ is the matrix-valued
SU (Nc)gauge field, Fμν is the field strength tensor ofGμ, the
SM Higgs doublet field is denoted by H , and L′

SM contains
the SM gauge and Yukawa interactions. The scale-invariance
violating Higgs mass term is absent in (1).

Our basic assumption is as before that the origin of the
EW scale is a scalar-bilinear condensation,

〈(S†
i S j )〉 = 〈

Nc∑
a=1

Sa†
i Saj 〉 = fi j , (2)

which forms due to the SU (Nc) gauge interaction and trig-
gers the EW symmetry breaking through the Higgs por-
tal coupling λ̂HSi . The condensation (2) will also gen-
erate the mass term (constituent mass) for Si dynami-
cally. In [21,29,30] we have proposed to describe this non-
perturbative phenomena of condensation approximately by
using an effective theory. As in the case of the NJL theory,
which can effectively describe the dynamical chiral sym-
metry breaking in QCD, the effective Lagrangian contains
only the “constituent” scalar fields Sai . Furthermore, in writ-
ing down the effective Lagrangian at the tree level, we have
ignored the presence of scale anomaly, because its breaking
is only logarithmic and cannot generate a mass term. That is,
the breaking of scale invariance is hard, but not soft. Here we
restrict ourself to the minimal model, i.e., to N f = 2. The
effective Lagrangian then can be written as

Leff = ([∂μSi ]†∂μSi ) − λ1(S
†
1 S1)(S

†
1 S1)

−λ2(S
†
2 S2)(S

†
2 S2) − λ12(S

†
1 S1)(S

†
2 S2)

−λ′
12(S

†
1 S2)(S

†
2 S1) + λHSi (S

†
i Si )H

†H

−λH (H†H)2, (3)

where all coupling constants are positive, and

λ1 = λS11 + λ′
S11, λ2 = λS22 + λ′

S22,

λ12 = λS12 + λS21, λ′
12 = λ′

S12 + λ′
S21. (4)

The effective LagrangianLeff is the most general form which
is consistent with the global SU (Nc)×U (1)N f symmetry and
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the classical scale invariance.2 Needless to say that Leff has
the same global symmetry as LH even at the quantum level.
Note also that, though the structure of the quartic couplings
of S inLeff is the same as that inLH, the couplings λ̂Si j , λ̂

′
Si j ,

and λ̂HSi in LH are not the same as λS, λ
′
S , and λHS in Leff ,

because the unhatted ones are dressed by the SU (Nc) gauge
field contributions.

3 Physical quantities within mean field approximation

We employ the auxiliary field method to investigate the vac-
uum structure of the effective Lagrangian Leff . In particular,
we here would like to see that the non-perturbative dynamics
described byLeff actually realizes the non-trivial vacuum (2)
in the hidden sector. To this end, we introduce auxiliary fields
fi and φ± (φ+ = (φ−)∗) and add

Lax = λ1 f
2
1 + λ2 f

2
2 + λ12 f1 f2 + 1

2
λ′

12φ
+φ−, (5)

to the effective Lagrangian (3). Note that since the path inte-
grals of fi , φ± are Gaussian ones, at the tree-level, the con-
tributions from these fields have no effects on the effective
theory. We then shift them according to

f1 → f1 − (S†
1 S1), f2 → f2 − (S†

2 S2),

φ+ → φ+ − √
2(S†

2 S1), φ
− → φ− − √

2(S†
1 S2), (6)

to obtain the mean-field Lagrangian

LMFA = ([∂μSi ]†∂μSi ) − M2
i0(S

†
i Si ) + λ1 f

2
1

+ λ2 f
2
2 + λ12 f1 f2

− λH (H†H)2 + λ′
12

2
φ+φ−

− λ′
12√
2
φ+(S†

1 S2) − λ′
12√
2
φ−(S†

2 S1), (7)

where

M2
10 = 2λ1 f1 + λ12 f2 − λHS1 H

†H,

M2
20 = 2λ2 f2 + λ12 f1 − λHS2 H

†H. (8)

Note that the mean-field Lagrangian reduces to Leff when
the tree-level equations of motion for the auxiliary fields,
fi = (S†

i Si ), φ+ = √
2(S†

2 S1), are plugged into (7).
To proceed with the mean-field approximation, we have

to derive the effective potential VMFA for our problem. By
assumption the non-perturbative effect of the original gauge

