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Abstract In the context of the AdS/CFT correspondence,
we study bulk reconstruction of the Poincaré wedge of AdS3

via hole-ography, i.e., in terms of differential entropy of the
dual CFT2. Previous work had considered the reconstruc-
tion of closed or open spacelike curves in global AdS, and
of infinitely extended spacelike curves in Poincaré AdS that
are subject to a periodicity condition at infinity. Working first
at constant time, we find that a closed curve in Poincaré is
described in the CFT by a family of intervals that covers the
spatial axis at least twice. We also show how to reconstruct
open curves, points and distances, and obtain a CFT action
whose extremization leads to bulk points. We then generalize
all of these results to the case of curves that vary in time, and
discover that generic curves have segments that cannot be
reconstructed using the standard hole-ographic construction.
This happens because, for the nonreconstructible segments,
the tangent geodesics fail to be fully contained within the
Poincaré wedge. We show that a previously discovered vari-
ant of the hole-ographic method allows us to overcome this
challenge, by reorienting the geodesics touching the bulk
curve to ensure that they all remain within the wedge. Our
conclusion is that all spacelike curves in Poincaré AdS can
be completely reconstructed with CFT data, and each curve
has in fact an infinite number of representations within the
CFT.
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1 Introduction and summary

Twenty years from the inception of the AdS/CFT correspon-
dence [1–3], research is still being carried out to understand
how it achieves its grandest miracle: the emergence of a
dynamical spacetime out of degrees of freedom living on
a lower-dimensional rigid background. Over ten years ago,
a crucial insight in this direction was provided by Ryu and
Takayanagi [4], who argued that areas in the bulk gravita-
tional description are encoded as quantum entanglement in
the boundary field theory. More specifically, they proposed
that when the dynamics of spacetime is controlled by Ein-
stein gravity, the area A� of each minimal-area codimension-
two surface � anchored on the boundary translates into the
entanglement entropy S of the spatial region in the boundary
theory that is homologous to �, via

S = A�

4GN
. (1)

Their proposal, originally conjectural and referring only to
static situations, was extended to the covariant setting in [5]
by taking � to be an extremal surface, and later proved in
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[6,7]. It has been generalized beyond Einstein gravity in
[8–18]. Many other notable developments have taken place,
including [19–33]. Useful reviews can be found in [34–36].

Another important step towards holographic reconstruc-
tion was taken in [37], working for simplicity in AdS3,
where the extremal codimension-two surfaces � are just
geodesics, and their ‘areas’ A� refer to their lengths. It was
discovered in that context that one can reconstruct space-
like curves C that are not extremal and are not anchored
on the boundary, by cleverly adding and subtracting the
geodesics tangent to the bulk curve. This procedure was ini-
tially phrased in terms of the hole in the bulk carved out by
the curve, and was therefore dubbed hole-ography. It entails
two related insights. The first is that any given spacelike
bulk curve can be represented by a specific family of space-
like intervals in the boundary theory, whose endpoints coin-
cide with those of the geodesics tangent to the bulk curve
(in a manner that embodies the well-known UV/IR connec-
tion [38,39]). The second is that the length A ≡ AC of
the curve can be computed in the CFT through the differ-
ential entropy E , a particular combination of the entangle-
ment entropies of the corresponding intervals, whose precise
definition is given below, in Eq. (15). The concrete relation
between these two quantities takes the form inherited from
(1), E = A/4GN .

Diverse aspects of hole-ography have been explored in
[40–51]. The works [37,45] carried out the hole-ographic
reconstruction of an arbitrary closed curve at constant time
in global AdS3 (and also on the BTZ black hole and on the
conical defect geometry). Upon shrinking a closed curve to
zero size at an arbitrary point in the bulk, a family of inter-
vals was obtained [45] describing a ‘point-curve’ of van-
ishing length. This could then be combined with the family
for a second point, to compute the distance between the two
points. This framework is thus able to extract the most basic
ingredients of the bulk geometry, points and distances, from
the pattern of entanglement in the state of the boundary the-
ory.

In this paper we are interested in understanding how
this entire story plays out on Poincaré AdS3, where hole-
ography faces a serious challenge. The pure AdS geome-
try with coordinates xm ≡ (xμ, z) and metric (4) is dual
to the vacuum state of a CFT on 2-dimensional Minkowski
spacetime, with coordinates xμ ≡ (t, x). Hole-ography in
this context has been examined before, at constant time
in [41] and for curves with non-trivial time-dependence
in [44]. Our motivation here is different, and its essence
can be understood by looking at Fig. 1, which shows the
Poincaré patch as a wedge within global AdS. The fact
that Poincaré does not cover all of AdS implies that some
curves within the Poincaré wedge can have a set of tan-
gent geodesics whose endpoints fall outside of the wedge.
Such geodesics cannot be associated with entanglement

Fig. 1 Each of these solid cylinders is a Penrose diagram for AdS3,
covered in full by the global coordinates (�, τ, θ), but only in part by the
Poincaré set (t, x, z). The latter coordinates span the wedge between
the AdS boundary z = 0 (↔ � = π/2), at the surface of the cylin-
der, and the Poincaré horizon z → ∞, shown as the purple disks
tilted at 45◦. Each cylinder displays an example of a bulk curve within
the Poincaré wedge (a circle, shown in red), together with its tangent
geodesics (in orange), which in the global description allow the curve
to be reconstructed hole-ographically. On the left, the curve is at fixed
global time τ = 0 (↔ t = 0). In this case, complete reconstruction of
the curve should be possible using data in the Minkowski CFT2 dual to
the Poincaré wedge, because all of the tangent geodesics are inside the
wedge. On the right, the curve is at constant τ > 0 (↔ t �= constant),
and we see that it contains a segment whose tangent geodesics exit the
wedge. Even though this segment is part of Poincaré AdS, it cannot be
reconstructed in the Minkowski CFT2 using the standard hole-ographic
procedure

entropy in the Minkowski CFT2. Their existence presents
a challenge to the hole-ographic reconstruction program,
because it leaves us without the means to encode in CFT
language what should definitely be properties of the vacuum
state.

There is one conceptual issue we should clarify. Since the
global and Poincaré descriptions are related by a simple coor-
dinate transformation (see Eq. (3)), it might seem that the suc-
cess of hole-ography in reproducing curves, points and dis-
tances in global coordinates should automatically extend to
Poincaré. The proper length A of the closed curve is certainly
invariant under coordinate transformations, and naively the
same would seem to be true for the entanglement entropy,
which on the gravity side is also a proper length, according
to the Ryu-Takayanagi prescription (1). Indeed, the unregu-
lated entropy (taking the length of the geodesic all the way
to the AdS boundary) is invariant, but it is also divergent,
so it cannot be used directly to compute E . And as soon as
we introduce a cutoff, we introduce coordinate dependence.
This is truly a property of regulated entanglement entropy on
the field theory side: its value depends on the regularization
scheme, so it is not invariant under conformal/Weyl trans-
formations (see e.g. [52–58]), which is what the bulk trans-
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formation from global to Poincaré amounts to in the CFT.
As a result, equations involving S cannot always be carried
over directly from one set of coordinates to the other, which
explains why it is important to study Poincaré hole-ography
directly. This is what we set out to do in this paper, working
first at constant time in Sect. 2, and then at varying time in
Sect. 3.

In more detail, we begin by asking how to reconstruct
closed curves, as opposed to the curves examined in [41,44],
which were infinitely extended, with a periodicity condi-
tion at infinity. A salient difference between the global and
Poincaré settings, closely related to the geodesic incomplete-
ness described two paragraphs above, is that in global AdS
the boundary wraps all the way around the bulk. Given a
closed curve, it is then easy to visualize how the sought-after
family of CFT intervals will lead to geodesics that are tan-
gent to each point on the curve. In Poincaré, given a closed
curve, the boundary does not wrap around it, so naively we
would seem to be missing the intervals/geodesics that would
be tangent to the portion of the curve that is farther away
from the boundary. As explained above and seen in Fig. 1,
this is allowed by the fact that Poincaré coordinates cover
only a wedge of global AdS. But we know that the slice at
Poincaré time t = 0 completely coincides with the slice at
global time τ = 0, so at least in this case, there is no possibil-
ity for geodesics to be left out. In Sect. 2.1, our strategy will
thus be to take the results of [45] for curves at τ = 0 and sim-
ply perform the required change of coordinates, to obtain the
corresponding Poincaré description. Our conclusion is that
arbitrary closed curves at t = 0 can indeed be reconstructed,
but with an important novelty: the dual family of intervals
must run over the x axis at least twice, for it is only on the
second (or subsequent) pass(es) that we describe geodesics
tangent to the more distant portion of the curve. Once we
know how to do this at t = 0, invariance of the metric (4)
under translations in t will of course allow us to reconstruct
curves and points on any other fixed-t slice, independently
of the value of t . (Translations in τ , on the other hand, will
give us examples of curves at variable t , which we examine
in Sect. 3.)

In Sect. 2.2 we show that the differential entropy E gives
the correct length A for a generic closed curve at constant
time in Poincaré AdS: just like in the global case examined
in [45], we find that E = A/4GN . In this particular instance,
then, no subtlety arises from the coordinate transformation.
A subtlety does arise, however, when we analyze in Sect. 2.3
the hole-ographic description of open curves. It was found
in [45] that in order to match the length of an open curve in
global AdS, the differential entropy must be supplemented
with a specific boundary function f , given in (22). We find
that the same is true in Poincaré, but the relevant boundary
function, Eq. (21), is not the direct translation of its global
counterpart. Nonetheless, it does continue to be true that f

can be described geometrically in the bulk, and has a spe-
cific interpretation in terms of entanglement entropy in the
boundary theory. This is crucial in order for open curves to be
reconstructed purely with CFT data. We combine E with f to
define a ‘renormalized’ differential entropy E , which directly
matches the length of an arbitrary open curve, E = A/4GN .
A simple expression for E in terms of boundary data is given
in (30).

In Sect. 2.4 we shrink curves down to zero size to obtain the
hole-ographic description of bulk points. We find that this can
be done either with closed or open curves, but in the latter case
we must take the slope ∂z/∂x to diverge at the endpoints of
the curve, in order to still be left with a non-trivial collection
of geodesics in the point limit. Following [45], we show that
the families of CFT intervals that happen to be associated
with points instead of finite-size curves can be obtained by
extremizing an action based on extrinsic curvature, which in
terms of field theory variables takes the form (43). We then
verify in Sect. 2.5 that the distance between two arbitrary
points can also be obtained from differential entropy. This
can in fact be done in two different ways: using Eq. (64),
which is essentially the same recipe as in [45], or Eq. (57),
which is a generalization based on describing the points as
open curves.

Moving on to the covariant case, in Sect. 3.1 we present,
following [44], the basic formulas (68)–(70) that define the
intervals and geodesics associated to an arbitrary (open or
closed) spacelike bulk curve, whether or not it varies in time.
The corresponding differential entropy plus boundary func-
tion is written down in (83), and contact is successfully made
with the length A of the bulk curve.

The main issue of the paper is then encountered in
Sect. 3.2, where we show that any segment of a curve that
violates condition (84) is nonreconstructible, in the sense that
the geodesics tangent to it have at least one endpoint outside
of the Poincaré wedge, and are consequently not associated
to entanglement entropies in the CFT. Examples are given in
Figs. 8, 9 and 10. In Sect. 3.3 we discover that this challenge
can be overcome by making use of a variant of hole-ography
formulated previously in [44], where one is allowed to shoot
from each point on the bulk curve a geodesic aimed in a direc-
tion that differs from the tangent by a null vector satisfying
(87). We thus arrive at the central result of this paper: the
statement that, contrary to appearances, hole-ography can
successfully reconstruct any open or closed spacelike curve
within Poincaré-AdS3, in terms of differential entropy in the
CFT2 on Minkowski spacetime.

