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Abstract Action for the Dirac spinor field coupled to
gravity on noncommutative (NC) Moyal-Weyl spacetime is
obtained without prior knowledge of the metric tensor. We
emphasize gauge origins of gravity and its interaction with
fermions by demonstrating that a classical action invari-
ant under SO(2, 3) gauge transformations can be exactly
reduced to the Dirac action in curved spacetime after break-
ing the original symmetry down to the local Lorentz SO(1, 3)

symmetry. The commutative SO(2, 3) invariant action can
be straightforwardly deformed via Moyal-Weyl �-product to
its NC SO(2, 3)� invariant version which can be expanded
perturbatively in powers of the deformation parameter using
the Seiberg-Witten map. The NC gravity-matter couplings
in the expansion arise as an effect of the gauge symmetry
breaking. We calculate in detail the first order NC correc-
tion to the classical Dirac action in curved spacetime and
show that it does not vanish. Moreover, linear NC effects are
apparent even in flat spacetime. We analyse NC deformation
of the Dirac equation, Feynman propagator and dispersion
relation for electrons in Minkowski spacetime and conclude
that constant NC background acts as a birefringent medium
for electrons propagating in it.

1 Introduction

Quantum Field Theory (QFT) and General Relativity (GR)
are two cornerstones of modern theoretical physics. Although
these theories have been tested to an excellent degree of accu-
racy in their respective areas of applicability, occurrence of
singularities in both of them strongly indicates that they are
incomplete. GR, as a classical theory of gravity, describes
large-scale geometric structure of spacetime and its relation
to the distribution of matter. On the other hand, QFT, stand-
ing on the principles of Quantum Mechanics and Special
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Relativity, provides us with the Standard Model of elemen-
tary particles which successfully utilizes the idea of local
symmetry to describe the fundamental particle interactions.
Understanding quantum nature of spacetime and reconciling
gravity with other fundamental interactions is considered to
be one of the main goals of contemporary physics.

In order to obtain a consistent unified theory, certain modi-
fications of the basic concepts of QFT and GR are necessary.
Various approaches have been proposed so far, stemming
from String Theory, Loop Quantum Gravity, Noncommuta-
tive (NC) Field Theory, etc. and all of them, in some radical
way, change the notion of point particle and/or that of space-
time.

In the last twenty years, Noncommutative Field Theory
has become a very important direction of investigation in
theoretical high energy physics and gravity. Its basic insight
is that the quantum nature of spacetime, at the microscopic
level, should mean that even the spacetime coordinates are to
be treated as mutually incompatible observables, satisfying
some non trivial commutation relations. The simplest choice
of noncommutativity is the so called canonical noncommu-
tativity, defined by

[xμ, xν] = iθμν , (1.1)

where θμν are components of a constant antisymmetric
matrix.

To establish canonical noncommutativity, instead of using
abstract algebra of coordinates, i.e. noncommutative space-
time, one can equivalently introduce the noncommutative
Moyal-Weyl �-product,

f (x) � g(x) = e
i
2 θαβ ∂

∂xα
∂

∂yβ f (x)g(y)|y→x , (1.2)

as a multiplication of functions (fields) defined on the usual,
commutative (undeformed) spacetime. The quantity θμν is
considered to be a small deformation parameter that has
dimensions of (length)2 (in natural units). It is a fundamental
constant, like the Planck length or the speed of light.
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Recently, a lot of attention has been devoted to NC grav-
ity, and many different approaches to this problem have been
developed. In [1–3] a deformation of pure Einstein grav-
ity based on the Seiberg-Witten map is proposed. Twist
approach to noncommutative gravity was explored in [4–
7]. Lorentz symmetry in NC field theories was considered
in [8,9]. Some other proposals are given in [10–22]. The
connection to supergravity was established in [23,24]. The
extension of NC gauge theories to orthogonal and symplec-
tic algebra was considered in [25,26]. Finally, in the pre-
vious papers of one of the authors [27–30] an approach
based on the deformed Anti de Sitter (AdS) symmetry group,
i.e. SO(2, 3)� group, and canonical noncommutativity was
established. In this approach NC gravity is treated as a gauge
theory. It becomes manifest only after the suitable symme-
try breaking. The action was constructed without previous
introduction of the metric tensor and the second order NC
correction to the Einstein-Hilbert action was found explic-
itly. Special attention has been devoted to the meaning of
the coordinates used. Namely, it was shown that coordi-
nates in which we postulate canonical noncommutativity are
the Fermi inertial coordinates, i.e. coordinates of an iner-
tial observer along the geodesic. The commutator between
arbitrary coordinates can be derived from the canonical non-
commutativity as demonstrated in [27].

A next natural step is to consider coupling of matter fields
and gravity in the framework of NC SO(2, 3)� model. In this
paper we specifically focus on the NC coupling of the Dirac
spinor field and gravity. Previously, noncommutative cou-
pling of spinors and gravity has been treated by Aschieri and
Castellani [31,32]. Their model, based on the local SO(1, 3)�
symmetry, is significantly different from the one presented
here. On the formal side, in their approach, the vierbein field
eaμ is an adjoint field, i.e. it transforms in the adjoint represen-
tation of SO(1, 3) group, whereas here, the vierbein and the
SO(1, 3) spin-connection are just different components of
the total SO(2, 3) gauge potential , and they are both being
treated on equal footing. Therefore, in our model, the vier-
bein field holds the same status and transforms in the same
way as an ordinary gauge potential. More importantly, phys-
ical implications to which these two models lead are quite
different. The mentioned authors have found that, in the case
of massless Majorana spinors, the first non vanishing NC
correction to the action in curved spacetime is at the sec-
ond order in powers of θαβ (all odd-power corrections being
equal to zero). Within the same framework, the coupling of
the Dirac spinors and gravity has been treated in [33] and the
first order NC action is obtained. Our objective was to con-
struct a plausible theoretical model that would enable us to
explore the behavior of matter in NC spacetime and to actu-
ally calculate how this noncommutativity modifies the poten-
tially observable physics, e.g. the dispersion relation for an
electron. We were specifically interested in effects linear in

θαβ . The model that we present here predicts a non vanish-
ing linear correction to the Dirac action in curved spacetime
that survives even in flat spacetime. This feature enables us
to investigate potentially observable NC effects much more
easily. It leads us to an important physical prediction of the
linearly deformed dispersion relation for electrons in NC
Minkowski spacetime along with the Zeeman-like splitting of
the undeformed energy levels. Also, the energy levels become
helicity-dependent due to noncommutativity of the back-
ground spacetime which behaves as a birefringent medium
for electrons propagating in it. As an aside, we should
also mention that the differences between these two mod-
els revealed themselves already in the case of pure gravity.
Namely, we have showed that the deformation of Minkowski
spacetime is obtained in NC SO(2, 3)� model [27].

The paper is organized as follows. In the next section we
introduce the basic elements of AdS algebra and present a
model of commutative action based on local AdS symmetry.
In the third section we shortly review the theory of gauge
fields on NC spacetime. In Sect. 4, we deform our commu-
tative action using the Moyal-Weyl �-product. We use the
Seiberg-Witten map to expand the NC action perturbatively
in powers of the deformation parameter θαβ and calculate
in detail the first order NC correction to the Dirac action in
curved spacetime. Finally, in Sect. 5, we consider a special
case of flat spacetime and analyse the NC correction to the
Dirac equation, Feynman propagator and dispersion relation
for electrons. Section 6 contains discussion and conclusion.

2 Commutative model

Before introducing the model of commutative (i.e. unde-
formed) action based on SO(2, 3) gauge symmetry, we will
present some basic definitions concerning the AdS algebra.
Many more details can be found in our previous papers [27–
30].