2 We have suppressed L′
SM as well as the kinetic term for H in (3),

because they do not play any important role for our discussions here.

theory breaks neither the hidden SU (Nc) color symmetry nor
theU (1)×U (1) flavor symmetry , which means that 〈Si 〉 = 0
and 〈(S†

2 S1)〉 = 〈φ+〉/√2 = 〈(S†
1 S2)〉 = 〈φ−〉/√2 = 0.

Therefore, we ignore the last three terms involving φ± in (7)
and calculate the VMFA by integrating out the scalar fields
S whose integration is Gaussian. Then, we find the effective
potential:

VMFA( f, H) = −λ1 f
2
1 − λ2 f

2
2 − λ12 f1 f2 + λH (H†H)2

+ Nc

32π2 M
4
10 ln

M2
10


2
H

+ Nc

32π2 M
4
20 ln

M2
20


2
H

,

(9)

where M2
i0 are given in (8), the ultraviolet divergence was

subtracted with the MS scheme, and 
H = μe−3/4 is a
renormalization scale at which the quantum corrections van-
ish.

We here stress that the scale is generated by quantum
effects within the scaleless effective theory (3).3 This scale
characterizes the origin of the scales of both the hidden sector
and the EW.

The minima of the effective potential (9) can be obtained
from the solution of the gap equations4

0 = ∂

∂ fi
VMFA = ∂

∂Hl
VMFA, (i, l = 1, 2). (10)

The first Eq. in (10) yields

Nc〈M2
i0〉

[
ln

(
〈M2

i0〉/
2
H

)
+ 1

2

]
= 16π2〈 fi 〉, (11)

which implies that 〈M2
i0〉 = 0 if 〈 fi 〉 = 0. In the case

that ln(〈M2
i0〉/
2

H ) + 1/2 < 0, (11) is inconsistent unless
〈M2

i0〉 = 〈 fi 〉 = 0, because 〈M2
i0〉 are 〈 fi 〉 are not allowed to

be negative. Then the second Eq. of (10) gives

2λH 〈H†H〉 = λHS1〈 f1〉 + λHS2〈 f2〉. (12)

Using (11) and (12), we find the potential at the minimum:

〈VMFA〉 = − Nc

64π2

(
〈M2

10〉2 + 〈M2
20〉2

)
. (13)

From (12) we see that, if 〈H†H〉 vanishes, 〈 f1〉 and 〈 f2〉
also have to vanish, because we assume that λH , λHSi are
positive. 〈H†H〉 = 0 cannot be at a local minimum unless

3 Although in the original gauge theory (1), the non-trivial scale may
be generated by its strong dynamics, it is complicated. Instead, we have
attempted to demonstrate that the scale generation by the strong dynam-
ics is realized by the dimensional transmutation à la the Coleman–
Weinberg mechanism.
4 A similar potential problem has been studied in [31–34]. But they did
not study the classical scale invariant case in detail, and moreover no
coupling to the SM was introduced.
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both 〈 fi 〉 vanish, which can be seen from the Higgs mass
squared

m2
h0 = 6λH 〈H†H〉 + Nc(λ

2
HS1

+ λ2
HS2

)〈H†H〉
8π2

− λHS1〈 f1〉 − λHS2〈 f2〉 + 2〈H†H〉

×
(

λ2
HS1

〈 f1〉
M2

1

+ λ2
HS2

〈 f2〉
M2

2

)

→ −(λHS1〈 f1〉 + λHS2〈 f2〉) < 0 as 〈H†H〉 → 0,

(14)

where we have not used (12). Therefore, 〈H†H〉 = 0 is
possible only if 〈 f1〉 = 〈 f2〉 = 0, which is consistent with
(12). Furthermore, one can convince oneself that Eqs. (11)
and (12) cannot be simultaneously satisfied if one of 〈 fi 〉
vanishes, unless we make a precise fine-tuning of the quar-
tic coupling constants. From the discussions above we may
therefore conclude that, as long as ln(〈M2

i0〉/
2
H )+1/2 > 0

is satisfied, the non-vanishing VEV of H and fi correspond
to the true minimum of the potential (9).5