In Sect. 3.4 we study again the limit where the size of the
curve vanishes, emphasizing that there are infinitely many
different ways to represent any given point in terms of a fam-
ily of CFT intervals. As expressed in Eq. (96) and exemplified
in Fig. 11, there is one family for each distinct choice of the
path traced by the center of the intervals (or equivalently, the
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path traced by either one of the intervals’ endpoints). Gen-
eralizing the results of Sect. 2.4, we work out a covariant
action whose extremization leads to any one of these fam-
ilies associated to a point. On the gravity side it is based
on the normal curvature of the bulk curve, and in CFT vari-
ables it takes the form (105). In the final part of the paper,
Sect. 3.5, we show that given two bulk points, the freedom
to choose a representative family from the equivalence class
associated to each point allows us to easily compute the dis-
tance between the pair imitating the constant-time procedure
of Sect. 2.5.

In Appendix A we go back to the discrete versions (110)–
(111) of differential entropy originally considered in [37,
41], to show that in the continuum limit they give rise to
definitions that differ by a boundary term. This difference is
negligible for the types of curves considered in [41,44], but is
important for our analysis of open curves in Sects. 2.3 and 3.1.
The definition (15) of differential entropy that we use in this
paper arises directly from a discrete version that differs from
(110) and (111), and belongs to the one-parameter family of
alternative definitions given in (124).

There are various directions for future work. Along the
lines of [41,43,44], we expect our results to extend to
Poincaré AdS in higher dimensions, under the same assump-
tions of symmetry for the surfaces under consideration. On
a different front, Poincaré AdS is a particular example of an
entanglement wedge [63–65], with the special feature that
it includes a complete global time slice, and therefore a full
set of initial data for temporal evolution. A smaller entangle-
ment wedge leaves some information out, and contains fewer
complete geodesics, so it is interesting to ask whether or not
it is possible again to reorient those geodesics that exit it to
achieve complete hole-ographic reconstruction of any curve
within the wedge. We will address this question in a separate
paper [66].

Going beyond pure AdS, hole-ography is known to
be restricted by the appearance of entanglement shadows
[40,47] and holographic screens [50]. It may be possible to
circumvent the former obstacle using entwinement, a type
of entanglement between degrees of freedom in the CFT
that are not spatially organized [45,67–69]. At least in the
case where the gravitational description is three-dimensional,
entwinement is associated with non-minimal geodesics, and
it would be interesting to investigate whether the possibility
of reorienting them by null vectors [44] affords hole-ography
any additional coverage. Finally, the reconstruction program
has focused recently on the description of local bulk oper-
ators that are integrated over extremal surfaces, which have
been shown to be dual to blocks in the CFT operator product
expansion [70–78]. A somewhat different approach to local
operators has been pursued in [79–84]. One would naturally
like to understand in detail how hole-ography is related to
these two approaches.

2 Hole-ography at constant Poincaré time

2.1 Closed curves

To fix our notation, recall that the metric of global AdS3 can
be written in different ways:

ds2 = −
(

1 + R2

L2

)
dT 2 +

(
1 + R2

L2

)−1

dR2 + R2dθ2

= L2
(
− cosh2ρ dτ 2 + dρ2 + sinh2ρ dθ2

)

= L2

cos2 �

(
−dτ 2 + d�2 + sin2� dθ2

)
, (2)

where L is the AdS radius of curvature, T = Lτ , and the three
different choices of radial coordinate are related through R ≡
L sinh ρ ≡ L tan �. With τ ∈ (−∞,∞), � ∈ [0, π/2) and
θ ∈ [0, 2π), the set (τ, �, θ) covers the entire anti-de Sitter
spacetime. The AdS boundary is at � = π/2 (R → ∞). A
gravitational theory on (2) is dual to a two-dimensional CFT
defined on the boundary cylinder S1 × R, parametrized by
(τ, θ).

Defining

t = L sin τ

cos τ + sin � cos θ
,

x = L sin θ sin �

cos τ + sin � cos θ
, (3)

z = L cos �

cos τ + sin � cos θ
,

we bring the metric to Poincaré form,

ds2 = L2

z2

(
−dt2 + dx2 + dz2

)
. (4)

As is well-known, with z ∈ (0,∞) and t, x ∈ (−∞,∞),
these coordinates cover only the Poincaré wedge of AdS,
i.e., the portion τ ∈ (−π, π), cos θ > − cos τ csc � of global
AdS (see Fig. 1). Physically, these coordinates are associated
with a family of bulk observers with constant proper accel-
eration a2 = −1/L2, and the Poincaré horizon at z → ∞
(cos θ = − cos τ csc �) marks the boundary of the region
with which they can interact causally. The AdS boundary is
at z = 0. The dual CFT lives on the boundary Minkowski
spacetime parametrized by (t, x).

Given a curve R(θ) at fixed T (fixed τ ) in global AdS,
the associated family of tangent geodesics, or equivalently,
CFT intervals, can be labeled as α(θc), where θc is the angu-
lar location of the interval’s center along the spatial S1, and
α is the interval’s (half-)angle of aperture. These are given
by [45]
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Fig. 2 Circle (8) in Poincaré AdS at t = 0, with some of its tangent
geodesics, as given by (9). In this and all subsequent plots in this paper,
we set L = 1. We have chosen the circle to be centered at (x, z) = (0, 2),

meaning that the radius of the circle (in both global and Poincaré coor-
dinates) is R = √

3

tan (θ − θc) = L2

L2 + R2

d ln R

dθ
,

tan α = L

R

√
1 + L2

L2 + R2

(
d ln R

dθ

)2

. (5)

The endpoints of these geodesics/intervals are located at
θ± ≡ θc ± α.

As explained in the Introduction, if we stick to the τ = 0
slice to begin with, we are assured that these same geodesics
will provide full coverage of the bulk curve after translation
to the Poincaré slice t = 0. We can determine them by using
(3) to map the two angles θ± to the x-axis. The endpoint
locations corresponding to θ± will naturally be denoted x±.
Halfway between these two endpoints lies the center of the
interval,

xc ≡ x+ + x−
2

, (6)

and its radius is


 ≡ x+ − x−
2

. (7)

We will let xθ denote the direct translation of the center angle
θc, which will serve then as a parameter that labels our inter-
vals. As θc goes around the S1 of the cylinder CFT, xθ will
run over the entire spatial axis of the Minkowski CFT. Notice
that in general we expect xθ �= xc.

Our one-parameter family of geodesics was parametrized
with θc in the global setting, so after translation to Poincaré,
we can naturally parametrize it with xθ . The geodesic for
each value of xθ can be described with the pair (x−, x+), or
equivalently, with (xc, 
). The latter description is sometimes
more convenient. And instead of reporting our geodesics in
parametrized form, (xc(xθ ), 
(xθ )), we can eliminate xθ to
obtain 
(xc), which is certainly more intuitive, and directly
analogous to the global expression reported in [45] in the
form α(θc).

It will be instructive to consider first the simplest concrete
example of a bulk curve: a circle which in global coordinates
is centered at the origin, R = constant. It follows immedi-
ately from (5) that the family of geodesics tangent to this
circle is simply θc = θ , tan α = L/R. Using (3) at τ = 0,
we can see that the resulting bulk curve in Poincaré AdS is
also a circle,

x2 +
(
z −

√
L2 + R2

)2 = R2 . (8)

With the middle equation in (3) evaluated at � = π/2, we
can also translate the geodesic parameters θ, θ±. The result
takes the form

x± = 2xθ L2
√
L2 + R2 ± L2(L2 + x2

θ )

L2(
√
L2 + R2 + R) − x2

θ (
√
L2 + R2 − R)

. (9)

A representative sampling of these geodesics is plotted in
Fig. 2.

As expected, we do find a tangent geodesic for each point
on our circle. But there is an important novelty: the denomi-
nator in (9) vanishes at xθ = ±x∞, with

x∞ ≡ R +
√
L2 + R2 . (10)

At each of these locations, one of the endpoints changes
sign. For xθ ∈ (−x∞, x∞) we have the expected order-
ing x− < x+, but for other values of xθ the endpoints are
exchanged: as xθ increases past x∞, the value of x+ crosses
from x → ∞ to x → −∞, while at xθ = −x∞, x− crosses
in the opposite direction. The fact that the interval radius
(13) diverges at these crossover points implies that the cor-
responding geodesic is becoming vertical, and the same is
true then for the bulk curve itself, i.e., ∂x z → ±∞. At these
points, x(xθ ) starts to backtrack, as we pass from the lower
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Fig. 3 The blue (purple) curve shows the endpoint x+ (x−) of the
geodesics, as given by (9), for the same example as in Fig. 2. The
locations where one or the other endpoint switches sign upon crossing

through infinity, xθ = ±x∞, are clearly visible. It is only in the middle
region of the plot, (−x∞, x∞), that the endpoints are in the canonical
order x− < x+

to the upper half of the circle, or viceversa. This behavior is
seen in Fig. 3, where we plot the endpoints as given by (9).

The main lesson here is that, as the parameter xθ ranges
from −∞ to ∞, the interval midpoint xc covers this same
range twice: once for the geodesics tangent to the lower part
of our curve, which have 
 > 0, and a second time for the
geodesics tangent to the upper part, which have 
 < 0 on
account of having their endpoints reversed.

This same lesson applies generally. Consider an arbitrary
closed bulk curve (at constant t), described as (x(λ), z(λ)),
with λ some unspecified parameter. Since the curve is closed,
the function x(λ) must be non-monotonic, and we can find at
least two values of λ where x ′ ≡ ∂λx changes sign by cross-
ing zero. At these points, the bulk curve becomes vertical,
and the radius and one of the endpoints of the corresponding
geodesic approach ±∞. The same would happen at points
where x ′ vanishes without changing sign. The N � 2 points
where the closed curve is vertical (x ′ = 0) split the curve into
N consecutive segments. Some examples are shown in Fig. 4.
We will demand, without loss of generality, that the sign of
the parameter λ be chosen such that the point on the curve that
is closest to the AdS boundary is on a segment where x ′ > 0.
We label this segment n = 1, and number the remaining seg-
ments consecutively in order of increasing λ. The edges of
the nth segment are naturally denoted λn < λn+1. As in the
case of the circle (where we had N = 2), each connected
segment will be associated with a family of geodesics whose
centers xc run over the entire x-axis. The sign of x ′ might or
might not flip when moving from one segment to the next.

We will refer to those segments where x ′ > 0 (x ′ < 0) as
‘positive’ (‘negative’).

Either by translating the global AdS results of [45], or
by direct computation in Poincaré [44], one finds that the
geodesics tangent to our curve have endpoints at

x±(λ) = x(λ) + z(λ)z′(λ)

x ′(λ)
± z(λ)

x ′(λ)

√
x ′(λ)2 + z′(λ)2.