The generators of SO(2, 3) gauge group are denoted
by MAB , where the group indices A, B, ... take values
0, 1, 2, 3, 5. These generators satisfy the following commu-
tation relations:

[MAB, MCD] = i(ηADMBC + ηBCMAD

−ηACMBD − ηBDMAC ), (2.1)

where ηAB = diag(+,−,−,−,+) is the 5D internal space
metric tensor. A realization of this algebra can be obtained
from 5D gamma matrices. Namely, if 	A are 5D gamma
matrices that satisfy anticommutation relations:

{	A, 	B} = 2ηAB, (2.2)

then generators are given by
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MAB = i

4
[	A, 	B] . (2.3)

One choice of 5D gamma matrices is 	A = (iγaγ5, γ5),
whereγa are the usual 4D gamma matrices. The local Lorentz
indices a, b, ... take values 0, 1, 2, 3. In this particular repre-
sentation, SO(2, 3) generators are given by

Mab = i

4
[γa, γb] = 1

2
σab ,

M5a = 1

2
γa . (2.4)

The total SO(2, 3) gauge potential, ωμ = 1
2ω AB

μ MAB , can
be decomposed as

ωμ = 1

4
ω ab

μ σab − 1

2l
eaμγa, (2.5)

where eaμ and ω ab
μ are the vierbein and the SO(1, 3) spin-

connection, respectively, and l is a constant length scale.
The world indices μ, ν, ... take values 0, 1, 2, 3. We see that
along with the spin-connection, which is naturally related
to the SO(1, 3) gauge group and suitable for introducing
fermionic spinor fields in curved spacetime, here we get addi-
tional gauge field - the vierbein, which is related to the metric
tensor by

ηabe
a
μe

b
ν = gμν , e = det(eaμ) = √−g. (2.6)

Thus, in this model, the vierbein and the SO(1, 3) spin-
connection are just different components of the total SO(2, 3)

gauge potential, and they are both being treated on equal foot-
ing.

The field strength tensor is built from the gauge potential
in the usual way,

Fμν = ∂μων − ∂νωμ − i[ωμ,ων] = 1

2
F AB

μν MAB . (2.7)

Its components are

F ab
μν = R ab

μν − 1

l2
(eaμe

b
ν − ebμe

a
ν ) ,

F a5
μν = 1

l
T a

μν , (2.8)

where we recognize

R ab
μν = ∂μω ab

ν − ∂νω
ab

μ + ω ac
μ ω cb

ν − ω bc
μ ω ca

ν , (2.9)

T a
μν = ∇μe

a
ν − ∇νe

a
μ, (2.10)

as the curvature tensor and torsion, respectively.
In the papers of Stelle, West and Wilczek [34,35] and

also MacDowell, Mansouri and Towsend [36,37] a commu-
tative action for pure gravity with SO(2, 3) gauge symmetry
was constructed. Also, in the papers of Chamseddine and
Mukhanov GR is formulated by gauging SO(1, 4) or, more
suitable for supergravity, SO(2, 3) group [38,39]. Proceed-
ing within this general framework, which is motivated by
the idea of constructing a unified symmetry setup for general

relativity and gauge field theories, we show that it can also
accommodate fermionic matter fields, specifically, the Dirac
spinor field. We are going to do that by providing a commu-
tative action for the Dirac spinors invariant under ordinary
SO(2, 3) gauge transformations which exactly reduces to
the standard Dirac action in curved spacetime after the suit-
able symmetry breaking. Its NC deformation can be repre-
sented as a perturbative expansion in powers of the deforma-
tion parameter θαβ via Seiberg-Witten map, each term being
SO(2, 3) invariant. After the symmetry breaking down to the
local Lorentz SO(1, 3) symmetry, we get NC deformation
of the Dirac action in curved spacetime.

Let ψ be a Dirac spinor field which transforms in the
fundamental representation of SO(2, 3) gauge group, i.e.

δεψ = iεψ = i

2
εABMABψ, (2.11)

where εAB are antisymmetric gauge parameters. The covari-
ant derivative of a Dirac spinor is given by

Dμψ = ∂μψ − i

2
ω AB

μ MABψ. (2.12)

Taking a hermitian conjugate of the previous expression we
get

Dμψ̄ = ∂μψ̄ + i

2
ψ̄ ω AB

μ MAB . (2.13)

In order to break SO(2, 3) gauge symmetry [35–37] we intro-
duce an auxiliary field φ = φA	A. This field is a space-
time scalar and an internal-space vector. It transforms in the
adjoint representation of SO(2, 3), i.e.

δεφ = i[ε, φ], (2.14)

and it is constrained by the condition φAφA = l2. Note that
this field has mass dimension −1. The covariant derivative
of an adjoint field is given by

Dμφ = ∂μφ − i[ωμ, φ]. (2.15)

Consider the following kinetic-type “symmetric-phase”
action:

Skin = i

12

∫
d4x εμνρσ

[
ψ̄DμφDνφDρφDσ ψ

−Dσ ψ̄DμφDνφDρφψ
]
. (2.16)

This action is invariant under SO(2, 3) gauge transforma-
tions, and it is hermitian up to the surface term which van-
ishes.

It is straightforward to show that the total covariant deriva-
tive of a spinor field can be decomposed as

Dσ ψ = ∇σ ψ + i

2l
eaσ γaψ, (2.17)
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where

∇σ ψ = ∂σ ψ − i

4
ω ab

σ σabψ, (2.18)

is the usual SO(1, 3) covariant derivative.
We break the SO(2, 3) symmetry down to the local

Lorentz SO(1, 3) symmetry by fixing the value of auxiliary
field φ, specifically by taking φa = 0 and φ5 = l. Accord-
ing to (2.15), the components of Dμφ become (Dμφ)a = eaμ
and (Dμφ)5 = 0 and thus we obtain the action in the broken-
symmetry phase,

Skin = i

2

∫
d4x e

[
ψ̄γ σ ∇σ ψ − ∇σ ψ̄γ σ ψ

]

−2

l

∫
d4x e ψ̄ψ, (2.19)

which is exactly the Dirac action in curved spacetime for
spinors of mass 2/ l.

We want to be able to have fermions with an arbitrary mass
m, not just the specific one 2/ l. To obtain the correct masses
of fermionic particles we have to include additional terms
in the action. There are five terms invariant under SO(2, 3)

transformations that can be used to supplement the original
action in order to obtain the correct Dirac mass term in curved
spacetime after the symmetry breaking. These terms only
differ in the position of the auxiliary field φ, and they are:

ψ̄DμφDνφDρφDσ φφψ , ψ̄DμφDνφDρφφDσ φψ ,

ψ̄DμφDνφφDρφDσ φψ, ψ̄DμφDνφDρφDσ φφψ ,

ψ̄DμφφDνφDρφDσ φψ. (2.20)

From them we can build only three independent hermitian
“mass terms” (terms of the type ψ̄...ψ) denoted by Sm,i (i =
1, 2, 3):

Sm,1 = i

2
c1

(m
l

− 2

l2

) ∫
d4x εμνρσ

[
ψ̄DμφDνφDρφDσ φφψ

+ψ̄φDμφDνφDρφDσ φψ
]
,

Sm,2 = i

2
c2

(m
l

− 2

l2

) ∫
d4x εμνρσ

[
ψ̄DμφDνφDρφφDσ φψ

+ψ̄DμφφDνφDρφDσ φψ
]
,

Sm,3 = i c3

(m
l

− 2

l2

) ∫
d4x εμνρσ

ψ̄DμφDνφφDρφDσ φψ. (2.21)

The undetermined dimensionless coefficients c1, c2 and c3

are introduced for generality, and they will be fixed later.