To proceed with our mean-field approximation, we intro-
duce fluctuations about the mean-field vacuum (11)–(13) as

fi = 〈 fi 〉 + σi . (15)

Note that φ± are also fluctuations and also that the canonical
dimension of σi and φ± is two. Similarly, we expand the
Higgs doublet around the vacuum value as

H = 1√
2

(
χ1 + iχ2

vh + h + iχ0

)
,

vh√
2

= (〈H†H〉)1/2, (16)

where χ i are would-be Nambu–Goldstone fields and we will
suppress them in the following discussions. Then the mean-
field Lagrangian (7) can be finally written as

LMFA = ([∂μSi ]†∂μSi ) − M2
i (S†

i Si ) + λ′
12

2
φ+φ−

+ λ1σ
2
1 + λ2σ

2
2 + λ12σ1σ2

+ λ1 f
2
1 + λ2 f

2
2 + λ12 f1 f2

− (2λ1σ1 + λ12σ2)(S
†
1 S1)

− (2λ2σ2 + λ12σ1)(S
†
2 S2) − λ′

12√
2
φ+(S†

1 S2)

− λ′
12√
2
φ−(S†

2 S1)

+ λHSi

2
(S†

i Si )h(2vh+h)− λH

4
h2(6v2

h+4vhh∂+h2),

(17)

5 At finite temperature, the scale invariance is explicitly broken, and a
Higgs mass term is effectively generated. As a consequence, 〈 fi 〉 �= 0
but 〈H†H〉 = 0 can become possible [29].

where

M2
1 = 〈M2

10〉 = 2λ1〈 f1〉 + λ12〈 f2〉 − λHS1

2
v2
h, (18)

M2
2 = 〈M2

20〉 = 2λ2〈 f2〉 + λ12〈 f1〉 − λHS2

2
v2
h . (19)

At this level the mean fields σi and φ± are classical fields, but
we reinterpret them as quantum fields after their kinetic terms
are generated at the loop level. More specifically, the auxil-
iary fields, σi and φ±, are not dynamical in the Lagrangian at
the classical level (17). As will be seen in the next subsection,
these fields become dynamical by integrating out the funda-
mental fields Si . Note that within the present effective model
approach to dynamical scale symmetry breaking described
by (1), the confinement effects cannot be taken into account.

Here, we briefly introduce the one-loop contribution from
the SM sector to the effective potential (9) and evaluate the
correction to the Higgs mass (14). The one-loop contribution
to the effective potential is calculated as

VCW(h) =
∑

I=W,Z ,h

nI
2

∫
d4k

(2π)4 ln
(
k2 + m2

I (h)
)

− nt
2

∫
d4k

(2π)4 ln
(
k2 + m2

t (h)
)

+ c.t., (20)

where nI (I = W, Z , t, h) is the degrees of freedom of the
corresponding particle, i.e., nW = 6, nZ = 3, nt = 12
and nh = 1, and c.t. denotes the counter terms. We work
in the Landau gauge, and the contributions from the would-
be Goldstone bosons in the Higgs field have been neglected.
We employ the dimensional regularization in order to respect
scale invariance and choose the counter terms such that the
following normalization conditions with vh = 246 GeV are
satisfied:

VCW(h = vh) = 0,
dVCW(h)

dh

∣∣∣∣
h=vh

= 0. (21)

Then, we obtain the one-loop corrections (20) as the
Coleman–Weinberg potential [5]

VCW(h) = C0(h
4 − v4

h) + 1

64π2[
6m̃4

W ln(m̃2
W /m2

W ) + 3m̃4
Z ln(m̃2

Z/m2
Z )

+m̃4
h ln(m̃2

h/m
2
h) − 12m̃4

t ln(m̃2
t /m

2
t )

]
, (22)

where

C0 
 − 1

64π2v4
h

(
3m4

W + (3/2)m4
Z + (3/4)m4

h − 6m4
t

)
,

(23)
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m̃2
W = (mW /vh)

2h2, m̃2
Z = (mZ/vh)

2h2,

m̃2
t = (mt/vh)

2h2, m̃2
h = ∂2VMFA

∂h2 , (24)

and mI (masses given at the vacuum vh = 246 GeV) are

mW = 80.4 GeV, mZ = 91.2 GeV,

mt = 173.2 GeV, mh = 125 GeV. (25)

We find that the Coleman–Weinberg potential (22) yields a
one-loop correction to the Higgs mass squared (14)

δm2
h = d2VCW

dh2

∣∣∣∣
h=vh


 −16C0v
2
h . (26)

This correction modifies the Higgs mass (14) slightly.