(11)

Equivalently, they have midpoint

xc(λ) = x(λ) + z(λ)z′(λ)

x ′(λ)
, (12)

and radius


(λ) = z(λ)

x ′(λ)

√
x ′(λ)2 + z′(λ)2 . (13)

We have chosen the sign of the second denominator in (11)
such that the positive segments of the curve (x ′ > 0) are asso-
ciated with intervals whose endpoints are in the canonical
order, x− < x+, while the negative parts (x ′ < 0) correspond
to intervals with reversed endpoints, x− > x+. Through (13),
this means that the designation as positive or negative, orig-
inally referring to an attribute of the bulk curve, also charac-
terizes the sign of 
 for the corresponding family of intervals
in the CFT. Again, the main issue here is that, to fully wrap
around our closed curve, we need not one but N � 2 families
of intervals whose midpoints xc run over the entire x-axis.
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Fig. 4 Three examples of closed curves, partitioned into N segments
(numbered n = 1, . . . , N ) at the points (indicated in red) where the
curves become vertical (x ′ = 0), meaning the corresponding tangent
geodesic has one endpoint at infinity. Through (11), the sign of x ′ on
each segment determines whether the tangent geodesics have their end-
points in the canonical order (x− < x+) or not. The circle has already

been discussed in the text and portrayed in Fig. 2. The second curve
illustrates the fact that N can be odd, because x ′ does not necessarily
flip sign in going from one segment to the next (in this example, and
with the conventions described in the main text, segments n = 3, 4 are
both positive). The third example illustrates the fact that the curve can
self-intersect

Alternatively, we can think about this as decomposing the
closed curve into N open curves zn(x) (n = 1, . . . , N ),
which join together at the places where the slope ∂z/∂x
diverges. But if we adopt this perspective, the nontrivial
question is whether the information from all N families
of geodesics can be smoothly combined to obtain a hole-
ographic description for the entire closed curve, since we
know from [45] that to obtain the length of open curves we
need to add a surface term to the formula for differential
entropy. We will address this question explicitly in Sect. 2.3.

Notice that (12) implies that x ′
c = (1 + (∂x z)2 + z∂2

x z)x
′.

This shows that the center xc(λ) can backtrack if x ′ < 0,
which happens on the negative segments that we have dis-
cussed here, or if the curve is sufficiently concave, ∂2

x z <

−(1 + (∂x z)2)/z. The latter possibility had been pointed out
in [41,44,45].

For use below, we note that (12) and (13) can be inverted
[44] to give the bulk curve in terms of the boundary data,

x(λ) = xc(λ) − 
(λ)
′(λ)

x ′
c(λ)

,

z(λ) =
√


2(λ)

(
1 − 


′2(λ)

x ′2
c (λ)

)
. (14)

As an additional check, these same relations can be obtained
by taking the zero-mass limit R+ → 0 of the expressions
worked out for the static BTZ black hole [62] in Eqs. (89)–
(90) of [45]. In this limit, the BTZ metric reduces to Poincaré
AdS with x � x + L .

2.2 Differential entropy and the length of closed curves

The definition of differential entropy is most conveniently
given in the form [44]

E =
∫

dλ
∂S(xL(λ), xR(λ̄))

∂λ̄

∣∣∣∣
λ̄=λ

. (15)

Here xL and xR are the left and right endpoints1 (xL � xR) of
a family of intervals parametrized by an arbitrary parameter
λ, and S denotes the corresponding entanglement entropy.
The definition (15) treats the right and left endpoints on a
different footing, but as explained in [44], an integration by
parts allows the role of xR and xL to be exchanged. The two
alternative definitions differ by a boundary term, which can
be neglected for the types of curves considered in [44], but
will be important for our analysis of open curves in Sect. 2.3.
In Appendix A we show that there is in fact a one-parameter
family of possible definitions of differential entropy, arising
from a corresponding ambiguity (124) in the discrete version
of E originally considered in [37,41].

For convenience, from this point on we will rescale the
entanglement entropy by a factor of 4GN , so that the Ryu-
Takayanagi formula (1) reads S = A� . In terms of the central
charge c of the CFT, reporting S in units of 4GN is the same as
reporting it in units of c/6L [59]. For intervals at fixed time,

1 Notice that xL = x− and xR = x+ only if 
 > 0. We will return to
this point below.
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as we are considering here, the entropy in the Minkowski
space CFT2 is given by (see, e.g., [41,60])

S(xL , xR) = 2L ln

(
xR − xL

ε

)
, (16)

where ε is a UV cutoff.2

In the context of holographic entanglement, the authors of
[41] were the first to study curves in Poincaré AdS3 at con-
stant time. (Their analysis applies as well to codimension-
2 surfaces in Poincaré AdSd+1 with planar symmetry,
i.e., translationally-invariant under d − 2 of the xi .) They
restricted attention to curves that are infinitely extended
along the x direction, and moreover imposed periodic bound-
ary conditions at x → ±∞. Under these conditions, they
showed that the differential entropy (15) for the family of
intervals tangent to the curve (surface) correctly reproduces
its length (area).

We will now show that the same is true for the closed
curves (x(λ), z(λ)) that we considered in the previous sub-
section. Their length is given by

A =
∫

dλ
√

γλλ =
∫

dλ
L

z

√
x ′2 + z′2 , (17)

where γ is the induced metric. We want to check that
this agrees with the differential entropy associated to the
curve. The corresponding geodesics/intervals have endpoints
located at (11). For ease of reading, we will phrase our discus-
sion for the case N = 2 (the closed curve has only one posi-
tive and one negative segment), but the extension to N > 2
is immediate.

For the positive part of the curve (x ′ > 0), the fact that

 > 0 means that the left and right endpoints are xL = x−
and xR = x+. Using (16), (15) becomes

E = L
∫

dλ
x ′+



. (18)

For the negative part, 
 < 0 and so the endpoints are reversed,
xL = x+ and xR = x−. Because of this, if we were to use
(15) as it stands, we would get some additional minus signs,
and would not be able to directly obtain the total length of the
curve. But, for continuity in the family of intervals (crucial
for the usefulness of differential entropy, and most clearly
seen by referring back to the global AdS setup), the correct
prescription is to depart from a literal reading of (15), and

2 For comparison, in the case of global AdS, where the dual CFT lives
on a cylinder, the entanglement entropy is (see, e.g., [45])

S(θ+, θ−) = 2L ln
[
sin((θ+ − θ−)/2δ)

]
.

As explained in the Introduction, this equation and (16) are not mapped
into one another by mere coordinate transformation.

keep treating x+ as the right endpoint of the interval. This
ensures the appropriate cancelation of the final geodesics in
the positive family against the initial geodesics in the negative
family. Of course, for the logarithm in (16) to be real, we do
need to use |x+ − x−| as its argument. We are then led again
to (18), so this single expression applies for the entire closed
curve. Periodicity then guarantees, just like it did for the
infinite curves considered in [41], that surface terms can be
ignored.

Let us now see explicitly the relation between differential
entropy and length. Using (11) and (13), expression (18) can
be easily seen to take the form

E =
∮

dλ

{
L

z

√
x ′2 + z′2

+L

[

′



+ z′′√

x ′2 + z′2
− z′x ′′

x ′√x ′2 + z′2

]}

= A + L
∮

dλ ∂λ

[
ln

(
2|
|
ε

)
+ sinh−1

(
z′

|x ′|
)]

. (19)

In the second line we have recognized that the first term pre-
cisely reproduces the length (17), while the others amount to
a total derivative, and do not contribute. Inside the logarithm,
we have chosen a particular value of the constant of integra-
tion, involving the UV cutoff ε. This choice will prove to be
convenient in the next subsection.

2.3 Boundary terms and the length of open curves

We now move on to considering (still at t = 0) an arbitrary
open curve (x(λ), z(λ)). It might or might not have points
where z′/x ′ → ±∞, separating N segments just like we
discussed for closed curves (but now with N � 1). The anal-
ysis in the preceding section directly establishes a relation
between its length A and the differential entropy E for its
associated family of intervals. This relation is again given by
(19), with the sole difference that the integral now extends
over a finite range,

A = E − L
∫ λ f

λi

dλ

[

′



+ z′′√

x ′2 + z′2
− z′x ′′

x ′√x ′2 + z′2

]

= E − f (λ f ) + f (λi ) . (20)

In the second line we have given the name

f (λ) ≡ L ln

(
2|
|
ε

)
+ L sinh−1

(
z′

|x ′|
)

, (21)

to the (now generally non-vanishing) boundary contribution.
Let us now try to gain some understanding on the form

of (21). As we mentioned in the Introduction, the authors of
[45] showed that, when considering an open curve in global
coordinates, R(θ), with θ running from θi to θ f , the differen-
tial entropy E does not directly reproduce the length A. The
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two integrands differ by a total derivative. To obtain a match,
one must add to E a specific surface term f (θ f ) − f (θi ),
with

f (θ)=2L ln

[
sin (α + (θ − θc))

sin (α − (θ − θc))

]
=2L ln

[
sin (θ − θ−)

sin (θ+ − θ)

]
,

(22)

where α and θc are evaluated at the values corresponding to
the bulk angle θ . (Alternatively, f could be expressed as a
function of the boundary angle θc.) Above their Eq. (12), the
authors of [45] explain the geometric meaning of f (θ): it is
the length of the arc of the geodesic (θc, α) that is contained in
the angular wedge between θc and θ . Explicitly, this geodesic
Rg(θg) is described by

tan2(θg − θc) = R2
g tan2 α − L2

R2
g + L2 , (23)

and one can check that the length of its arc in the range of
interest,

∫ θ

θc

dθg

√√√√R2
g +

(
1 + R2

g

L2

)−1 (
dRg

dθg

)2

, (24)

indeed agrees with (22).
A priori, it is not obvious whether a similar interpretation

can be given to the Poincaré boundary function (21), because,
as we have explained before, entanglement entropy does not
remain invariant when mapping from global to Poincaré AdS.
In particular, the condition θ = θc, which makes the global
boundary function (22) vanish, does not translate into x = xc
or x = xθ .

Let us work this out for an arbitrary open curve (x(λ),

z(λ)). The geodesic tangent to the curve at the point labeled
by λ is

zg =
√


2 − (xg − xc)2 , (25)

where the radius 
 and the midpoint xc are given by (12) and
(13), and are therefore held fixed for the present calculation.
The length of the arc of this geodesic that runs from x to xc
is

∫ xc

x
dxg

L

zg

√
1 +

(
∂zg
∂xg

)2

= −L tanh−1
(
x − xc




)

= − L

2
ln

(
x − x−
x+ − x

)
. (26)

Notice that, in this last form, the length (26) looks rather
analogous to the final version of (22), except for an overall
minus sign which is due to the fact that in (20) we have chosen
to define our f with a sign opposite to that of [45]. Using (11)

and the identity sinh−1 a = ln(a+√
1 + a2), this expression

can be rewritten as

∫ xc

x
dxg

L

zg

√
1 +

(
∂zg
∂xg

)2

= L sinh−1
(

z′

|x ′|
)

, (27)

which coincides with the second term of (21).
This agreement allows us to ascribe to the term (27) the

entanglement interpretation developed for global AdS in Sec-
tion 4.5 of [45]. The family of intervals/geodesics associ-
ated with our open curve ends at the bulk point (x f , z f ) ≡
(x(λ f ), z(λ f )). The final member of the family is centered
at xc, f ≡ xc(λ f ), and generally x f �= xc, f . We can add to
the family the set of intervals whose center runs from xc, f to
x f , with radii 
 chosen such that the corresponding geodesics
all go through (x f , z f ), meaning that this addition does not
enlarge our curve. (The added intervals belong to the family
of the ‘point-curve’ (x f , z f ), as will become clear in the next
subsection.) After the addition, there is no longer any arc left
for (26) to contribute, which means that the second term in
(21), evaluated at λ f , represents the extra differential entropy
due to the added set of intervals. The same applies of course
at the opposite endpoint of the curve, λi .