After the symmetry breaking, the sum of the mass terms
in (2.21), denoted by Sm , reduces to

Sm =
3∑

i=1

Sm,i = 24(c2− c1− c3)

(
m − 2

l

) ∫
d4x e ψ̄ψ.

(2.22)

If we want to have the correct mass term in the total action
after the symmetry breaking, the coefficients c1, c2, and c3

must satisfy the following constraint:

c2 − c1 − c3 = − 1

24
. (2.23)

Then (2.22) becomes

Sm = −
(
m − 2

l

)∫
d4x e ψ̄ψ, (2.24)

Terms in (2.19) and (2.24) that have a factor of the cosmolog-
ical mass 2/ l in them cancel each other out, and therefore,
the total symmetric-phase commutative action

S = Skin + Sm, (2.25)

where Skin is given in (2.16) and Sm is the sum of the three
mass terms in (2.21), exactly reduces, after the symmetry
breaking, to the Dirac action for spinors of mass m in curved
spacetime,

S= i

2

∫
d4x e

[
ψ̄γ σ ∇σ ψ−∇σ ψ̄γ σ ψ

] − m
∫

d4xeψ̄ψ.

(2.26)

Thus, by starting with a theory with SO(2, 3) gauge sym-
metry, by a suitable “gauge fixing”, we have obtained the
standard minimal coupling of the massive Dirac spinor field
and gravity.

3 Gauge theories and the Seiberg-Witten map

Let us briefly review the theory of gauge fields on noncom-
mutative spacetime by summarizing the most relevant results.
Our approach is based on the enveloping algebra formalism
and the use of the Seiberg-Witten (SW) map [40,41]. Fol-
lowing the steps of an ordinary (undeformed) gauge field
theory, one introduces NC spinor field ψ̂ (which belongs to
the fundamental representation), NC adjoint field φ̂ and NC
gauge potential ω̂μ. We use this gauge potential to construct
NC field strength,

F̂μν = ∂μω̂ν − ∂νω̂μ − i[ω̂μ
�, ω̂ν]. (3.1)

The covariant derivatives of NC spinor and adjoint field are
defined by

Dμψ̂ = ∂μψ̂ − iω̂μ � ψ̂, (3.2)
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Dμφ̂ = ∂μφ̂ − i[ω̂μ
�, φ̂]. (3.3)

Note that the structure of the NC covariant derivatives, in
both representations, is the same as in the undeformed field
theory, the only difference being the use of the Moyal-Weyl �-
product instead of the ordinary commutative multiplication.

Fields ψ̂ and φ̂, along with their covariant derivatives (3.2)
and (3.3), transform in the fundamental and adjoint represen-
tation, respectively, under NC infinitesimal gauge transfor-
mations, i.e.

δ�
ε ψ̂ = i�̂ε � ψ̂ , δ�

ε Dμψ̂ = i�̂ε � Dμψ̂,

δ�
ε φ̂ = i[�̂ε

�, φ̂], δ�
ε Dμφ̂ = i[�̂ε

�, Dμφ̂]. (3.4)

The transformation laws for NC gauge potential and field
strength are

δ�
ε ω̂μ = ∂μ�̂ε − i[ω̂μ

�, �̂ε], (3.5)

δ�
ε F̂μν = i[�̂ε

�, F̂μν]. (3.6)

We see that NC field strength F̂μν transforms in the adjoint
representation of the deformed gauge group SO(2, 3)� just
as ordinary field strength Fμν transforms in the adjoint repre-
sentation of SO(2, 3). In the previous transformation rules,
�̂ε is a NC gauge parameter, and ε a commutative gauge
parameter.

Because of noncommutativity of the �-product, NC
adjoint fields, say F̂μν , do not belong to the basic Lie algebra
of a gauge group, since the deformed commutation relations
do not close in the Lie algebra itself. These fields actually
belong to the enveloping algebra of the gauge group. The clo-
sure condition for a gauge transformation algebra becomes
a set of differential equations, which are solved by iteration
order by order in NC parameter θαβ . Seiberg-Witten map
provides a solution to these equations. It also ensures that no
additional degrees of freedom are included when we make a
NC deformation of an ordinary gauge field theory. The NC
quantities can be represented as power series in the deforma-
tion parameter θαβ , with expansion coefficients built out of
the commutative quantities: ε, φ,ψ and ωμ.

ω̂μ = ωμ − 1

4
θαβ{ωα, ∂βωμ + Fβμ} + O(θ2), (3.7)

φ̂ = φ − 1

4
θαβ{ωα, (∂β + Dβ)φ} + O(θ2), (3.8)

ψ̂ = ψ − 1

4
θαβωα(∂β + Dβ)ψ + O(θ2), (3.9)

̂̄ψ = ψ̄ − 1

4
θαβ(∂β + Dβ)ψ̄ωα + O(θ2), (3.10)

�̂ε = ε − 1

4
θαβ{ωα, ∂βε} + O(θ2). (3.11)

Using the SW map, we can derive the first order NC correc-
tions to the field strength, and the covariant derivatives of

adjoint and spinor field. They are given by

F̂μν = Fμν − 1

4
θαβ{ωα, (∂β + Dβ)Fμν}

+1

2
θαβ{Fαμ, Fβν} + O(θ2), (3.12)

Dμφ̂ = Dμφ − 1

4
θαβ{ωα, (∂β + Dβ)Dμφ}

+1

2
θαβ{Fαμ, Dβφ} + O(θ2), (3.13)

Dμψ̂ = Dμψ − 1

4
θαβωα(∂β + Dβ)Dμψ

+1

2
θαβFαμDβψ + O(θ2). (3.14)

All these results will be put into use in the next section where
we turn to the NC version of the symmetric-phase action for
the Dirac spinor field and calculate its perturbative expansion
in powers of the deformation parameter.

4 NC action

Now we are going to deform the commutative symmetric-
phase action (2.25) by replacing ordinary commutative fields,
φ and ψ , with their noncommutative counterparts, φ̂ and
ψ̂ , and by applying the Moyal-Weyl �-product defined in
(1.2) instead of the usual commutative multiplication. This
NC action can be expanded perturbatively in powers of the
deformation parameter θαβ , assuming it to be small. We will
investigate the first order NC correction to the kinetic and the
mass terms separately. It will be demonstrated by explicit cal-
culation that the first order NC correction after the symmetry
breaking does not vanish.

4.1 NC deformation of the kinetic term

The noncommutative version of the kinetic action (2.16) will
be denoted by a “hat” symbol and it is given by

Ŝkin = i

12

∫
d4x εμνρσ

[̂̄ψ � (Dμφ̂) � (Dνφ̂) � (Dρφ̂) � (Dσ ψ̂)

− (Dσ
̂̄ψ) � (Dμφ̂) � (Dνφ̂) � (Dρφ̂) � ψ̂

]
. (4.1)

Using the infinitesimal transformation rules (3.4) one can
readily check that the action (4.1) is invariant under deformed
SO(2, 3)� gauge transformations. Moreover, this action is
hermitian up to the surface term which vanishes.