3.1 Inverse propagators and masses

The inverse propagators should be computed to obtain the
masses and the corresponding wave function renormaliza-
tion constants. We also have to define canonically normal-
ized fields with a canonical dimension of one. To this end,
we integrate out the constituent scalars Sa and up to and
including one-loop order to obtain the inverse propagators:

�φ(p2) = 1

2
λ′

12

[
1 + λ′

12Nc�(M2
1 , M2

2 , p2)
]
, (27)

�11(p
2) = 2λ1

[
1 + 2Ncλ1�(M2

1 , M2
1 , p2)

]

+ Ncλ
2
12�(M2

2 , M2
2 , p2), (28)

�22(p
2) = 2λ2

[
1 + 2Ncλ2�(M2

2 , M2
2 , p2)

]

+ Ncλ
2
12�(M2

1 , M2
1 , p2), (29)

�12(p
2) = λ12

[
1 + 2Ncλ1�(M2

1 , M2
1 , p2)

+ 2Ncλ2�(M2
2 , M2

2 , p2)
]
, (30)

�h1(p
2) = −vh

[
2λHS1λ1Nc�(M2

1 , M2
1 , p2)

+ λHS2λ12Nc�(M2
2 , M2

2 , p2)
]
, (31)

�h2(p
2) = −vh

[
2λHS2λ2Nc�(M2

2 , M2
2 , p2)

+ λHS1λ12Nc�(M2
1 , M2

1 , p2)
]
, (32)

�h(p
2) = p2 − m2

h + (vhλHSi )
2Nc

×
[
�(M2

i , M2
i , p2) − �(M2

i , M2
i , 0)

]
, (33)

with m2
h = m2

h0 + δm2
h , where m2

h0 is given in (14), δm2
h

is the SM correction given in (26), and we defined the loop
function,

�(M2
1 , M2

2 , p2) = −1

16π2

(∫ 1

0
dx ln{1−x(1−r)−x(1−x)t}

+ ln

[
M2

2


2
H exp(−3/2)

])
, (34)

with r = M2
1 /M2

2 and t = p2/M2
2 . Note that we have

included the canonical kinetic term for H , but its wave func-
tion renormalization constant is ignored, because it is approx-
imately equal to one within the approximation here. Note
that the fundamental fields Si have been integrated out, so
that they are no longer fields as degrees of freedom in low
energy regimes (below the confinement scale). Instead, the
auxiliary fields associated with the composite fields could
behave as dynamical fields with degrees of freedom in low
energy regimes. The DM mass is the momentum squared at
which the inverse propagator of �φ

(
p2

)
vanishes, i.e.,

�φ(p2 = mDM
2) = 0, (35)

and Zφ (which has a canonical dimension of two) can be
obtained from

Z−1
φ = d�φ

dp2

∣∣∣∣
p2=m2

DM

. (36)

The Higgs and σi masses can be similarly obtained from the
eigenvalues of the following h − σ mixing matrix

�(p2) =
⎛
⎜⎝

�11(p2) �12(p2) �h1(p2)

�12(p2) �22(p2) �h2(p2)

�h1(p2) �h2(p2) �h(p2)

⎞
⎟⎠ . (37)

The squared masses m2
a (a = H, L , h) are given as the

momenta at which det �(p2) becomes zero, where we
assume that

mH > mL > mh . (38)

Further, the wave function renormalization constants can be
computed in the following way. We first compute the squared
masses from det �(p2) = 0. Then we diagonalize �(p2) at
each p2 = m2

a and denote the eigenvector with zero eigen-
value by ξ (a) (a = H, L , h), i.e., �(p2 = m2

a)ξ
(a) = 0.