Only the logarithm in (21) remains to be interpreted. But
comparing with (16), we see that this term is half the entangle-
ment entropy of the interval at λ f (or λi ). We thus conclude
that the entire formula (20) for the length of our open curve
admits an interpretation based on entanglement in the CFT.
In the bulk description, the interpretation is very simple: the
boundary function (21) is the length of the arc of the corre-
sponding geodesic, computed from the edge of our curve, at
x , all the way to the right endpoint of the geodesic, x+. Or,
more precisely, to the regularized version of this endpoint,

xε+ ≡ x+ − ε2

2

, (28)

where the geodesic reaches the UV cutoff z = ε. This geo-
metric interpretation is illustrated in Fig. 5.

For an open curve whose associated geodesics cover the
entire x-axis, such as the positive or negative semicircle that
we analyzed in Sect. 2.1, (21) is logarithmically divergent
(because both 
 and ∂z/∂x diverge at the endpoints λi, f ). In
that case, it is more convenient to reexpress f as the integral
over λ of a total λ-derivative, so that it can be subtracted
directly from the integrand of E in (15), to get a finite result.
This takes us back to the total-derivative terms in the top line
of (19), which can be rewritten in the form

f (λ f ) = L
∫ λ f

dλ

(

′



+ z′′√

x ′2 + z′2
− z′x ′′

x ′√x ′2 + z′2

)

= L
∫ λ f

dλ

(

′



+ 
′x ′′

c − 
′′x ′
c


′2 − x ′2
c

)
. (29)
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Fig. 5 Geometric interpretation
of the boundary term f (λ) in the
definition (127) of the
renormalized differential
entropy E . The value of f at
each endpoint is the length of
the arcs shown in dotted red

In the second line we have used (14) to express f purely in
terms of boundary data. Combining (29) with (18), we can
define a ‘renormalized’ differential entropy

E[
] ≡ E[
] − f (λ f ) + f (λi )

= L
∫ λ f

λi

dλ

(
x ′
c



+ 
′x ′′

c − 
′′x ′
c

x ′2
c − 
′2

)
. (30)

From our previous analysis, this directly reproduces the
length of an arbitrary open curve,

A = E . (31)

As an example, consider the circle (8), shown in Fig. 2. In
the language of Sect. 2.1, its lower half is a positive segment
(x ′ > 0) and is labeled n = 1, whereas its upper half is a
negative segment, denoted n = 2. These two semicircles are
open curves described by

z1,2(x) =
√
L2 + R2 ∓

√
R2 − x2 , (32)

with x ranging between −R and R. Their length is

A1,2 = πR ∓ 2R tan−1(R/L) . (33)

Notice that the length of the two semicircles is different, even
though they do add up to the correct total, A = 2πR. This is
due to the z-dependence of the metric. Using (30), we find

E1,2 = ±A1,2. (34)

The reversal of sign for the negative semicircle is as expected
from the convention adopted in the previous subsection and
not implemented when writing down (33): for a negative
segment, λ should run in the direction of decreasing x . It
is with this orientation that the full circle is traced by the
original parameter θ or xθ . Indeed, if we take this sign into
account, we find that upon combining the two semicircles the
contribution of the boundary function cancels, and we have

E1 − E2 = E1 − E2 = A1 + A2 = A . (35)

2.4 Points

Now that we have a formula that computes the lengths of
arbitrary closed or open bulk curves in terms of boundary
entanglement entropies, we can shrink these curves as in
[45], to obtain points. To describe a given point, we have two
options. One is to start with a closed curve, which we will
take for simplicity to have only one positive and one nega-
tive portion (e.g., a circle). Closed curves have the advantage
of not needing any boundary terms, but require a family of
intervals/geodesics covering the x-axis at least twice. The
other option is to start with an open (positive or negative)
curve (e.g., a semicircle) whose slope ∂z/∂x diverges at the
edges, so that (via (12) and (13)) the corresponding inter-
vals/geodesics cover the entire x-axis.3 In this case we do
not have to deal with the double-valuedness of xc, but the
price we pay is that we must include the boundary contribu-
tion (21).

Either way, upon shrinking the size of the curve all the way
down to zero, we obtain the family of intervals (xc(λ), 
(λ))

(equivalently, x±(λ)) whose associated geodesics all pass
through the desired bulk point (x, z). These intervals can of
course be determined directly from (25),


 = ±
√

(x − xc)2 + z2 , (36)

where the family with the upper (lower) sign is needed to
describe a positive (negative) open ‘point-curve’, and both
families are needed to assemble a closed point-curve. If we
wanted to, we could by convention always pick the positive
branch of the square root in (36), which would amount to
changing our notation to always insist on having x+ � x−.
But when putting together the positive and negative segments
to construct a closed point-curve, we would still need to use
the appropriate signs, as discussed in the previous two sub-
sections. Eq. (36) can be rewritten in terms of the intervals’
endpoints as

3 If we started instead with an open bulk curve whose slope is not diver-
gent at the endpoints, then the range of x covered by the corresponding
CFT intervals would be finite, and when we shrink the size of the curve
we would end up with nothing.
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(x+ − x)(x − x−) = z2 . (37)

It is interesting to ask what the special property is that
allows the particular set of CFT intervals 
(xc) in (36) to be
identified as describing a bulk point in AdS. This is important
if we are attempting to reconstruct the bulk starting just from
the boundary theory. By taking the first and second derivative
of (36), we can see that our point-curves are solutions to the
equation of motion



′′ + 
′2 − 1 = 0 . (38)

This is then the analog of Eq. (21) in [45]. As explained
there, it is natural to obtain a second-order differential equa-
tion, since there must be two integration constants, associated
with the coordinates of the bulk point, (x, z). Incidentally, we
might wonder why, to single out a point, we are prescribing
here an infinite family of geodesics that pass through it, when
it should suffice to specify just two such geodesics to locate
the point where they intersect. Indeed, given only two inter-
secting geodesics (equivalently, two overlapping intervals in
the CFT), we know the radii at the given midpoints, 
(xc,1)
and 
(xc,2), and these two data pick out a unique solution to
(38), i.e., a unique family that covers the entire spatial axis
and includes both of the geodesics that we started with. What
we gain by thinking of the entire family instead of the orig-
inal pair is that we can analyze the point-curve in parallel
with any other bulk curve, and in particular verify that it has
vanishing length by computing its differential entropy.

Following [45], we expect the equation of motion (38)
to follow from an action principle based on extremizing the
extrinsic curvature of closed curves. The idea is the follow-
ing: in negatively curved spaces, the Gauss-Bonnet theorem
states that

∮
C
dλ

√
γ K = 2π −

∫
�

d� R ≥ 2π, (39)

for any closed curveC such thatC = ∂�, where dλ
√

γ is the
length element along the curve, K is the extrinsic curvature
and R is the Ricci scalar on the surface � bounded by the
loop. Evidently, if the loop shrinks to a point the second
integral vanishes, and the inequality is saturated. Thus, we
can find bulk points by extremizing the left-hand side of (39).

The extrinsic curvature is computed from

Kmn = 1

2

(
n p∂pgmn + gpn∂mn

p + gpm∂nn
p) , (40)

wherenm is a normal unit vector and γmn = gmn+nmnn is the
induced metric on the curve. The scalar extrinsic curvature
is computed by contracting Kmn with γmn .

For an arbitrary (time-independent) closed curve, our pro-
posed action I ≡ ∫

dλL, with Lagrangian L ≡ √
γ K , is

found to take the form

I =
∫

dλ
x ′(λ)3 − z(λ)z′(λ)x ′′(λ) + x ′(λ)

(
z′(λ)2 + z(λ)z′′(λ)

)
z(λ)

(
x ′(λ)2 + z′(λ)2

) .

(41)

As we can see, this action contains second-order derivatives.
Nonetheless, the Euler-Lagrange equations,

d

dλ2

∂L
∂z′′

− d

dλ

∂L
∂z′

+ ∂L
∂z

= 0,

d

dλ2

∂L
∂x ′′ − d

dλ

∂L
∂x ′ + ∂L

∂x
= 0, (42)

simplify drastically, leading to x ′(λ) = 0 and z′(λ) = 0,
respectively. The solution defines the bulk point (x, z), which
serves as a consistency check of the functional (41).

In terms of boundary data, we can rewrite (41) as

I = 2
∫

dλ

√
x ′+(λ)x ′−(λ)

x+(λ) − x−(λ)
=

∫
dλ

√
x ′
c(λ)2 − 
′(λ)2


(λ)
.

(43)

In the second form, the Lagrangian is independent of xc, so
there is an associated conserved momentum,

d

dλ

∂L
∂x ′

c
= 0 ⇒ ∂L

∂x ′
c

= x ′
c



√
x ′2
c − 
′2 = �. (44)

Solving for x ′
c(λ),

x ′
c(λ) = ± �
(λ)
′(λ)√

�2
(λ)2 − 1
, (45)

and plugging it back into (43) we obtain

I =
∫

dλ


(λ)

√

′(λ)2

�2
(λ)2 − 1
. (46)

The equation for 
 derived from (46) is trivially satisfied, so
we can focus on (45) only. We can get rid of λ by writing
(45) as

dxc
d


= ± �
√
�2
2 − 1

, (47)

which has solution

xc = ±
√


2 − �−2 + ζ. (48)

If we identify the integration constants as � = z−1 and ζ = x
we recover equation (36), as expected. Consistent with this,
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Fig. 6 Setup discussed in the main text, with two bulk points P and Q,
shown in red, and the geodesic PQ that goes through them, shown in
orange. The center of this geodesic is at M , shown in green, its radius is
denoted by 
M , and its left and right endpoints are labeled xPQ∓. The
proper length of the arc running from P to Q (solid orange) defines the
distance d(P, Q), given explicitly in (51)

if in (43) we choose λ = xc and then extremize, we indeed
recover the equation of motion (38).

2.5 Distances

We will now study how to compute the distance between
two bulk points P and Q, in terms of differential entropy.
Let P have coordinates (xP , zP ), and similarly for Q. In
this subsection we choose λ = xc, and therefore denote the
families of intervals in the CFT dual to our bulk points by

P (xc) and 
Q(xc). For concreteness, we will take Q to be to
the right of P , xQ � xP . The geodesic that connects the two
points, which we will denote PQ, is centered at the point
M on the boundary that is ‘equidistant’ from P and Q, in
the sense that 
P (xM ) = 
Q(xM ). The setup is illustrated in
Fig. 6. Explicitly,

xM = xQ + xP
2

+ z2
Q − z2

P

2(xQ − xP )
, (49)

and the radius of PQ is


M = 1

2

√
(xP − xQ)2 + 2(z2

P + z2
Q) + (z2

P − z2
Q)2

(xP − xQ)2 . (50)

The distance between P and Q is given by the arclength
along this geodesic. Using (25), this can be written as

d(P, Q) =
xQ∫

xP

dxg
L

zg

√
1 +

(
∂zg
∂xg

)2

= L

2

(
ln

(
xQ − xPQ−
xPQ+ − xQ

)

− ln

(
xP − xPQ−
xPQ+ − xP

))
, (51)

where zg(x) is the parametrization of PQ, and xPQ± ≡
xM ± 
M refer to the left/right endpoints (at the AdS bound-
ary) of the geodesic. Equation (26), which we used in our
analysis of the boundary function f , is a special case of (51),
with xP = xc and xQ = x .