Let us now expand the action (4.1) up to the first order in
the deformation parameter θαβ using the SW map. Generally,
for any two NC fields Â and B̂, the first order NC correction
to their product is given by
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(
Â � B̂

)(1) = Â(1)B+AB̂(1)+ i

2
θαβ∂αA∂βB . (4.2)

If both of these two fields transform in the adjoint represen-
tation, the last formula takes on the specific form, namely,

(
Â � B̂

)(1) = − 1

4
θαβ{ωα, (∂β + Dβ)AB}+ i

2
θαβDαADβB

+ cov( Â(1))B + Acov(B̂(1)) , (4.3)

where cov( Â(1)) is the covariant part of A′s first order NC
correction, and cov(B̂(1)), the covariant part of B ′s first order
NC correction. Applying the rule (4.3) twice, and using the
expansion (3.13) for the covariant derivative of the adjoint
field φ, we can obtain the first order NC correction to the
product Dμφ̂ � Dνφ̂ � Dρφ̂ :

(
Dμφ̂ � Dνφ̂ � Dρφ̂

)(1)

= −1

4
θαβ{ωα, (∂β + Dβ)(DμφDνφDρφ)}

+ i

2
θαβDα(DμφDνφ)(DβDρφ)

+ i

2
θαβ(DαDμφ)(DβDνφ)Dρφ

+ 1

2
θαβ{Fαμ, Dβφ}DνφDρφ

+ 1

2
θαβDμφ{Fαν, Dβφ}Dρφ

+ 1

2
θαβDμφDνφ{Fαρ, Dβφ}. (4.4)

Note that the composite field Dμφ̂ � Dνφ̂ � Dρφ̂ also trans-
forms in the adjoint representation of SO(2, 3)� since it is a
product of the fields that transform in the adjoint representa-
tion. Thus, according to the rule (4.3), we could immediately
say, without explicit calculation, what is the non-covariant
part in the first order NC correction to Dμφ̂ �Dνφ̂ �Dρφ̂, i.e.
what is the first term in (4.4). It is non-covariant because of
the way in which it incorporates the gauge potential ωα and
the partial derivative ∂β . The other terms appearing in (4.4)
are manifestly covariant. The use of the rule (4.3) signifi-
cantly simplifies the calculation. Non-covariant part of any
composite field that transforms in the adjoint representation
has the same form as the second term in (3.8).

If we have a field Â that transforms in the adjoint repre-
sentation, and field B̂ that transforms in the fundamental rep-
resentation, then rule (4.2) again takes on the specific form,
namely,

(
Â � B̂

)(1) = − 1

4
θαβωα(∂β + Dβ)(AB) + i

2
θαβDαADβB

+ cov( Â(1))B + Acov(B̂(1)). (4.5)

Similar recursive relation can be found in [42]. The non-
covariant part of any composite field that transforms in the
fundamental representation has the same form as the second
term in (3.9).

Using the result (4.4) and the expansion (3.14) for the
covariant derivative of a spinor field, we can obtain the first
order NC correction to the noncommutative product Dμφ̂ �

Dνφ̂ �Dρφ̂ �Dρψ̂ . Applying the rule (4.5), and setting Â :=
Dμφ̂ � Dνφ̂ � Dρφ̂ and B̂ := Dσ ψ̂ , we get

(Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ ψ̂)(1)

= −1

4
θαβωα(∂β + Dβ)(DμφDνφDρφDσ ψ)

+ i

2
θαβDα(DμφDνφDρφ)(DβDσ ψ)

+ i

2
θαβDα(DμφDνφ)(DβDρφ)Dσ ψ

+ i

2
θαβ(DαDμφ)(DβDνφ)DρφDσ ψ

+1

2
θαβ{Fαμ, Dβφ}DνφDρφDσ ψ

+1

2
θαβDμφ{Fαν, Dβφ}DρφDσ ψ

+1

2
θαβDμφDνφ{Fαρ, Dβφ}Dσ ψ

−1

2
θαβDμφDνφDρφFσαDβψ. (4.6)

The composite field Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ ψ̂ transforms
in the fundamental representation since it is a product of
the field Dμφ̂ � Dνφ̂ � Dρφ̂ that transforms in the adjoint
representation, and the field Dσ ψ̂ that transforms in the fun-
damental representation, and for that reason the first term in
(4.6), i.e. the non-covariant term, has the same form as the
corresponding non-covariant term in (3.9). Again, we knew
that from the general result (4.5). The other terms in (4.6) are
manifestly covariant.

Using the NC expansion of the Dirac adjoint field (3.10),
setting Â := ̂̄ψ and B̂ := Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ ψ̂ , the
general rule (4.2) gives us the first order correction to the
total product ̂̄ψ � Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ ψ̂ which is a scalar
of SO(2, 3)� group:

(̂̄ψ � Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ ψ̂)(1)

= −1

4
θαβψ̄FαβDμφDνφDρφDσ ψ

+ i

2
θαβψ̄Dα(DμφDνφDρφ)(DβDσ ψ)

+ i

2
θαβψ̄Dα(DμφDνφ)(DβDρφ)Dσ ψ

+ i

2
θαβψ̄(DαDμφ)(DβDνφ)DρφDσ ψ

+1

2
θαβψ̄{Fαμ, Dβφ}DνφDρφDσ ψ
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+1

2
θαβψ̄Dμφ{Fαν, Dβφ}DρφDσ ψ

+1

2
θαβψ̄DμφDνφ{Fαρ, Dβφ}Dσ ψ

−1

2
θαβψ̄DμφDνφDρφFσαDβψ. (4.7)

Finally, we present the first order NC correction to the com-
mutative kinetic action in the symmetric phase, i.e. the n = 1
term in the perturbative expansion of the full NC kinetic
action Ŝkin = ∑

n Ŝ
(n)
kin :

Ŝ(1)
kin = i

12
θαβ

∫
d4x εμνρσ

[
− 1

4
ψ̄FαβDμφDνφDρφDσ ψ

+ i

2
ψ̄Dα(DμφDνφDρφ)(DβDσ ψ)

+ i

2
ψ̄Dα(DμφDνφ)(DβDρφ)Dσ ψ

+ i

2
ψ̄(DαDμφ)(DβDνφ)DρφDσ ψ

+1

2
ψ̄{Fαμ, Dβφ}DνφDρφDσ ψ

+1

2
ψ̄Dμφ{Fαν, Dβφ}DρφDσ ψ

+1

2
ψ̄DμφDνφ{Fαρ, Dβφ}Dσ ψ

−1

2
ψ̄DμφDνφDρφFσαDβψ

]
+ h.c. . (4.8)

This action possesses ordinary SO(2, 3), i.e. AdS sym-
metry, and this was to be expected by the virtue of the SW
map. Namely, we started with the NC action (4.1) invari-
ant under the deformed SO(2, 3)� gauge transformations
and expanded it perturbatively in powers of the deformation
parameter θαβ (up to the first order, but we could straight-
forwardly proceed further). By using the SW map we ensure
that the obtained perturbative corrections are invariant, in
each order, under the ordinary SO(2, 3) gauge transforma-
tions. Our result (4.8) explicitly confirms that.

In order to break the SO(2, 3) symmetry of the action
(4.8) down to the local Lorentz SO(1, 3) symmetry, we set
φa = 0 and φ5 = l. The action reduces to