Then the matrix U that links σi and the Higgs h to the mass
eigenstates, denoted by σH , σL , h′, is given by

U =

⎛
⎜⎜⎝

ξ
(H)
1 ξ

(L)
1 ξ

(h)
1

ξ
(H)
2 ξ

(L)
2 ξ

(h)
2

ξ
(H)
3 ξ

(L)
3 ξ

(h)
3

⎞
⎟⎟⎠ , (39)
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Gφσ =

φ+

φ−

σL

σL

S2

S1

S1

S1

+ +

φ+

φ−
σL

σL

S1

S2

S2

S2

φ+

φ−
σL

σL

S1

S1

S2

S2 +

φ+

S2

S2

+ crosses

φ−

σL

σL

S1

S1

Gφh = +

φ+

φ−

S2

S1

S1

S1

S2

S2

h (or vh)

h h

h (or vh)

+ crosses

Gσh =

σL

σL

σL

σL

h (or vh) h (or vh)

h h

+

S1

S1
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+ crosses

σL +
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+ crosses
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Fig. 1 One-loop diagrams contributing to the effective interactions among φ±, σL and h′, where the external momenta are set equal to zero

where the canonical dimension of ξ
(a)
1 and ξ

(a)
2 is one, while

that of ξ
(a)
3 is zero. This implies

lim
p2→m2

a

ξ (a)�(p2)ξ (a) = Z−1
a (p2 − m2

a), (40)

and hence

⎛
⎝

σ1

σ2

h

⎞
⎠ =

⎛
⎜⎝

ξ
(H)
1 Z1/2

H ξ
(L)
1 Z1/2

L ξ
(h)
1

ξ
(H)
2 Z1/2

H ξ
(L)
2 Z1/2

L ξ
(h)
2

ξ
(H)
3 Z1/2

H ξ
(L)
3 Z1/2

L ξ
(h)
3

⎞
⎟⎠

⎛
⎝

σH

σL

h′

⎞
⎠ . (41)

The wave function renormalization constants Za are dimen-
sionless so that σH , σL and h′ are canonically normalized
fields with the canonical dimension of one. The Lagrangian
(17) is rewritten in terms of the fields σH , σL and h′.

If mDM(mH,L) > 2M1,2, φ±(σH,L) would decay into
S1 and S2 (the inverse propagators �s have an imaginary
part) within the framework of the effective theory, because
the effective theory cannot incorporate confinement. There-
fore, we will consider only the parameter space with mDM,
mH,L < 2M1,2.

3.2 Effective interactions

To calculate the relic abundance of DM and also the inter-
action of DM with the SM particles, we need to compute
the diagrams shown in Fig. 1. The corresponding effective

interactions can be obtained by setting the external momenta
equal to zero:

LDM = 1

2
Gφσ φ+φ−(σL)2 + 1

2
Gφhφ

+φ−h′2

+ 1

4
Gσhσ

2
Lh

′2

+ vhGφhφ
+φ−h′ + 1

2
vhGσhσ

2
Lh

′

+ 1

2
ĜσhσLh

′2, (42)

where the effective vertices up to and including O(λHSi ) are

Gφσ = ZφZL Nc

16π2 (λ′
12)

2
[
λ2

1L F1(M1, M2)

+λ2
2L F1(M2, M1) + 2λ1Lλ2L F2(M1, M2)

]
, (43)

Gφh = ZφNc

32π2 (λ′
12)

2 [
λHS1 F3(M1, M2)

+λHS2 F3(M2, M1)
]
, (44)

Gσh = ZL Nc

16π2

[
λ2

1LλHS1/M
2
1 +λ2

2LλHS2/M
2
2

]
, (45)

Ĝσh = Z1/2
L Nc

16π2

[
λ1LλHS1 ln

(
M2

1


2
H exp(−3/2)

)

+λ2LλHS2 ln

(
M2

2


2
H exp(−3/2)

)]
, (46)
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with

λ1L = (2λ1ξ
(L)
1 + λ12ξ

(L)
2 ),

λ2L = (2λ2ξ
(L)
2 + λ12ξ

(L)
1 ), (47)

and

F1(M1, M2) = M2
1 + M2

2

(M2
1 − M2

2 )2M2
1

− 2M2
2

(M2
1 − M2

2 )3
ln(M2

1 /M2
2 )