Expression (51) is what we want to reproduce using differ-
ential entropy. Notice that this formula computes the signed
length between the two points, and satisfies d(P, Q) =
−d(Q, P). We also note in passing that from (37) we know
that

(x − xPQ−)(xPQ+ − x) = z2 , (52)

for any point on the geodesic centered at xM , and using this
we can rewrite the distance between P and Q in the simplified
form

d(P, Q) = L ln

(
xPQ+ − xP

xPQ+ − xQ

)
. (53)

In defining 
P (xc) and 
Q(xc), if we regard each point
as a vanishingly small open curve, then we pick only one
sign in (36), and xc runs over the real axis once. Lengths
in that case are determined using the ‘renormalized’ differ-
ential entropy (30), which includes the contribution of the
boundary function (21). From (20), we know that for an
arbitrary open curve E = A + f (xc, f ) − f (xc,i ), which
implies that E = f (+∞) − f (−∞) for open point-curves
(which have A = 0). Additionally, in the paragraph above
(28) we learned that the boundary function f (xc) has a simple
geometric interpretation: as seen in Fig. 5, it is the distance
between the edge of the curve which that geodesic is tangent
to, (x(xc), z(xc)) and the regularized right endpoint of the
geodesic centered at xc, (xε+, ε).

Given these results, a strategy naturally suggests itself. To
be able to extract information about the geodesic PQ, we
should compute the differential entropy not for the complete
family 
P (xc), but for a truncation of it to the range xc ∈
(−∞, xM ], so that the final interval in the family is precisely
the one associated with PQ. We will denote the truncated
version by 
̂P (xc), which we take to vanish for xc > xM .
The corresponding differential entropy will be denoted with
the same symbol, ÊP ≡ E[
̂P ]. From what explained in the
previous paragraph, we know that

ÊP = −d(PQ+ε, P) − fP (−∞) , (54)

where PQ+ε refers to the regularized right endpoint, located
at xε

PQ+. To obtain the distance d(P, Q), we can combine

this with a version of 
Q(xc) that is truncated to the com-
plementary range xc ∈ (xM ,+∞), so that PQ is now
associated with the initial interval of the family. We will
denote this truncation by 
̌Q(xc). (In this notation, 
P (xc) =
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̂P (xc) + 
̌P (xc), and likewise for 
Q .) The corresponding
differential entropy is

ĚQ = fQ(+∞) + d(PQ+ε, Q) . (55)

Defining the combined family


PQ(xc) ≡ 
̂P (xc) + 
̌Q(xc) , (56)

we find that its differential entropy is

E[
PQ] = ÊP + ĚQ = d(P, Q) − fP (−∞) + fQ(+∞) .

(57)

This serves as a formula for the desired distance between
the two points in terms of entanglement entropy, save for
the uncomfortable fact that the two remaining f terms
(which can also be expressed as distances) are both divergent:
fP (−∞) = ln((x2

P + z2
P )/ε2) and fQ(+∞) = ln(4I 2/ε2),

with ε → 0 and I → ∞. Along the way, we have arrived
in (56) at precisely the same combined family 
PQ(xc) that
was constructed in [45], in the alternative form


PQ(xc) ≡ min(
P (xc), 
Q(xc)) . (58)

To avoid having to deal with the divergences arising from
the boundary function (21), we can consider the points P, Q
as vanishingly small closed curves. There is then no boundary
contribution, at the cost of xc covering the real axis N � 2
times, as we saw in Sect. 2.1. For concreteness, we focus
here on the case with N = 2. In the terminology and nota-
tion of Sect. 2.1, we can decompose this type of closed curve
into one positive and one negative segment, 


(n)
P (xc), with

n = 1, 2 and xc ∈ (−∞,∞) in each segment. Since we are
dealing with a point, these two are in fact the same families of
intervals/geodesics, and differ only in orientation. The posi-
tive and negative segments are obtained by choosing opposite
signs in (36), so 


(1)
P = −


(2)
P (and likewise for Q). For the

n = 1 portion of the curves, where 
P , 
Q > 0, we form the
same combination as in (56),



(1)
PQ(xc) ≡ 
̂

(1)
P (xc) + 
̌

(1)
Q (xc) . (59)

For the k = 2 portion, where 
P , 
Q < 0, we exchange P
and Q,



(2)
PQ(xc) ≡ 
̂

(2)
Q (xc) + 
̌

(2)
P (xc) . (60)

This exchange will be seen to be necessary in the calculation
that follows, and is also consistent with the definition (58)
given in [45].

With these definitions, the differential entropy for the pos-
itive (n = 1) portion of the combined family (59) takes the
form

E[
(1)
PQ] = Ê (1)

P + Ě (1)
Q

= L
( ∫ xM

−∞
dxc


̂
(1)
P (xc)

(
1 + ∂xc 
̂

(1)
P (xc)

)

+
∫ ∞

xM

dxc


̌
(1)
Q (xc)

(
1 + ∂xc 
̌

(1)
Q (xc)

))

= L
(

ln
( xPQ+ − xP

xPQ+ − xQ

)
− ln

( x2
P + z2

P

x2
Q + z2

Q

))
. (61)

Here we have used the fact that
∫
dxc/
 for 
 > 0 can be

written in the form

∫
dxc

±√
(x − xc)2 + z2

= ln [±(xc − x) + 
] , (62)

with the upper choice of sign. To extract the second logarithm
in the result (61), it is necessary to regularize the xc → ±∞
endpoint of the integrals as xc = ±1/δ, with δ → 0 in the
end.

For the negative (n = 2) portion, the differential entropy
of the combined family (60) takes the form

E[
(2)
PQ] = Ê (2)

Q + Ě (2)
P

= L
( ∫ xM

−∞
dxc


̂
(2)
Q (xc)

(
1 + ∂xc 
̂

(2)
Q (xc)

)

+
∫ ∞

xM

dxc


̌
(2)
P (xc)

(
1 + ∂xc 
̌

(2)
P (xc)

))

= L
( ∫ xM

−∞
dxc

−
̂
(1)
Q (xc)

(
1 − ∂xc 
̂

(1)
Q (xc)

)

+
∫ ∞

xM

dxc

−
̌
(1)
P (xc)

(
1 − ∂xc 
̌

(1)
P (xc)

))

= L
(

ln
( xQ − xPQ−
xP − xPQ−

)
+ ln

( x2
P + z2

P

x2
Q + z2

Q

))
. (63)

Here we have used (62) with the lower choice of sign. Adding
up (61) and (63), dividing by two and comparing with equa-
tion (51), we arrive at

d(P, Q) = 1

2
E[
PQ(xc)] . (64)

This has exactly the same form as the formula deduced
for global AdS in [45]. We conclude then that distances in
Poincaré AdS can be computed using entanglement entropy
in the CFT, through either (57) or (64).
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3 Covariant hole-ography

3.1 Arbitrary curves

Moving on to the time-dependent case, consider an arbitrary
spacelike bulk curve

Cm(λ) = (t (λ), x(λ), z(λ)) , (65)

parametrized by some parameter λ. For each value of λ, there
is a spacelike geodesic tangent to the curve, with endpoints
at xμ

±(λ) ≡ (t±(λ), x±(λ)). If we boost to the frame, labeled
∗, where both endpoints are simultaneous (i.e., t∗+ = t∗−), the
geodesic will be a semicircle, centered at x∗μ

c , the boosted
version of

xμ
c (λ) ≡ 1

2

(
xμ
+(λ) + xμ

−(λ)
)
, (66)

and with radius4


(λ) ≡ √

μ
μ , 
μ(λ) ≡ 1

2

(
xμ
+(λ) − xμ

−(λ)
)

. (67)

After boosting back to the original frame, the entire family
of tangent geodesics can be shown to take the form [44]

�m(s, λ) =
(
t (λ) + z(λ)z′(λ)t ′(λ)

x ′(λ)2 − t ′(λ)2

− t ′(λ)
(λ)√
x ′(λ)2 − t ′(λ)2

cos s ,

x(λ) + z(λ)z′(λ)x ′(λ)

x ′(λ)2 − t ′(λ)2

− x ′(λ)
(λ)√
x ′(λ)2 − t ′(λ)2

cos s , 
(λ) sin s
)

, (68)

where 0 � s � π is a parameter running along each
geodesic, and


(λ) = z(λ)

√
1 + z′(λ)2

x ′(λ)2 − t ′(λ)2 . (69)

The geodesic endpoints �μ(π0, λ) = xμ
±(λ) = (t±, x±) are

given by

t±(λ) = t (λ) + z(λ)z′(λ)t ′(λ)

x ′(λ)2 − t ′(λ)2 ± t ′(λ)
(λ)√
x ′(λ)2 − t ′(λ)2

,

x±(λ) = x(λ) + z(λ)z′(λ)x ′(λ)

x ′(λ)2 − t ′(λ)2 ± x ′(λ)
(λ)√
x ′(λ)2 − t ′(λ)2

.

(70)

4 Notice that the symbol 
 here denotes the unsigned norm of the radius
vector 
μ. In the static case of the previous section, what we had defined
as 
 in (13) did carry a sign, and is precisely what will be henceforth
denoted as 
x (now that we generically have 
t �= 0).

Using (68), we can check that, for any fixed value of λ, all
points on the geodesic (given by all values of s) lie as expected
on a boosted version of the semicircle (36),

−(t − tc)
2 + (x − xc)

2 + z2 = 
2 , (71)

or equivalently, of (37),

(x+ − x)μ(x − x−)μ = z2 . (72)

Expressions (69)–(70) can be inverted using the boundary-
to-bulk relations provided in Section 4.4 of [44]. This leads
to

xμ(λ) = xμ
c (λ) − 
μ(λ)χ(λ) ,

z(λ) = 
(λ)

√
1 − χ(λ)2 ,

χ(λ) ≡ 
x (λ)t ′c(λ) − 
t (λ)x ′
c(λ)


x (λ)
t ′(λ) − 
t (λ)
x ′(λ)
. (73)

As a concrete example, we consider a circle that undulates
in time, centered at (t̄, x̄, z̄), with radius r and undulation
amplitude a:

t (λ) = t̄ − a cos nλ ,

x(λ) = x̄ − r cos λ ,

z(λ) = z̄ − r sin λ . (74)

where n ∈ Z. For the curve to be spacelike everywhere, we
must demand that

x ′(λ)2 + z′(λ)2 − t ′(λ)2 = r2 − a2n2 sin2 nλ > 0 . (75)

This constraint is satisfied for all λ ∈ [0, 2π) as long as

|a| <
r

|n| . (76)

A particular example satisfying (76) is shown in Fig. 7.
Going back to the general analysis, the entanglement

entropy of each interval in the CFT can be computed in the
boosted frame, where it is given by (16), and then carried
over to the original coordinates,

S(xμ
−, xμ

+) = 2L ln

(∣∣xμ
+ − xμ

−
∣∣

ε

)

= L ln

(
(x+ − x−)2 − (t+ − t−)2

ε2

)

= L ln

(
4
2

ε2

)
. (77)

The differential entropy (15) then takes the form

E = L
∫ λ f

λi

dλ

 · x ′+


2
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Fig. 7 The red curve is a plot of the undulating circle (74), with (t̄, x̄, z̄) = (0, 0, 2), r = 1, a = 1/9 and n = 3. Some of the geodesics tangent to
the circle are depicted in orange, for λ/2π = 2/16, 4/16, 6/16, 10/16, 12/16, 14/16

= L
∫ λ f

λi

dλ
1


2

(

 · 
′ + 
 · x ′

c

)

= L

2
ln

4
2

ε2

∣∣∣∣
λ f

λi

+ L
∫ λ f

λi

dλ

 · x ′

c


2 , (78)

which correctly reproduces (18) in the case of constant time.
The term that remains within the integral in (78) can be

processed by means of expressions (69)–(70), to obtain

E = L

2
ln

4
2

ε2

∣∣∣∣
λ f

λi

+ L
∫ λ f

λi

dλ

(
1

z(λ)

√
x ′(λ)2 + z′(λ)2 − t ′(λ)2

+ z′′(λ)√
x ′(λ)2 + z′(λ)2 − t ′(λ)2

+ z′(λ)

x ′(λ)2 − t ′(λ)2

t ′(λ)t ′′(λ) − x ′(λ)x ′′(λ)√
x ′(λ)2 + z′(λ)2 − t ′(λ)2

)
. (79)

At the end of the first line we recognize the term that yields
the length A of the curve. The terms in the second line are
the λ-derivative of

L sinh−1

(
z′(λ)√

x ′(λ)2 − t ′(λ)2

)
. (80)

For closed bulk curves, the total-derivative terms drop out,
and we find that A = E , as expected. For open curves, we
arrive instead at a generalization of (20)–(21), A = E −
f (λ f ) + f (λi ), where now

f (λ) = L

2
ln

4
2

ε2 + L sinh−1

(
z′(λ)√

x ′(λ)2 − t ′(λ)2

)
. (81)

The boundary function (81) can be easily seen to have the
same geometric interpretation as in the case of constant time.
In particular, its second term matches the arclength between
xμ
c and xμ along the geodesic tangent to the curve at the given

point λ, allowing us to rewrite

f (λ) = L

2
ln

4
2

ε2 + L

2
ln

(
x+ − x

x − x−

)
. (82)

This can equivalently be expressed as a contribution to the
λ-integrand. Our final expression for the ‘renormalized’ dif-
ferential entropy is then found to be

E ≡ E − f (λ f ) + f (λi )

= E − L
∫ λ f

λi

dλ
(1

2

∂λ

2


2 + 
x (x ′ − x ′
c) + (xc − x)
′

x


2
x − (x − xc)2

)
.