Ŝ(1)
kin = θαβ

[
− 1

8

∫
d4x e R ab

αμ eμ
a ψ̄γb∇βψ

+ 1

16

∫
d4x e R ab

αβ eσ
b ψ̄γa∇σ ψ

− i

32

∫
d4x e R ab

αβ ε d
abc eσ

d ψ̄γ cγ 5∇σ ψ

− i

16

∫
d4x e R bc

αμ eμ
a εabcm ψ̄γmγ 5∇βψ

− i

24

∫
d4x e R ab

αμ ε d
abc ecβ

(eμ
d e

σ
s − eμ

s e
σ
d ) ψ̄γ sγ 5∇σ ψ

− i

8l

∫
d4x e T a

αβ eσ
a ψ̄∇σ ψ

+ i

8l

∫
d4x e T a

αμ eμ
a ψ̄∇βψ

+ 1

16l

∫
d4x e T a

αβ eμ
a ψ̄σ σ

μ ∇σ ψ

+ 1

8l

∫
d4x e T a

αμ eμ
b ψ̄σ b

a ∇βψ

− 1

12l

∫
d4x e T a

αμ ε cd
ab ebβe

μ
c e

σ
d ψ̄γ 5∇σ ψ

+ 7i

48l2

∫
d4x e ε d

abc eaαe
b
βe

σ
d ψ̄γ cγ 5∇σ ψ

−1

4

∫
d4x e (∇αe

a
μ)(eμ

a e
σ
b − eσ

a e
μ
b ) ψ̄γ b∇β∇σ ψ

− 1

4l

∫
d4x e ψ̄σ σ

α ∇β∇σ ψ

− i

8

∫
d4x e ηab(∇αe

a
μ)(∇βe

b
ν)ε

cdrseμ
c

eν
de

σ
s ψ̄γrγ5∇σ ψ

+ i

12

∫
d4x e (∇αe

a
μ)(∇βe

b
ν)ε

cds
b eμ

c

eν
de

σ
s ψ̄γaγ5∇σ ψ

− 1

12l

∫
d4x e ecα(∇βe

b
ν)ε

ds
bc eν

de
σ
s ψ̄γ5∇σ ψ

− 1

8l

∫
d4x e (∇αe

a
μ)(eμ

a e
σ
b − eσ

a e
μ
b )ecβ ψ̄σ b

c∇σ ψ

− i

2l

∫
d4x e (∇αe

a
μ)eμ

a ψ̄∇βψ

− 1

8l

∫
d4x e (∇αe

a
μ)eμ

b ψ̄σ b
a ∇βψ

+ 1

96l

∫
d4x e R ab

αβ ψ̄σabψ

− 5

48l

∫
d4x e R ab

αμ eμ
a e

c
β ψ̄σbcψ

− 1

16l

∫
d4x e R ab

αμ eβae
μ
c ψ̄σ c

b ψ

− 3

32l2

∫
d4x e T a

αβ ψ̄γaψ

− 1

16l2

∫
d4x e T a

αμ eμ
a ψ̄γβψ

+ 1

16l2

∫
d4x e T a

αμ eβa ψ̄γ μψ

+ 1

12l

∫
d4x e ηab(∇αe

a
μ)(∇βe

b
ν) ψ̄σμνψ

− 1

6l

∫
d4x e (∇αe

a
μ)(∇βe

b
ν)(e

μ
a e

ν
c − eμ

c e
ν
a) ψ̄σ c

bψ

− 3

16l2

∫
d4x e (∇αe

a
μ)eμ

a ψ̄γβψ

+ 1

16l2

∫
d4x e (∇αe

a
μ)eβa ψ̄γ μψ
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− 1

3l3

∫
d4x e ψ̄σαβψ

]
+ h.c. . (4.9)

This result exhibits the type of couplings between Dirac
spinors and gravity that emerge due to noncommutativity.
Some of them pertain even in flat spacetime and this causes
some interesting new physical effects.

4.2 NC deformation of the mass terms

In this section we consider a noncommutative deformation
of the mass terms. It is obtained by replacing the ordinary
commutative product with the NC Moyal-Weyl �-product in
the mass terms (2.21):

Ŝm = i

2

(m
l

− 2

l2

) ∫
d4x εμνρσ

×
[
c1

̂̄ψ � Dμφ̂ � Dνφ̂ � Dρφ̂ � Dσ φ̂ � φ̂ � ψ̂

+ c2
̂̄ψ � Dμφ̂ � Dνφ̂ � Dρφ̂ � φ̂ � Dσ φ̂ � ψ̂

+ c3
̂̄ψ � Dμφ̂ � Dνφ̂ � φ̂ � Dρφ̂ � Dσ φ̂ � ψ̂

]
+ h.c. .

(4.10)

Again, by using the Seiberg-Witten map we can represent this
action as a perturbation series in powers of the deformation
parameter θαβ , taking only the first order term into account.
We present below the result of this operation for each of the
three mass terms, denoted by Ŝ(1)

m,i (i = 1, 2, 3), separately:

Ŝ(1)
m,1 = ic1

2

(m
l

− 2

l2

)
θαβ

∫
d4x εμνρσ

×
[

+ i

2
ψ̄Dα(DμφDνφDρφDσ φφ)Dβψ

− 1

4
ψ̄FαβDμφDνφDρφDσ φφψ

+ i

2
ψ̄Dα(DμφDνφDρφDσ φ)Dβφψ

+ i

2
ψ̄Dα(DμφDνφ)Dβ(DρφDσ φ)φψ

+ i

2
ψ̄DμφDνφ(DαDρφ)(DβDσ φ)φψ

+ i

2
ψ̄(DαDμφ)(DβDνφ)DρφDσ φφψ

+ 1

2
ψ̄{Fαμ, Dβφ}DνφDρφDσ φφψ

+ 1

2
ψ̄Dμφ{Fαν, Dβφ}DρφDσ φφψ

+ 1

2
ψ̄DμφDνφ{Fαρ, Dβφ}Dσ φφψ

+ 1

2
ψ̄DμφDνφDρφ{Fασ , Dβφ}φψ

]
. (4.11)

Ŝ(1)
m,2 = ic2

2

(m
l

− 2

l2

)
θαβ

∫
d4x εμνρσ

×
[

+ i

2
ψ̄Dα(DμφDνφDρφφDσ φ)Dβψ

− 1

4
ψ̄FαβDμφDνφDρφφDσ φψ

+ i

2
ψ̄Dα(DμφDνφDρφφ)(DβDσ φ)ψ

+ i

2
ψ̄Dα(DμφDνφDρφ)DβφDσ φψ

+ i

2
ψ̄Dα(DμφDνφ)(DβDρφ)φDσ φψ

+ i

2
ψ̄(DαDμφ)(DβDνφ)DρφφDσ φψ

+ 1

2
ψ̄{Fαμ, Dβφ}DνφDρφφDσ φψ

+ 1

2
ψ̄Dμφ{Fαν, Dβφ}DρφφDσ φψ

+ 1

2
ψ̄DμφDνφ{Fαρ, Dβφ}φDσ φψ

+ 1

2
ψ̄DμφDνφDρφφ{Fασ , Dβφ}ψ

]
. (4.12)

Ŝ(1)
m,3 = ic3

2

(m
l

− 2

l2

)
θαβ

∫
d4x εμνρσ

×
[

+ i

2
ψ̄Dα(DμφDνφφDρφDσ φ)Dβψ

− 1

4
ψ̄FαβDμφDνφφDρφDσ φψ

+ i

2
ψ̄Dα(DμφDνφφ)Dβ(DρφDσ φ)ψ

+ i

2
ψ̄Dα(DμφDνφ)DβφDρφDσ φψ

+ i

2
ψ̄(DαDμφ)(DβDνφ)φDρφDσ φψ

+ i

2
ψ̄DμφDνφφ(DαDρφ)(DβDσ φ)ψ

+ 1

2
ψ̄{Fαμ, Dβφ}DνφφDρφDσ φψ

+ 1

2
ψ̄Dμφ{Fαν, Dβφ}φDρφDσ φψ

+ 1

2
ψ̄DμφDνφφ{Fαρ, Dβφ}Dσ φψ

+ 1

2
ψ̄DμφDνφφDρφ{Fασ , Dβφ}ψ

]
. (4.13)

None of the three mass terms in (4.10) is more preferable
than the others, and so we will treat all three of them on
equal footing. According to (2.22), we should assume that
c1 = −c2 = c3 if they are to contribute equally, at the
commutative level, to the Dirac mass term after the symmetry
breaking. The coefficients must also satisfy the constraint
(2.23), and so we will set c1 = −c2 = c3 = 1

72 .
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After the symmetry breaking, the first order NC correction
to the sum of the three mass terms (4.11), (4.12) and (4.13)
becomes