= 1

3M4
1

, for M2 = M1, (48)

F2(M1, M2) = − 2

(M2
1 − M2

2 )2
+ M2

1 + M2
2

(M2
1 − M2

2 )3
ln(M2

1 /M2
2 )

= 1

6M4
1

, for M2 = M1, (49)

F3(M1, M2) = 1

M2
1 − M2

2

− M2
2

(M2
1 − M2

2 )2
ln(M2

1 /M2
2 )

= 1

2M2
1

, for M2 = M1. (50)

In the next section, the vertices (43)–(46) are used to evalu-
ate the thermal averaged cross sections for the annihilation
processes of σL , φ± and the decay width of σL .

4 Dark matter

4.1 Relic abundance

Let us evaluate the relic abundance of the DM candidates in
the model. To this end, we have to follow the temperature-
evolution of the number densities of the particles σL and
φ±, denoted by nσL and nφ . These quantities are functions
of temperature T . Here, we introduce convenient quantities
YσL ,φ = nσL ,φ/s, where s is the entropy density of the uni-
verse. Then, the evolution of YσL and Yφ can be described by
the following coupled Boltzmann equation [35–38]:

dYσL

dx
= − 0.264 g1/2∗

[
μMPL

x2

]{
〈σ(σLσL ; SM)v〉

× (
YσL YσL − ȲσL ȲσL

) + 〈σ(σLσL ;φ+φ−)v〉

×
(
YσL YσL − YφYφ

Ȳφ Ȳφ

ȲσL ȲσL

) }

− 0.602 g−1/2∗
[
xMPL

μ2

]
〈γ (σL)〉(YσL − ȲσL ),

(51)

dYφ

dx
= −0.264 g1/2∗

[
μMPL

x2

] {
1

2
〈σ(φ+φ−; SM)v〉

× (
YφYφ − Ȳφ Ȳφ

)

− 〈σ(σLσL ;φ+φ−)v〉

×
(
YσL YσL − YφYφ

Ȳφ Ȳφ

ȲσL ȲσL

) }
, (52)

where ȲσL ,φ isYσL ,φ in equilibrium, MPL = 1.22×1019 GeV
and g∗ = 106.75 are the reduced Planck mass and the total
number of effective degrees of freedom, respectively, and
1/μ = 1/mL + 1/mDM. YσL ,φ are written as functions of
x = μ/T . Note thatmDM is the mass of φ±:mDM ≡ mφ . The
thermal averaged cross sections and the decay width given
in (51) and (52) are computed as

〈σ(σLσL ; φ+φ−)v〉 = G2
φσ

32πm2
σ

(
1 − m2

DM/m2
σ

)1/2
, (53)

〈σ(φ+φ−; SM)v〉 = 1

32πm2
DM

∑
I=W,Z ,t,h

(
1 − m2

I /m
2
DM

)1/2

× aI (Gφh,mDM), (54)

〈σ(σLσL ; SM)v〉 = 1

32πm2
L

∑
I=W,Z ,t,h

(
1 − m2

I /m
2
L

)1/2

× aI (Gσh,mL ), (55)

〈γ (σL)〉 = 1

16πmL

∑
I=W,Z ,t

(
1 − 4m2

I /m
2
L

)1/2

× aI (Ĝσh,mL/2)

+ Ĝ2
σh

32πmL

(
1 − 4m2

h/m
2
L

)1/2

×
(

1 + 24λH�h(mL/2)
m2

W

g2

)
, (56)

where mW , mZ , and mt are the W , Z bosons and the top-
quark masses given in (25), respectively, the effective cou-
pling constants are in (43)–(46), and we defined

aW (Z)(G,m) = 4(2)G2�2
h(m)m4

W (Z)

×
(

3 + 4
m4

m4
W (Z)

− 4
m2

m2
W (Z)

)
,

at (G,m) = 24G2�2
h(m)m2

t (m
2 − m2

t ),

ah(G,m) = 1

2
G2

×
(

1 + 24λH�h(m)
m2

W

g2 +8G�t
h(m)

m2
W

g2

)2

.