(83)

Using (69)–(70), we can verify that indeed A = E . Expres-
sion (83) can be written purely in terms of CFT data by means
of (73).

3.2 A challenge to hole-ography in Poincaré AdS

As explained in the Introduction, the fact that Poincaré coor-
dinates (t, x, z) defined in (3) cover only a wedge within
the full AdS3 spacetime (2) implies that, when considering
a generic t-dependent spacelike bulk curve (65), some of
its tangent geodesics will not be fully contained within the
Poincaré wedge. See Fig. 1. This presents a challenge to
hole-ographic reconstruction, because when it happens, we
are unable to encode the length of the curve into CFT data
using differential entropy.

To see exactly where the problem resides, recall that, given
any two points xμ

− and xμ
+ on the boundary of AdS that are
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spacelike separated, there does exist a bulk geodesic that
connects them, and it has the shape of a boosted semicir-
cle, Eq. (71). The projection of this geodesic onto the AdS
boundary is simply a straight line connecting the two points.
If the geodesic happens to be tangent to some bulk curve,
then clearly the boundary projection of the vector tangent to
the curve will lie on the same straight line, and will there-
fore be spacelike. It follows from this that at a given point
λ, a bulk curve in Poincaré AdS has a tangent geodesic that
reaches the boundary if and only if the boundary projection
of its tangent vector at that point is spacelike,

− t ′(λ)2 + x ′(λ)2 > 0. (84)

Indeed, we see explicitly in (70) that the endpoint positions
xμ
± are real only when this condition is satisfied. This, then, is

our criterion for reconstructibility of the bulk curve. Impor-
tantly, it differs from the condition for the bulk curve itself
to be spacelike, − t ′2 + x ′2 + z′2 > 0, and can therefore be
violated.

As a concrete example, consider the closed curve that is
obtained by mapping to Poincaré AdS the same circle at fixed
global time that we discussed in Sect. 2.1, �(θ) = constant
(recall that R ≡ L tan �), but now displaced to τ �= 0. Using
(3) and choosing λ = θ , this is

t (λ) = L sin τ

cos τ + sin � cos λ
,

x(λ) = L sin λ sin �

cos τ + sin � cos λ
, (85)

z(λ) = L cos �

cos τ + sin � cos λ
.

The two constants τ, � are parameters that specify our choice
of curve. For the curve to be fully contained within the
Poincaré wedge, we must have |τ | + � < π/2. Notice from
(85) that t ∝ z. As shown in Fig. 8, this curve is an oval tilted
in the t direction.

In the global description it is evident that the entire curve
(85) is spacelike. In the Poincaré description, there is a region
of it that violates the reconstructibility condition (84). The
edge of this region is located at the points where x ′(λ)2 −
t ′(λ)2 = 0. Solving this equation, we find the four points

λ1 = arctan
[
sin(τ − �), cos(τ − �)

]
,

λ2 = arctan
[− sin(τ + �), cos(τ + �)

]
,

λ3 = arctan
[− sin(τ + �),− cos(τ + �)

]
,

λ4 = arctan
[
sin(τ − �),− cos(τ − �)

]
.

(86)

The notation here picks out a quadrant for the inverse tangent
function: arctan[s, c] means an angle whose sine and cosine
are respectively s and c. We thus find two nonreconstructible
segments, (λ1, λ2) and (λ3, λ4), which as shown in Fig. 8 are
located on the sides of the circle. Since the top of the curve

x

z

t

Fig. 8 An example of a closed spacelike curve at varying Poincaré time
t , given by (85) with τ = π/5, � = π/4. The top and bottom, shown in
solid red, have tangent geodesics lying fully within the Poincaré wedge.
This is not true for the segments on the sides, shown in dashed black,
which violate the condition (84) and are therefore nonreconstructible.
As described in the main text, the tilted oval seen here is the Poincaré
counterpart of the global circle shown in the right image of Fig. 1

is closest to the horizon, it might seem surprising that it is
reconstructible, but the geodesics tangent to points in that
region do fit inside the Poincaré wedge. This can also be ver-
ified directly for the circle in the original global coordinates,
shown in Fig. 1.

3.3 Resolution via ‘null vector alignment’

In the previous subsection we have seen that there are space-
like bulk curves in Poincaré AdS with segments that are
nonreconstructible, in the sense that they violate condition
(84), and are therefore tangent to geodesics that are not fully
contained within the Poincaré wedge. Such geodesics are
not associated with entanglement entropy in the dual CFT
defined on Minkowski spacetime, so we are left wondering
whether there is some way to encode such bulk curves in
the field theory language. For this we must find some way to
select a family of intervals in the CFT, whose entropies man-
age to capture the information about the nonreconstructible
segments in spite of not being associated to geodesics that
are tangent to them.

Fortunately, a prescription that gives us the necessary mar-
gin for maneuvering in this direction was discovered in [44].
The authors of that work showed that the standard formula for
differential entropy, Eq. (15), correctly computes the length
A of a bulk curve even if we choose a non-standard fam-
ily of intervals/geodesics, obtained by reorienting the tan-
gent vector to the curve, um ≡ (t ′, x ′, z′), according to
u → U ≡ u + n, where n is a null vector orthogonal to
u, i.e.,
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n · n = 0 , n · u = 0 . (87)

As long as these two conditions are satisfied, n can be any
differentiable function of λ.

If from each point xm(λ) on the curve we shoot a geodesic
along Um(λ) instead of um(λ), we select a family of inter-
vals in the CFT whose endpoints are given by (70) with the
replacement u → U . Running through the steps leading to
(79), it is straightforward to arrive at

E = L

2
ln

4
2

ε2

∣∣∣∣
λ f

λi

+ L
∫

dλ

⎛
⎝ 1

z(λ)

√
U 2
x (λ) +U 2

z (λ) −U 2
t (λ) + z′′(λ) + n′

z(λ)√
U 2
x (λ) +U 2

z (λ) −U 2
t (λ)

+ z′(λ) + nz(λ)

U 2
x (λ) −U 2

t (λ)

t ′(λ)t ′′(λ) − x ′(λ)x ′′(λ) + nz(λ)z′′(λ) + z′(λ)n′
z(λ) + nz(λ)n′

z(λ)√
U 2
x (λ) +U 2

z (λ) −U 2
t (λ)

⎞
⎠ , (88)

where just like before 
2 ≡ 
2
x −
2

t , but now the components
of 
μ depend on our choice of n(λ). The terms in the second
and third line are the λ-derivative of

sinh−1

⎛
⎝ Uz(λ)√

U 2
x (λ) −U 2

t (λ)

⎞
⎠ , (89)

and together with the logarithm can therefore be ignored for
the type of curves considered in [44], which are infinitely
extended and have periodic boundary conditions at x →
±∞. In that case, then, all that is left is the final term in the top
line of (88). Since conditions (87) guarantee thatU ·U = u·u,
we recognize this term as the length of the bulk curve, thereby
verifying that A = E , as claimed by [44].

The authors of [44] referred to the replacement u → U
as ‘null vector alignment’, as opposed to the standard ‘tan-
gent vector alignment’. They employed the freedom afforded
by the choice of n(λ) to show that an arbitrary differen-
tiable family of spacelike intervals (xμ

−(λ), xμ
+(λ)) in the

CFT can always be used to construct at least one (and usu-
ally two) bulk curve(s), whose differential entropy agrees
with its length. This boundary-to-bulk construction runs in
the opposite direction to the bulk-to-boundary procedure we
had discussed heretofore, where one starts with a bulk curve
and uses its tangent geodesics to obtain a family of intervals
in the CFT. For curves at constant time, there is no essential
difference between these two directions, but in the covariant
case it is in general necessary to employ null vector alignment
when proceeding in the boundary-to-bulk direction.

The result E = A for arbitrary n(λ) evidently extends
immediately from [44] to the arbitrary closed curves consid-
ered in this paper. In the case of open curves, it is generalized
to A = E − f (λ f ) + f (λi ) ≡ E , where the n-dependent
boundary function is given by

f (λ) = L

2
ln

4
2

ε2 + L sinh−1

⎛
⎝ Uz(λ)√

U 2
x (λ) −U 2

t (λ)

⎞
⎠ . (90)

The important takeaway from all of this is that, from the
global AdS perspective, there are in fact infinitely many
choices for the family of CFT intervals that reconstructs a
given bulk curve. More specifically, there is one choice for
each function n(λ), and since this null vector is subject to
the two constraints (87), on AdS3 this amounts to the free-

dom of choosing one of its components (d − 1 components
on AdSd+1). In Poincaré coordinates, given any choice of nz

we can solve (87) to find the remaining components of n,

nt =
nzutuz ± |nzux |

√
−u2

t + u2
x + u2

z

u2
t − u2

x

, (91)

nx = −nzuz

ux
+

nzu2
t u

z ± ut |nzux |
√

−u2
t + u2

x + u2
z

ux (u2
t − u2

x )
,

where the two choices of sign are correlated. Equivalently,
we can choose nt arbitrarily and from it determine

nx =
ntutux ± |ntuz |

√
−u2

t + u2
x + u2

z

u2
x + u2

z
, (92)

nz = −ntut

uz
−

ntu2
xu

t ± ux |ntuz |
√

−u2
t + u2

x + u2
z

uz(u2
x + u2

z )
.

We would like to establish whether this freedom allows us
to address the problem encountered in the previous subsec-
tion. Consider a spacelike (u · u > 0) bulk curve that has a
region where (84) is violated, i.e., −u2

t +u2
x = u ·u−u2

z � 0.
In this region, tangent vector alignment yields geodesics that
are not fully contained within the Poincaré wedge. Invoking
null vector alignment instead, we can use geodesics along
U (λ) = u(λ)+n(λ). To achieve reconstructibility with these
new geodesics, we must demand that

−U 2
t +U 2

x > 0 ↔ (uz + nz)2 < (z2/L2)u · u. (93)

The inequality on the right follows from the fact thatU ·U =
u · u. For each λ, (93) is a single inequality imposed on the
completely free component nz , so there are infinitely many
solutions. Two concrete examples are:
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��t
z

x

Fig. 9 We see here the same tilted oval (85) as in Fig. 8, from a greater
distance and a different perspective. The point λ = 4π/5 in the nonre-
constructible region is marked, and the geodesic tangent to the oval at
that point is shown in orange. One of its endpoints exits the Poincaré
wedge through the horizon, z → ∞, so it cannot be associated with
entanglement entropy in the CFT. Nonetheless, null vector alignment
u → U = u + n allows us to reorient this geodesic so that both of
its endpoints land on the boundary of Poincaré AdS, z = 0. Among
the infinitely many different ways in which this can be done, we illus-
trate the two examples described in the main text: the green geodesic
has Uz = 0, and the cyan geodesic has Ut = 0. With either of these
choices, we are able to translate the given point into CFT language

• Uz = 0. Plugging nz = −uz into (91), we find a spe-
cific choice of nm(λ) which evidently satisfies the right
inequality in (93). In this case, all geodesics in the family
touch the bulk curve at their point furthest away from the
boundary.