Ŝ(1)
m = θαβ

[
− i

4

(
m − 2

l

)∫
d4x e (∇αe

a
μ)eμ

a ψ̄∇βψ

+ 1

24

(
m − 2

l

)∫
d4x e ηab(∇αe

a
μ)(∇βe

b
ν) ψ̄σμνψ

− 1

12

(
m − 2

l

) ∫
d4x e (∇αe

a
μ)(∇βe

b
ν)(e

μ
a e

ν
c

−eμ
c e

ν
a) ψ̄σ c

bψ

− 1

36

(
m

l
− 2

l2

)∫
d4x e (∇αe

a
μ)eμ

a ψ̄γβψ

− 1

96

(
m − 2

l

)∫
d4x e R ab

αβ ψ̄σabψ

− 1

12

(
m − 2

l

) ∫
d4x e R ab

αμ eμ
a e

c
β ψ̄σbcψ

− 1

72

(
m

l
− 2

l2

) ∫
d4x e T a

αβ ψ̄γaψ

− 7

72

(
m

l
− 2

l2

) ∫
d4x e T a

αμ eμ
a ψ̄γβψ

−1

8

(
m

l2
− 2

l3

) ∫
d4x e ψ̄σαβψ

]
+ h.c. . (4.14)

The full NC action at the first order in θαβ after the symmetry
breaking is the sum of the kinetic term (4.9) and the mass term
(4.14),

Ŝ(1) = Ŝ(1)
kin + Ŝ(1)

m . (4.15)

The result (4.15) is the sought first order noncommutative
correction to the Dirac action in curved spacetime. This
action couples Dirac spinors to the geometrical quantities like
curvature, torsion, etc. It is manifestly SO(1, 3) gauge invari-
ant and also, as we shall elaborate below, charge-conjugation
invariant. The non-vanishing of the first order NC correction
to the Dirac action in curved spacetime is a significant result
since it enables us to extract potentially observable NC effects
already at the lowest perturbative order. We will see in the
next section that the first order NC corrections to the Dirac
action pertains also in flat spacetime, making it even easier
to investigate modifications of e.g. the Feynman propagator
or dispersion relation for electrons. Note that the first non-
vanishing NC correction to the Einstein-Hilbert action is at
the second order in θαβ . This result is confirmed in many
papers [1–3,27–32].

4.3 C-conjugation

Let us analyse the behavior of the action (4.15), which is the
sum of (4.9) and (4.14), under charge conjugation transfor-
mation. The charge conjugation operator is a unitary operator

denoted by C. The undeformed Dirac field (now treated as
an operator-valued function) and its adjoint transform in the
following way:

Cψ(x)C−1 = −ψ̄(x)C ,

Cψ̄(x)C−1 = −ψT (x)C−1 , (4.16)

where C is a matrix defined by CγaC−1 = −γ T
a . In the

representation we use, it holds that C−1 = C† = CT = −C .
The identity C	AC−1 = 	T

A for 5D gamma-matrices also
holds. The SO(2, 3) gauge potential ωμ is invariant under
C-conjugation, i.e. Cω AB

μ C−1 = ω AB
μ . This relation entails

the invariance of the vierbein and the spin-connection,

CeaμC−1 = eaμ,

Cω ab
μ C−1 = ω ab

μ , (4.17)

and, by extension, the invariance of the curvature tensor and
torsion which are built out of these quantities.

Using the transformation properties (4.16) and (4.17), one
can readily verify that the undeformed (zeroth order) action
after the symmetry breaking, given in (2.26), is invariant
under charge conjugation. The invariance of the kinetic part
follows from

C (
ψ̄γ aeσ

a ∇σ ψ
) C−1 = − (∇σ ψ̄

)
γ aeσ

a ψ. (4.18)

The undeformed action before symmetry breaking is also
invariant since the auxiliary field φ is not effected by C-
conjugation.

Now consider the first order NC corrections (4.9) and
(4.14). They have the form θαβL(1)

αβ and all terms in L(1)
αβ

pick up a minus sign under charge conjugation, for example,

Cψ̄σαβψC−1 = −ψ̄σαβψ. (4.19)

This, together with the transformation law for the deforma-
tion parameter [43,44],

CθαβC−1 = −θαβ, (4.20)

leads to the conclusion that action (4.15) is indeed invariant
under charge conjugation. Such a behavior of the deformation
parameter θαβ under charge conjugation transformation can
be justified in several ways. Consider the transformation law
for the NC Dirac spinor field ψ̂ and its adjoint. These fields
can be expanded via SW map as in (3.9) and (3.10), and it
must be ensured that they have the same sort of behaviour
under charge conjugation as their undeformed counterparts,
i.e. we demand that

Cψ̂(x)C−1 = −̂̄ψ(x)C ,

Ĉ̄ψ(x)C−1 = −ψ̂T (x)C−1 . (4.21)

Using the identity CωαC−1 = −ωT
α , we can readily verify

that

C(ωα∂βψ)C−1 = ∂βψ̄(ωαC), (4.22)

123
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C(ωαDβψ)C−1 = Dβψ̄(ωαC), (4.23)

which are the transformation properties of the terms appear-
ing in (3.9), and similarly for the corresponding terms in
(3.10). If we want (4.21) to hold, θαβ must change its sign
under C-conjugation. Aside from this formal argument based
on symmetry considerations, there is a heuristic argument
for assuming the transformation law (4.20) given in [44],
stemming from string theory. It is explained there that an
electric dipole moment of an open string is proportional to
θαβ . This motivates the conclusion that θαβ goes to −θαβ

under charge conjugation. Because of the property of the
Moyal-Weyl �-product under C-conjugation, the algebra of
coordinates remains unaffected.

5 NC Dirac equation in flat spacetime

In this last section, we study the special case of flat space-
time in order to investigate the influence of noncommutativ-
ity (which survives in this limit) on the energy-momentum
relation for electrons. In the flat spacetime limit, the action
(4.15) becomes

Ŝ(1) = θαβ

∫
d4x

[
− 1

2l
ψ̄σ σ

α ∂β∂σ ψ

+ 7i

24l2
ε

ρσ
αβ ψ̄γργ5∂σ ψ − Mψ̄σαβψ

]
, (5.1)

where we introduced the notation M := m
4l2

+ 1
6l3

. Therefore,
the effect of noncommutativity, in the form of new couplings
in the action, is relevant even in flat spacetime.

The total NC action in flat spacetime to the first order is

Ŝ = Ŝ(0) + Ŝ(1) =
∫

d4x ψ̄(iγ μ∂μ − m)ψ

+ θαβ

∫
d4x

[
− 1

2l
ψ̄σ σ

α ∂β∂σ ψ

+ 7i

24l2
ε

ρσ
αβ ψ̄γργ5∂σ ψ − Mψ̄σαβψ

]
. (5.2)

The existence of the first order NC correction to the Dirac
action is a non trivial consequence of this model. We can
easily derive the Feynman propagator for the Dirac field from
the action (5.2). The result (in momentum space) is given by

i SF (p) =
∫

d4x 〈�|Tψ(x)ψ̄(0)|�〉eipx

= i

/p − m + iε

+ i

/p − m + iε
(iθαβDαβ)

i

/p − m + iε
+ . . . ,

(5.3)

where

Dαβ := 1

2l
σ σ

α pβ pσ + 7

24l2
ε

ρσ
αβ γργ5 pσ − Mσαβ. (5.4)

The Feynman propagator is modified due to the spacetime
noncommutativity. Thus, we see that an electron effectively
interacts with the NC background itself. In this respect, we
may say that NC background acts like a background electro-
magnetic field.