(57)

Here, g = 0.65 is the SU (2)L gauge coupling constant, and
�h(m) = (4m2 − m2

h)
−1 (�t

h(m) = (−2m2 + m2
h)

−1) is
the Higgs propagator in the s(t)-channel. From the solu-
tions YσL ;∞ ≡ YσL (x = ∞) and Yφ;∞ ≡ Yφ(x = ∞) to
the coupled Boltzmann equations (51), (52), we obtain the
relic abundances for σL and φ±:
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Fig. 2 Left: Yi as a function of x . Right: The total relic abun-
dance �h2 against the decay width 〈γ (σL )〉 in the range (0.1 −
−2.0) × 1012 GeV. We have used: mDM = 500 GeV, mL = 550
GeV, 〈σ(σLσL ; φ+φ−)v〉 = 5.2 × 10−6 GeV−2, 〈σ(σLσL ; SM)v〉 =

10−11 GeV−2, 〈σ(φ+φ−; SM)v〉 = 10−11 GeV−2 for both the left-
and right-hand panels, while 〈γ (σL )〉 = 10−9 GeV is assumed for the
left-hand panel

�σL ,φh
2 = gσL ,φmDMYσL ,φ;∞s0

ρc/h2 , (58)

where gσL ,φ is the degrees of freedom of σL , φ±, and
s0 = 2890 cm−3 and ρc/h2 = 1.05 × 10−5 GeV/cm3 are
the entropy density and the critical energy density over the
dimensionless Hubble constant at present, respectively [39].

Before we solve the evolution equations numerically, we
consider what we would expect. If the decay width 〈γ (σL)〉
of σL is large, YσL may be approximated by its equilibrium
value ȲσL , which is illustrated in Fig. 2 for a representative
set of the parameters. From the left-hand side panel of Fig. 2
we see that YσL (solid line) can be well approximated by its
equilibrium value ȲσL (dotted line) to compute the final value
of for Yφ (dot-dashed line). In the right-hand side panel of
Fig. 2 we plot the total relic abundance �h2 = (�σL +�φ)h2

against the decay width 〈γ (σL)〉 with the same input param-
eter (except for 〈γ (σL)〉) as for the left-hand side panel
of Fig. 2, where we varied 〈γ (σL)〉 between (0.1 and 2.0)
×10−12 GeV. We see that the total relic abundance approxi-
mately coincides with �φh2 if 〈γ (σL)〉 × 1012 GeV > 0.5.
Therefore, if 〈γ (σL)〉 is sufficiently large, we may approxi-
mate the expression in the braces { } in the right-hand side of
(52) by

[
1

2
〈σ(φ+φ−; SM)v〉 + 1

4
〈σ(σLσL ;φ+φ−)v〉

m3
σL

m3
DM

exp

(
2x

m2
DM − m2

L

mDMmL

)] (
YφYφ − Ȳφ Ȳφ

)
, (59)

which also appears in the co-annihilation of DM with an
unstable particle [40]. From (59) we see that if mL is close
to mDM the second term of (59) effectively increases the
annihilation rate of DM. The reason why mL > mDM is

assumed is that Gφσ given in (43) is so large that the sec-
ond term in the bracket [ ] of (59) should be suppressed by

exp

(
2x

m2
DM−m2

L
mDMmL

)
. Apart from this mass relation the mech-

anism is similar to the secluded DM mechanism [41]. We use
this mechanism6 to overcome the constraint from the direct
detection experiment, as we explain below. On one hand,Gφh

enters in the spin-independent elastic cross section σSI (60),
so that it cannot be made small. The annihilation cross sec-
tion 〈σ(φ+φ−; SM)v〉, on the other hand, depends on Gφh ,
so that there would be a lower bound on the relic abundance
�DM of DM, if there would be no effect from σL on �DM. As
we have seen above, the σL effect is an increase of the anni-
hilation cross section of DM, and consequently, the lower
bound on �DM can be lowered.

Solving the Boltzmann equation (52) with the replacement
(59) for large 〈γ (σL)〉, we obtain the DM relic abundance
�DMh2. The latest observation by the Planck satellite tells
us that �DMh2 = 0.1188 ± 0.0010 [44].