• Ut = 0. Taking nt = −ut and using (92), we find another
choice of nm(λ) that evidently satisfies the left inequality
in (93). In this case, we only use geodesics at constant
time, even though the value of t is in general different for
each geodesic.

To understand how this works in practice, let us go back
to the example of the tilted oval that we had in (85). In global
coordinates this is simply a circle of radius R = L tan �

at fixed τ , so its total length is A = 2πR. The points where
−u2

t +u2
x changes sign are the λi defined in (86), and split the

oval into four segments, as shown in Fig. 8. The two segments
(λ1, λ2) and (λ3, λ4), shown in dashed black in the figure, are
nonreconstructible with tangent vector alignment. We now
know that they can be described using null vector alignment
instead. In Fig. 9 we see how this is possible: for a point in the
nonreconstructible region, the addition of a null vector allows
us to reorient the geodesic touching the curve in such a way
that both of its endpoints reach the boundary of the Poincaré
wedge. Notice that, if we employ some n(λ) �= 0 only for the
two nonreconstructible segments, then even though our entire
curve is closed, the contribution of the boundary function
(90) will generally not cancel between adjacent segments,
because it depends on n. So E1 + E2 + E3 + E4 �= A in

general, but what we have shown for arbitrary curves implies
that E1 + E2 + E3 + E4 = A. Alternatively, we can use null
vector alignment for the entire oval, with some choice of n(λ)

that is smooth across the points λi (e.g., Uz = 0 or Ut = 0).
In this case the boundary function does drop out, and we have
E = A, independently of the choice of n(λ).

It is also natural to wonder what happens in the case of a
curve that is closed in global coordinates but is not fully con-
tained within the Poincaré wedge. In Poincaré coordinates
this translates into an open curve with both of its endpoints
at the Poincaré horizon (at t → ±∞, x → ±∞). One ques-
tion is whether we might be able to reconstruct the portion
of the curve beyond the horizon, using null vector alignment
to shoot geodesics into the Poincaré wedge. This is quickly
seen to be impossible, because on AdS there is a unique
geodesic associated with each pair of boundary points, and
all geodesics with both endpoints on the boundary of the
Poincaré patch are known to lie entirely within the patch.
There is no option then but to treat this case as an open curve.
We know that any nonreconstructible segments of it will be
accessible via null vector alignment. Two examples of this
type of curve are shown in Fig. 10.

3.4 Points

Now that we know how to encode an arbitrary closed or open
bulk curve, we can again reason as in [45] and shrink these
curves down to arbitrary bulk points. Each resulting ‘point-
curve’ will be associated with a family of intervals/geodesics
with endpoints xμ

±(λ), or equivalently, with center and radius
vectors xμ

c (λ) and 
μ(λ). If the curve is open, then as in
Sect. 2.4 we must demand that it is vertical at its beginning
and end, in order for the family of intervals not to disappear
in the point limit. If the curve is closed, as in Sect. 2.1 we
will obtain a family that crosses from x → ∞ to x → −∞
some number N � 2 of times before smoothly coming back
to itself.

Importantly, there are infinitely many different families
that describe the same bulk point, because there are infinitely
many choices for the shape of the curve that we shrink to
any given point. For any such choice, and for any choice
of nμ(λ) if we decide to use null vector alignment as in
the previous subsection, after reducing to zero size we will
simply get some family of geodesics that pass through the
desired bulk point. The family described in Sect. 2.4, where
all intervals/geodesics are on the same time slice as the bulk
point, is just one particular example. Evidently we could also
use geodesics on any boosted time slice. More generally, we
get one family of intervals/geodesics for each choice of curve
on the boundary of AdS that is spacelike separated from the
given bulk point, by taking the center vectors xμ

c (λ) (or the
right or left endpoint) of the intervals to lie on the chosen
boundary curve.
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Fig. 10 Open spacelike curves at varying Poincaré time t , with both
endpoints reaching the Poincaré horizon. The curve on the left is given
by (85) with τ = π/4, � = π/4. In global coordinates it corresponds to
a circle that barely fits within the Poincaré wedge, and touches the hori-
zon at a single point. The curve on the right has τ = π/2, � = π/4, and

is a global circle that partly lies behind the Poincaré horizon. For both
curves the bottom segment, shown in solid red, is reconstructible with
tangent vector alignment, but the sides, shown in dashed black, violate
condition (84) and require null vector alignment to be reconstructed

Just like in the constant-time case, when our curve shrinks
down to a point, the generic equations (70) degenerate and are
not directly useful, because all derivatives vanish. Nonethe-
less, it is easy to work out the required description. Con-
sider a bulk point P , whose coordinates are denoted xmP ≡
(tP , xP , zP ). According to (71), the center and radius vectors
of each geodesic passing through P satisfy

−(tP − tc)
2 + (xP − xc)

2 + z2
P = −
2

t + 
2
x . (94)

Since this geodesic is just a boosted semicircle, there exists
a frame, denoted *, where the entire geodesic lies at constant
time, implying in particular that the same boost that sets t∗P −
t∗c = 0 also sets 
∗

t = 0. This requires


t


x
= tP − tc

xP − xc
. (95)

From (94) and (95) we can deduce the explicit expression that
determines our family of intervals for each choice of center
curve xμ

c (λ),


μ(λ) = ± (
xμ
P − xμ

c (λ)
)

√
−(tP − tc(λ))2 + (xP − xc(λ))2 + z2

P

−(tP − tc(λ))2 + (xP − xc(λ))2 . (96)

The choice of overall sign determines the orientation of the
interval/geodesic, and as in Sects. 2.1 and 2.4, if we describe

the point as a shrunk closed curve the sign changes when
we pass from the positive to the negative part of the curve.
Knowing (96), the complete set of geodesics is given by

�m(s, λ) = (
xμ
c (λ) − 
μ(λ) cos s, 
(λ) sin s

)
, (97)

in analogy with (68).
If we take tc = tP in (96), we correctly recover Eq. (36),

describing a semicircle at constant time. In Fig. 11 we
plot four different choices of center curve xμ

c (λ) for the
same given bulk point, and a small sample of the inter-
vals/geodesics they give rise to.

The distinguishing feature of the family of CFT intervals
described by (96) is that when we substitute it in the formula
for differential entropy (83), the complete integrand vanishes,
as expected from the association with a bulk curve of van-
ishing length. As in Sect. 2.4, we would like to search for
a variational principle that selects families of this type. The
natural idea here is to try to generalize the extrinsic curvature
argument to time-dependent situations.

As in Sect. 3.1, consider an arbitrary spacelike curve
Cm(λ) in AdS3, with tangent vector um(λ) = (t ′(λ), x ′(λ),

z′(λ)). We can define the ‘acceleration’ vector a(λ) as the
covariant derivative of u(λ), normalized with respect to its
magnitude:

am(λ) ≡ 1√
u(λ) · u(λ)

(
dum(λ)

dλ
+ �m

nlu
n(λ)ul(λ)

)
, (98)
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Fig. 11 Four different ways to describe the same bulk point xmP =
(0, 0, 2), marked in red, and a small sample of the corresponding
geodesics, in orange. Shown in green on the AdS boundary is the curve
traced by the center of the intervals in the CFT, xμ

c (λ), from which the
entire set of geodesics follows via (96)–(97). The gray dotted curves

delimit the region on the boundary that is spacelike separated from xmP ,
from which any chosen green curve must not exit. Starting from the top
left, our choice of center curve is xμ

c (λ) = (0.3λ, λ), (2 tanh(λ/2), λ),
(0.7λ cos(λ− 0.2), λ) and (0.8 cos(sin λ), λ+ sin2(λ/3)), respectively

where �m
nl are the usual Christoffel symbols. The curvature

of C(λ) is defined as the norm of a,

κ = √
a(λ) · a(λ) . (99)

Evidently, for a spacetime geodesic the curvature (99) is
exactly zero. In the general case, κ serves as a measure of
how much the given curve differs from a geodesic. We can
decompose (98) as the sum of two orthogonal contributions,

am(λ) = am‖ (λ) + am⊥(λ) , (100)

where

am‖ (λ) ≡ u(λ) · a(λ)

u(λ) · u(λ)
um(λ) ,

am⊥(λ) ≡ am(λ) − u(λ) · a(λ)

u(λ) · u(λ)
um(λ) (101)

are the components of a parallel and perpendicular to u. The
norms of these components are called the geodesic curvature
and the normal curvature, respectively,

κ‖ ≡ √
a‖(λ) · a‖(λ) , κ⊥ = √

a⊥(λ) · a⊥λ) , (102)

and obviously satisfy κ2 = κ2‖ + κ2⊥.
When a closed loop shrinks down to a point, its normal

curvature diverges, so we expect that by expressing κ⊥(λ) as

a function of xμ
± and extremizing we can recover the bound-

ary definition of a bulk point. In the time-independent case,
t ′(λ) = 0, we find after some algebra that

κ2‖ =
(
x ′(λ)2z′(λ) + z′(λ)3 − z(λ)x ′(λ)x ′′(λ) − z(λ)z′(λ)z′′(λ)

)2

z(λ)2
(
x ′(λ)2 + z′(λ)2

)2 ,

κ2⊥ =
(
x ′(λ)3 − z(λ)z′(λ)x ′′(λ) + x ′(λ)

(
z′(λ)2 + z(λ)z′′(λ)

))2

z(λ)2
(
x ′(λ)2 + z′(λ)2

)2 .

(103)

This expression for κ⊥(λ) coincides with the Lagrangian L
defined in terms of extrinsic curvature above (41). Thus, in
static configurations extremizing normal curvature, as we are
proposing here, is in fact the same as extremizing extrinsic
curvature as in [45].

The generalization for time-dependent case is straightfor-
ward. In this case we find

κ2⊥ = 1

z(λ)2
(
x ′(λ)2 + z′(λ)2 − t ′(λ)2

)2

×
[

2
(
x ′(λ)2 − t ′(λ)2

)2 (
z′(λ)2 + z(λ)z′′(λ)

)

+ x ′(λ)6 − t ′(λ)6 +
(
x ′′(λ)2 − t ′′(λ)2

)
z(λ)2z′(λ)2

−
(
x ′(λ)2 − t ′(λ)2

) (
3x ′(λ)2t ′(λ)2
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−
(
z′(λ)2 + z(λ)z′′(λ)

)2
)

−2
(
x ′(λ)2 − t ′(λ)2 + z′(λ)2 + z(λ)z′′(λ)

)

× (
x ′(λ)x ′′(λ) − t ′(λ)t ′′(λ)

)
z(λ)z′(λ)

− (
x ′(λ)t ′′(λ) − t ′(λ)x ′′(λ)

)2
z(λ)2

]
. (104)

Again, this functional depends on second derivatives so it
in general leads to fourth-order differential equations. As a
consistency check, however, we have verified that the point-
like ansatz xμ(λ) = (tP , xP , zP ) is indeed a solution of these
equations.