By varying action (5.2) with respect to ψ̄ we derive the
modified Dirac equation in Minkowski spacetime:
[
i /∂ − m − 1

2l
θαβσ σ

α ∂β∂σ + 7i

24l2
θαβε

ρσ
αβ γργ5∂σ

−θαβMσαβ

]
ψ = 0. (5.5)

To simplify further analysis, we will assume that only
two spatial dimensions are mutually incompatible, e.g.
[x1, x2] = iθ12. Thus, we have θ12 = −θ21 =: θ �= 0
and all other components of θμν equal to zero.

The Eq. (5.5) reduces to
[
i /∂ − m − θ

2l
(σ σ

1 ∂2∂σ − σ σ
2 ∂1∂σ )

+ 7iθ

12l2
(γ0γ5∂3 − γ3γ5∂0) − 2θMσ12

]
ψ = 0, (5.6)

where we assumed the convention in which ε0123 = 1.
Let us now find the dispersion relation, i.e. energy-

momentum relation, for the Dirac fermions. Since hamil-
tonian commutes with the whole momentum operator, we
can assume the plane wave ansatz ψ(x) = u(p)e−i p·x where
u(p) stands for a yet undetermined spinor amplitude

u(p) =

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ . (5.7)

With this choice, Eq. (5.6) can be represented in the momen-
tum space as
((

E − m −σ · p
σ · p −E − m

)
+ θM

)
u(p) = 0, (5.8)

where the matrix M is given by

M =

⎛
⎜⎜⎜⎜⎜⎝

A 1
2l pz p− − 7

12l2
pz

1
2l Ep−

1
2l pz p+ −A − 1

2l Ep+ − 7
12l2

pz
7

12l2
pz

1
2l Ep− B 1

2l pz p−
− 1

2l Ep+ 7
12l2

pz
1
2l pz p+ −B

⎞
⎟⎟⎟⎟⎟⎠

. (5.9)

Quantities E and p denote energy and momentum of a parti-
cle, respectively, and the matrix elements A and B are given
by

123
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A := − 1

2l
(p2

x + p2
y) + 7E

12l2
− 2M,

B := − 1

2l
(p2

x + p2
y) − 7E

12l2
− 2M, (5.10)

with p± = px ± i py . We use the Dirac representation of
γ−matrices.

Non trivial solutions of the homogeneous matrix equation
(5.8) which, when written explicitly, states that

⎛
⎜⎜⎜⎜⎜⎜⎝

E − m + θ A θ
2l pz p− −pz − 7θ

12l2
pz −p− + θ

2l Ep−
θ
2l pz p+ E − m − θ A −p+ − θ

2l Ep+ pz − 7θ
12l2

pz

pz + 7θ
12l2

pz p− + θ
2l Ep− −E − m + θB θ

2l pz p−

p+ − θ
2l Ep+ −pz + 7θ

12l2
pz

θ
2l pz p+ −E − m − θB

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ = 0,

(5.11)

exist, if and only if, the determinant of the matrix /p−m+θM
(which is the matrix appearing in (5.11)) equals zero. This
condition will give us the dispersion relation. The determi-
nant depends on the energy which is also represented as a
perturbative expansion in powers of θ ,

E =
+∞∑
n=0

E (n); where E (n) ∼ θn

(length)2n+1 . (5.12)

If the determinant is equal to zero, it is equal to zero order
by order in θ , and we can derive the momentum dependence
of E (1) term in the energy expansion, which is enough to see
how noncommutativity influences the dispersion relation for
the Dirac fermions. To get higher order energy terms we need
higher order perturbative corrections to the Dirac action.

First we will consider an electron moving along the z-
direction, i.e. in the direction orthogonal to the noncommu-
tative x, y-plane. The matrix equation (5.11) reduces to
⎛
⎜⎜⎜⎝
E − m + θ A(0) 0 −pz − 7θ

12l2
pz 0

0 E − m − θ A(0) 0 pz − 7θ
12l2

pz
pz + 7θ

12l2
pz 0 −E − m + θB(0) 0

0 −pz + 7θ
12l2

pz 0 −E − m − θB(0)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ = 0,

(5.13)

where A(0) = A(px = py = 0) and likewise B(0) =
B(px = py = 0).

Non trivial solution for spinor components a, b, c, and d
exist if at least one of the following two conditions is satisfied:[
E−m ±

(
7E

12l2
−2M

)
θ

] [
E+m ±

(
7E

12l2
+ 2M

)
θ

]

=
[
pz ± 7pz

12l2
θ

]2

. (5.14)

Four different solutions for the energy (to the first order in θ ,
i.e. E = E (0) + E (1)) are

E1,2 = Ep ∓
[
m2

12l2
− m

3l3

]
θ

Ep
+ O(θ2),

E3,4 = −Ep ±
[
m2

12l2
− m

3l3

]
θ

Ep
+ O(θ2), (5.15)

with Ep =
√
m2 + p2

z . This is reminiscent of the well known
Zeeman effect. The deformation parameter θ plays the role of
a constant background magnetic field that causes the splitting
of atomic energy levels.

In the rest frame (p = 0) the energies reduce to:

E1,2(0) = m ∓
[

m

12l2
− 1

3l3

]
θ + O(θ2),

E3,4(0) = −m ±
[

m

12l2
− 1

3l3

]
θ + O(θ2). (5.16)

From (5.16) we see that the electron’s mass gets renormalised
due to the noncommutativity of the background spacetime
and the correction is linear in the deformation parameter.

By solving the matrix equation (5.13) for each of the four
energy functions in (5.15), we get the following four linearly
independent solutions of the NC Dirac equation (up to a nor-
malization factor):

ψ1 ∼

⎛
⎜⎜⎜⎝

1
0

pz
Ep+m

[
1 +

(
m

12l2
− 1

3l3

)
θ
Ep

]
0

⎞
⎟⎟⎟⎠ e−i E1t+i pz z,

ψ2 ∼

⎛
⎜⎜⎜⎝

0
1
0

pz
Ep+m

[
1 −

(
m

12l2
− 1

3l3

)
θ
Ep

]

⎞
⎟⎟⎟⎠ e−i E2t−i pz z,

ψ3 ∼

⎛
⎜⎜⎜⎝

pz
Ep+m

[
1 +

(
m

12l2
− 1

3l3

)
θ
Ep

]
0
1
0

⎞
⎟⎟⎟⎠ e−i E3t−i pz z,

ψ4 ∼

⎛
⎜⎜⎜⎝

0
pz

Ep+m

[
1 −

(
m

12l2
− 1

3l3

)
θ
Ep

]
0
1

⎞
⎟⎟⎟⎠ e−i E4t+i pz z .

(5.17)

Spinors ψ1 and ψ2 (ψ3, and ψ4) correspond to positive (neg-
ative) energy solutions of the NC Dirac equation. Note that in
commutative case the opposite helicity (± 1

2 ) solutions have
the same energy. However, in noncommutative case, as we
can see, the solutions with opposite helicity have different
energies. The noncommutativity of space, here taken to be
confined in x, y-plane, causes the undeformed energy levels
±Ep to split. The energy gap between the new levels is the
same for ±Ep and it equals

2

[
m2

12l2
− m

3l3

]
θ

Ep
. (5.18)
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From the dispersion relations (5.15) we can easily find the
(group) velocity of an electron. This velocity is defined by

v ≡ ∂E

∂p
. (5.19)

For positive (negative) helicity solution ψ1 (ψ2) we get

v1,2 = p
Ep

[
1 ±

(
m2

12l2
− m

3l3

)
θ

E2
p

+ O(θ2)

]
. (5.20)

These velocities can be rewritten in the following way:

v1,2 = p
E1,2

+ O(θ2). (5.21)

Thus, we conclude that velocity of an electron moving in
z-direction depends on its helicity. This is analogues to the
birefringence effect, i.e. the optical property of a material
having a refractive index that depends on the polarization
and propagation direction of light. NC background acts as a
birefringent medium for electrons propagating in it.