4.2 Direct detection

In order to compare with the WIMP DM direct-detection
search experiments [26–28], we evaluate the spin-indep-
endent elastic cross section off the nucleon σSI . As we can
see from LDM in (42) the localized interaction of DM with
the SM is that of the Higgs portal. Consequently, the spin-
independent elastic cross section off the nucleon σSI is given
by [45]

6 The decay width γ (σL ) is typically � O(10−10) GeV in our model.
That is, its lifetime is � O(10−14) s, and therefore, the decay of σL
does neither influence BBN nor CMB [42,43].
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σSI = 1

4π

(
r̂
Gφhm2

N

mDMm2
h

)2 (
mDM

mN + mDM

)2

, (60)

where Gφh is given in (44), mN 
 940 MeV is the nucleon
mass, and r̂ ∼ 0.3 stems from the nucleonic matrix ele-
ment [46–48]. We search the parameter space where the
following observed values are satisfied: vh = 246 GeV,
mh 
 125 GeV, �DMh2 
 0.12 [39,44].

So far we have assumed the U (1) × U (1) flavor sym-
metry, where one of U (1) symmetries is a subgroup of
SU (2). It is possible to enlarge the flavor symmetry, while
maintaining the new DM annihilation process, and add the
permutation symmetry Z2 of S1 and S2, which requires
λ1 = λ2 and λHS1 = λHS2 in Leff given in (3). We
have computed the spin-independent elastic cross section
σSI of DM off the nucleon for three different flavor sym-
metries U (2),U (1) × U (1) and U (1) × U (1) × Z2 with
Nc = 6. This is shown in Fig. 3, where the red, blue and
pink points show the predicted regions in the model with
U (2),U (1)×U (1)× Z2 and U (1)×U (1), respectively. For
comparison the case of the single-scalar DM is also included
(brown points). These theoretical predictions should be com-
pared with the resent experimental constraints of LUX [49],
XENON1T [50] and PandaX-II [51], where the green and
yellow bands denote the 1σ and 2σ bands of XENON1T
[50], respectively. We see from Fig. 3 that the model with the
unbrokenU (2) flavor symmetry is at the border of the exper-
imental upper bound and future experiments can exclude the
model. We also see that, in contrast to the U (2) case, the
model with U (1) × U (1) × Z2 and U (1) × U (1) can clear
more stringent constraints.

5 Conclusion

We have considered the scale invariant extension of the
SM proposed in [21], while relaxing the assumption on the
U (N f ) flavor symmetry. Specifically, we have investigated
the model with the U (2) flavor symmetry, which is bro-
ken explicitly down to U (1) × U (1) by the scalar quar-
tic couplings. This breaking opens a completely new pos-
sibility of reducing the relic abundance of DM: One of the
three DM candidates in theU (2) case becomes neutral under
U (1)×U (1), so that the other two ones can annihilate into a
pair of the neutral ones, which subsequently decay in the SM
particles. The result is given in Fig. 3, which shows that the
model could satisfy more stringent constraints of the future
experiments of DM direct detection. A salient feature of the
model is that the DM of the present model (which is the light-
est scalar in the hidden sector) can be significantly heavier
than about 500 GeV, which is the upper bound for a certain
class of classically scale invariant extensions of the SM [53].

Fig. 3 The spin-independent elastic cross section σSI of DM off the
nucleon as a function of the DM mass mDM for the case of N f = 2,
Nc = 6. The red, blue and pink points show the predicted regions in the
model withU (2),U (1)×U (1)×Z2 andU (1)×U (1), respectively. The
brown points show the predicted region of the single-scalar DM. The
black dashed, solid and dotted lines stand for the current upper bound
from the direct detection experiments, LUX [49], XENON1T [50] and
PandaX-II [51], respectively. The green and yellow bands denote the
1σ and 2σ bands of XENON1T [50], respectively. The gray dot-dashed
and dotted lines stands for sensitivities of XENON experiment in the
future [27]. The orange line and band stands for the cosmic neutrino
background [52]

The solution of the hierarchy problem within the frame-
work of the classically scale invariant extension of the SM
is directly connected to the scale invariance properties of its
Planck scale embedding. We have assumed the classical scale
invariance to act in such a way that the Planck scale does not
enter as a physical scale into the SM. This sounds like a
strong assumption, but might be realistic in asymptotically
safe gravity which could be one of candidates for quantum
gravity [54–57].
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