With some work, we can rewrite the normal curvature
(104) of our bulk curve as a function of the endpoints xμ

±(λ)

of the corresponding CFT intervals, given by (70). Taking
the result as our Lagrangian, we arrive at

I ≡
∫

dλL

= 2
∫

dλ

√
x ′+(λ)x ′−(λ) + t ′+(λ)t ′−(λ)

(x+(λ) − x−(λ))2 + (t+(λ) − t−(λ))2

=
∫

dλ

√
x ′
c(λ)2 − 
′

x (λ)2 + t ′c(λ)2 − 
′
t (λ)2


x (λ)2 + 
t (λ)2 . (105)

For constant time, we correctly recover our previous action
(43). Similar to what we had in that case, we see in the
last line of (105) that the action is independent of xμ

c (λ),
so the conjugate momenta �μ ≡ ∂L/∂x ′μ

c are constants of
motion. These conditions determine a particular choice of
center curve, tc = (�t/�x )xc + constant (corresponding to
fixed time in a boosted frame), with a specific parametriza-
tion xc(λ).

3.5 Distances

In the previous subsection we have learned that any given
bulk point P is described not by a unique family of inter-
vals in the CFT, {xμ

c (λ), 
μ(λ)}P , but by an entire equiva-
lence class of such families, which we will denote FP ≡[{xμ

c (λ), 
μ(λ)}P
]
. Each family in this class can be selected

by specifying a center curve xμ
c (λ) within the region of the

AdS boundary that is spacelike separated from P , and then
using (96) to obtain the corresponding radius vectors 
μ(λ).
Some examples that illustrate the range of options were por-
trayed in Fig. 11.

Given two bulk points P and Q, by carrying out a boost
with parameter β = (tP − tQ)/(xP − xQ) to the frame where
they are simultaneous, and then boosting back to the original
frame, we can deduce that the geodesic PQ that connects
them is centered at

tM =
2tP (xP − xQ)2 − (tP − tQ)

(
t2
P − t2

Q + (xP − xQ)2 − z2
P + z2

Q

)
2(−(tP − tQ)2 + (xP − xQ)2)

,

xM =
(xP − xQ)

(
x2
P − x2

Q + z2
P − z2

Q

)
− (tP − tQ)2(xP + xQ)

2(−(tP − tQ)2 + (xP − xQ)2)
, (106)

and has radius vector


tM =
(tP − tQ)sgn(xP − xQ)

√
(−(tP − tQ)2 + (xP − xQ)2 + z2

P + z2
Q)2 − 4z2

P z
2
Q

2(−(tP − tQ)2 + (xP − xQ)2)
,


xM =
√

(xP − xQ)2
√

(−(tP − tQ)2 + (xP − xQ)2 + z2
P + z2

Q)2 − 4z2
P z

2
Q

2(−(tP − tQ)2 + (xP − xQ)2)
. (107)

The distance between the two points is given by the arclength
along this geodesic,

d(P, Q) = L ln

( −(tP − tQ)2 − z2
P+z2

Q+(xP−xQ)(xP−xQ − �)

(tP − tQ)2 − z2
P + z2

Q − (xP−xQ)(xP − xQ+�)

)
,

� ≡
√

(−(tP − tQ)2 + (xP − xQ)2 + z2
P + z2

Q)2 − 4z2
P z

2
Q

(xP − xQ)2 .

(108)

This is the boosted version of (51) or (53).
To reproduce (108) in terms of differential entropy imitat-

ing the procedure in Sect. 2.5, we begin with the equivalence
classes of families of intervals for the two points,FP andFQ ,
and select a representative from each class that happens to
include the geodesic PQ. If in addition we narrow down our
selection by demanding that these two representatives have
the same center curve xμ

c (λ), the situation becomes directly
analogous to what we had before. We can define the truncated
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families 
̂
μ
P (λ) and 
̌

μ
P (λ) (and likewise for Q) by includ-

ing intervals up to or starting from xμ
M (λ). With these we

can again form the combination 

μ
PQ(λ) ≡ 
̂

μ
P (λ) + 
̂

μ
Q(λ),

and compute its differential entropy. Evidently the simplest
choice is to take xμ

c (λ) along the boosted time slice that con-
tains P , Q and PQ. In that case our calculation in Sect. 2.5
applies directly. E.g., for closed point-curves we find again
that

d(P, Q) = 1

2
E[
μ

PQ(λ)] . (109)

We expect this relation to hold also for other choices of xμ
c (λ),

but we will not attempt to prove that here. The important
conclusion is that there does exist a procedure to compute
bulk distances from CFT data.
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A Discrete versions of differential entropy

Given a family of K successively overlapping intervals Ik that
cover a time slice of the CFT2, the original discrete definition
of differential entropy (inspired by strong subadditivity) is
[37]

E (1) ≡
K∑

k=1

[
S(Ik) − S(Ik ∩ Ik+1)

]
. (110)

An ‘averaged’ version of this was considered in [41],

E (2) ≡
K∑

k=1

[
S(Ik) − 1

2
S(Ik−1 ∩ Ik) − 1

2
S(Ik ∩ Ik+1)

]
.

(111)

For closed curves, it is understood that IK+1 ≡ I1. The fact
that each interval has neighbors on both sides implies that
E (1) = E (2). In the following we will show that in the con-
tinuum limit the two definitions actually differ by a boundary

term, which is relevant when the curve in consideration is
open.

The ingredients that we will need, which we transcribe
here for convenience, are the entanglement entropy (16) for
the interval associated with point λ on the curve,

S(λ) = 2L log

( |x+(λ) − x−(λ)|
ε

)
= 2L log

(
2|
(λ)|

ε

)
,

(112)

and the expressions (11) for the endpoints of this interval in
terms of bulk data,

x±(λ) = x(λ) + z(λ)z′(λ)

x ′(λ)
± z(λ)

x ′(λ)

√
x ′(λ)2 + z′(λ)2,

(113)

or, equivalently, x±(λ) = xc(λ) ± 
(λ), where according to
(12)–(13),

xc(λ) = x(λ) + z(λ)z′(λ)

x ′(λ)
, 
(λ) = z(λ)

x ′(λ)

√
x ′(λ)2 + z′(λ)2.

(114)

For concreteness, we will consider a ‘positive’ curve, mean-
ing that x+(λ) > x−(λ), x ′(λ) > 0 and 
(λ) > 0.

Without loss of generality, we will assume that λ ∈ [0, 1],
and discretize this domain as follows:

λk = k − 1

K − 1
=

{
0,

1

K − 1
,

2

K − 1
, . . . , 1

}
,

for k = {1, 2, 3, . . . , K }. (115)

Clearly, the difference between two consecutive λ’s approa-
ches zero in the continuum limit,

δλ ≡ λk+1 − λk = 1

K − 1
→ 0 as K → ∞. (116)

Evaluating the bulk/boundary data in these discrete values
of the parameter λ we get xk± ≡ x±(λk) (see Fig. 12), and
similarly for xc(λ) and 
(λ). Thus, in their discrete versions
we have xk± = xkc ± 
k . We are interested in taking the con-
tinuum limit, so it will be convenient to define the following
quantities, which we truncate at linear order in δλ:

xk±1± = xk± ± x ′k±δλ, with x ′k± = dx±(λ)

dλ

∣∣∣∣
λ=λk

.

(117)

Similarly we can write xk±1
c = xkc ± x ′k

c δλ and 
k±1 =

k ± 
′

kδλ. Consider now the following boundary intervals,
and their corresponding entanglement entropies:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2018) 78 :75 Page 23 of 25 75

Fig. 12 Discrete reconstruction of differential entropy. To each point
of the (red) curve (x(λk), z(λk)) we can associate a geodesic (depicted
in solid orange) whose endpoints reach the AdS boundary at the points
xk±, specifying a boundary interval Ik . The discrete versions of differ-
ential entropy (110) and (111) involve a particular combination of the
entanglement entropy of such intervals S(Ik), as well as the entangle-

ment entropy of the intersections of Ik with their immediate neigh-
bours, S(Ik ∩ Ik+1) and S(Ik−1 ∩ Ik) (depicted in dashed green). A one-
parameter generalization of the discrete version of differential entropy
is given by (125). It includes the two original versions, and differs in
general by a boundary term

• Ik : its length is given by xk+ − xk− = 2
k , therefore

S(Ik) = 2L log

(
2
k

ε

)
. (118)

• Ik ∩ Ik+1: its length is given by xk+−xk+1− = 2
k −(x ′k
c −


′
k)δλ, therefore

S(Ik ∩ Ik+1) = 2L log

(
2
k − (x ′k

c − 
′
k)δλ

ε

)

= 2L log

(
2
k

ε

)
− L(x ′k

c − 
′
k)


k
δλ.

(119)

• Ik−1 ∩ Ik : its length is given by xk−1+ −xk− = 2
k −(x ′k
c +


′
k)δλ, therefore

S(Ik−1 ∩ Ik) = 2L log

(
2
k − (x ′k

c + 
′
k)δλ

ε

)

= 2L log

(
2
k

ε

)
− L(x ′k

c + 
′
k)


k
δλ.

(120)

Putting this together, we arrive to the following formulas
for the two discrete versions of differential entropy (110)–
(111):

E (1) = L
K∑

k=1

x ′k
c − 
′

k


k
δλ → L

∫
dλ

x ′−



, (121)

E (2) = L
K∑

k=1

x ′k
c


k
δλ → L

∫
dλ

x ′
c



, (122)

which differ by a boundary term,

E (2) − E (1) = L
∫

dλ

′



= L

∫
dλ ∂λ ln

(
2


ε

)

= 1

2
S(λ f ) − 1

2
S(λi ). (123)

Finally, notice that as a generalization of (110) and (111)
one can write down a one-parameter family of discrete dif-
ferential entropies,

E (ξ) ≡
K∑

k=1

[
S(Ik) − 1

2
(ξ − 1)S(Ik−1 ∩ Ik)

− 1

2
(3 − ξ)S(Ik ∩ Ik+1)

]
, (124)

which are all in agreement for closed curves. In the contin-
uum limit one obtains

E (ξ) → L
∫

dλ

[
x ′
c



+ (ξ − 2)


′




]
, (125)

which for ξ = 1, 2 indeed agrees with (121) and (122),
respectively. For ξ = 3 one recovers the definition used in
the main body of the paper

E (3) → L
∫

dλ
x ′+



= E , (126)

as seen in (18). Notice that E (3) can be obtained from E (1)

(up to a boundary term) using integration by parts, thus inter-
changing the role of x+ and x−. Such a boundary term was
neglected in the previous literature, since the focus there was
on closed curves, but it is actually very important when con-
sidering open curves as we do in this paper.
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It is worth emphasizing that the boundary terms needed
in the definition (30) of renormalized differential entropy,

E ≡ E − f (λ f ) + f (λi ) , (127)

depend on the definition of E that we start with. From the
definition (15) used in this paper,

E =
∫

dλ
∂S(xL(λ), xR(λ̄))

∂λ̄

∣∣∣∣
λ̄=λ

, (128)

we obtained in (21)

f (λ) = L ln

(
2|
|
ε

)
+ L sinh−1

(
z′

|x ′|
)

. (129)

As explained in Sect. 2.3, these two pieces correspond respec-
tively to the length of i) half of the geodesic labeled by λ and
i i) the arc of the geodesic labeled by λ, running from x(λ) to
xc(λ). The sum of the two, then, is minus the length of the arc
of this same geodesic, running from x(λ) all the way to the
right endpoint x+(λ) at the boundary (or, more precisely, at
the regularized endpoint (28)). This was illustrated in Fig. 5.
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