The Dirac spinor ψ1 can be represented as

ψ1 ∼

⎛
⎜⎜⎝

1
0
pz

E1+E1(0)

0

⎞
⎟⎟⎠ e−i E1t+i pz z . (5.22)

and the corresponding Dirac spinor in the rest frame is

ψ1(0) ∼

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ e−i E1(0)t , (5.23)

where

E1(0) = m −
[

m

12l2
− 1

3l3

]
θ. (5.24)

The boost along z-direction in spinor representation is given
by

S(ϕ) = cosh
(ϕ

2

)
I − sinh

(ϕ

2

) (
0 σ3

σ3 0

)
, (5.25)

where v = tanh(ϕ). If we take v = −v1 = − pz
E1

we can con-
struct the boost matrix that transforms the rest frame solution
ψ1(pz = 0) into the solution ψ1(pz). It is given by

S(−pz) =
√

E1(pz) + E1(0)

2E1(0)
I

+
√

E1(pz) − E1(0)

2E1(0)

(
0 σ3

σ3 0

)
, (5.26)

and we have

S(−pz)ψ1(0) = ψ1(pz). (5.27)

This result shows that constant noncommutativity in x, y-
plane is compatible with a Lorentz boost along z-direction.
Similar statement holds for the other solutions.

For an electron moving in noncommutative x, y-plane, i.e.
an electron whose momentum is p = (px , py, 0), by using
the same procedure, we get the deformed energy levels:

E1,4 = ±Ep −
[

m

12l2
− 1

3l3

]
θ,

E2,3 = ±Ep +
[

m

12l2
− 1

3l3

]
θ, (5.28)

with Ep =
√
m2 + p2

x + p2
y . It is interesting to note that, in

this case, NC corrections do not depend on the momentum,
as opposed to the NC corrections of the energy levels of
an electron moving along z-direction, i.e. in the direction in
which it does not feel the noncommutativity. Again, these
energy levels exactly reduces to (5.16) when p = 0.

The four independent Dirac spinors are:

ψ1 ∼

⎛
⎜⎜⎜⎝

1
0
0

p+
Ep+m

[
1 +

(
7

12l2
− m

12l

)
θ
]

⎞
⎟⎟⎟⎠ e−i E1t+i px x+i py y,

ψ2 ∼

⎛
⎜⎜⎜⎝

0
1

p−
Ep+m

[
1 −

(
7

12l2
− m

12l

)
θ
]

0

⎞
⎟⎟⎟⎠ e−i E2t+i px x+i py y,

ψ3 ∼

⎛
⎜⎜⎜⎝

0
p+

Ep+m

[
1 +

(
7

12l2
− m

12l

)
θ
]

1
0

⎞
⎟⎟⎟⎠ e−i E3t−i px x−i py y,

ψ4 ∼

⎛
⎜⎜⎜⎝

p−
Ep+m

[
1 −

(
7

12l2
− m

12l

)
θ
]

0
0
1

⎞
⎟⎟⎟⎠ e−i E4t−i px x−i py y .

(5.29)

It turns out that these solutions cannot be obtained by boost-
ing the corresponding rest frame solutions. This was to be
expected since, as we have already mentioned, by choosing
the canonical noncommutativity we have effectively fixed
the coordinate system. In other words, we work in a pre-
ferred coordinate system in which only boosts along z-axis
and rotations around z-axis are preserved.

6 Conclusion

We studied the coupling of the Dirac spinor field and grav-
ity on noncommutative Moyal-Weyl spacetime starting from
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a commutative theory with AdS gauge symmetry. After its
NC deformation one can perform a perturbative expansion of
the SO(2, 3)� invariant action in powers of the deformation
parameter θαβ , assuming it to be small, by using the Seiberg-
Witten map. In this way we ensure that the expansion has the
ordinary SO(2, 3) symmetry, order by order in θαβ . Breaking
the symmetry down to the local Lorentz SO(1, 3) symmetry
reduces the action to the NC Dirac action in curved space-
time. Explicit calculation of the first order NC correction is
presented. It is invariant under local Lorentz transformations
and charge conjugation, and we showed that it does not van-
ish even in flat spacetime. This significant feature enables
us to study how linear NC effects influence the properties
of a free electron in Minkowski spacetime. There is a linear
deformation of the Dirac equation and the Feynman propa-
gator due to noncommutativity. The dispersion relation for
electrons is also modified. The undeformed energy levels of
the commutative theory get split in the constant background
NC spacetime - a phenomenon analogues to the Zeeman split-
ting of atomic energy levels in background magnetic field.
We also found the explicit solutions of the NC Dirac equation
in flat spacetime and demonstrated that, by introducing con-
stant noncommutativity in flat spacetime, we are effectively
working in the preferred class of coordinate systems. The
helicity dependence of the deformed energy levels means
that NC background acts as a birefringent medium for elec-
trons propagating in it.

This could not be achieved by directly introducing non-
commutativity into the free Dirac action (minimal substitu-
tion) giving

S =
∫

d4x ̂̄ψ � (iγ μ∂μ − m)ψ̂. (6.1)

Since∫
d4x f̂ � ĝ =

∫
d4x f g, (6.2)

the first order NC correction to the free Dirac action (6.1)
vanishes.

Let us also mention the appearance of the term θαβψ̄σαβψ

in the NC Lagrangian density. It resembles the magnetic
moment term in Electrodynamics with electromagnetic field
strength tensor replaced by θαβ . If we interpret the param-
eter of noncommutativity as a constant “electric/magnetic”
background field the analogy becomes obvious. This is in
accord with the behaviour of the deformation parameter
under charge-conjugation and the upper mentioned Zeeman-
like splitting of the energy levels.

In future work we plan to include electromagnetic field
in our NC SO(2, 3)� model. This will lead us to a theory of
NC electrodynamics, with potentially new phenomenology,
that can be compared to the one established by the standard
approach based on the minimal substitution. Minimal NC

electrodynamics is not a renormalisabile theory because of
the fermionic loop contributions [45–47]. It would be inter-
esting to analyse the renormalisability of the presented model
and to extend this approach to scalar and non-Abelian gauge
fields in order to establish a complete theory concerning the
behaviour of matter in noncommutative spacetime.
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5. P. Aschieri, M. Dimitrijević, F. Meyer, J. Wess, Noncommuta-
tive geometry and gravity. Class. Quant. Grav. 23, 1883 (2006).
arXiv:hep-th/0510059

6. T. Ohl, A. Schenckel, Cosmological and black hole spacetimes in
twisted noncommutative gravity. JHEP 0910, 052 (2009). arXiv:
0906.2730

7. P. Aschieri, L. Castellani, Noncommutative gravity solutions. J.
Geom. Phys. 60, 375–393 (2010). arXiv:0906.2774

8. M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, On a Lorentz-
invariant interpretation of noncommutative spacetime and its impli-
cations on noncommutative QFT. Phys. Lett. B 604, 1–2 (2004).
arXiv:hep-th/0408069

9. M. Chaichian, P. Presnajder, A. Tureanu, New concept of rela-
tivistic invariance in noncommutative space-time: twisted Poincar
symmetry and its implications. Phys. Rev. Lett. 94, 151602 (2005).
arXiv:hep-th/0409096

10. H.S. Yang, Emergent gravity from noncommutative spacetime. Int.
J. Mod. Phys. A 24, 4473 (2009). arXiv:hep-th/0611174

11. H. Steinacker, Emergent geometry and gravity from matrix mod-
els: an introduction. Class. Quant. Grav. 27, 133001 (2010).
arXiv:1003.4134

12. M. Burić, J. Madore, Spherically symmetric noncommutative
space: d = 4. Eur. Phys. J. C 58, 347 (2008). arXiv:0807.0960
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