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Abstract In this paper we will study for the first time how
the wave-packet of a self-gravitating meso-scopic system
spreads in theories beyond Einstein’s general relativity. In
particular, we will consider a ghost-free infinite derivative
gravity, which resolves the 1/r singularity in the potential
– such that the gradient of the potential vanishes within the
scale of non-locality. We will show that a quantum wave-
packet spreads faster for a ghost-free and singularity-free
gravity as compared to the Newtonian case, therefore pro-
viding us a unique scenario for testing classical and quantum
properties of short-distance gravity in a laboratory in the near
future.

1 Introduction

On large distances and late times the gravitational interac-
tion is well described by the theory of general relativity (GR)
that, indeed, has been very successful since Einstein’s initial
work, being tested to a very high precision in the infrared
(IR) [1]. The most recent success of GR comes from the
observation of gravitational waves from merging of binary
blackholes which gave a further confirmation of its pre-
dictions [2]. Despite these great achievements, our knowl-
edge of the gravitational interaction in the ultraviolet (UV)
is still very limited: suffice to say that the inverse-square
law of the Newtonian potential has been tested only up to
5.6 × 10−5 m in torsion-balance experiments so far [3]. This
means that any modification from the Newtonian 1/r -fall is
expected to happen in the large range of values going from the
lower bound 0.004 eV to the Planck scale Mp ∼ 1019 GeV.
This is the place where nature should manifest a different
behaviour compared to GR and where either quantum or clas-
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sical modification from GR should appear in order to solve
problems that still remain unsolved as, for example, black-
hole and cosmological singularities that make Einstein’s the-
ory incomplete in the UV. There have been many theoreti-
cal attempts that try to modify GR in the UV regime but
none of them have been sufficiently satisfactory so far. In
fact, only the experiment will be able to tell us whether the
gravitational interaction is really quantum or not, and, in
both cases, whether the classical properties are also modi-
fied.

Recently, a new scenario has been proposed in which by
studying the quantum spread of the solitonic wave-packet
for a self-gravitating meso-scopic system one can test and
constrain modified theories of gravity in the near future [4].
In this framework, the so called infinite derivative gravity
(IDG) [5] was considered as example of alternative theory: it
belongs to the class of non-local ghost-and singularity-free
theories of gravity. It was shown that in the non-relativistic
and in the weak-field regimes the dynamics of the matter-
sector is governed by a Schrödinger equation with a non-
linear self-interaction term [4]:

i
∂

∂t
ψ(�x, t) =

[
− 1

2m
∇2 − Gm2

∫
d3x ′

×
Erf

(
Ms
2

∣∣�x ′ − �x∣∣)
|�x ′ − �x |

∣∣ψ(�x ′, t)
∣∣2

⎤
⎦ψ(�x, t),

(1)

whereG = 1/M2
p and Ms represents the scale of new physics

at which non-locality-effects should become relevant, i.e.
0.004 eV ≤ Ms ≤ 1019 GeV.

Such an integro-differential equation can have two com-
pletely different physical interpretations, correspondingly
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the wave-function ψ(�x, t) can assume two different mean-
ings:1

1. It can appear when gravity is quantized and directly cou-
pled to the stress–energy tensor operator. In this case, it is
derived as a Hartree equation in a mean-field approxima-
tion; ψ(�x, t) has the meaning of wave-function associ-
ated to an N -particle state, with large number of particles
(N → ∞), i.e. a condensate [4].

2. Moreover, Eq. (1) can be seen as a fundamental equation
describing the dynamics of a self-gravitating one-particle
system, when considering a semi-classical approach
where gravity is coupled to the expectation value of the
stress–energy tensor; in this case ψ(�x, t) represents a
one-particle wave-function. In such semi-classical frame-
work gravity is treated as a classical interaction, while
matter is quantized.

Note that, in case 1. the non-linearity emerges when con-
sidering the limit of large number of particles, i.e. in the
mean-field regime; while in 2. one has non-linearity even
for a one-particle state, bringing to a modified Schrödinger
equation.

In this respect, a semi-classical approach to IDG would
seem more speculative as, not only we would modify GR, but
also quantum mechanics. While considering the case of quan-
tized gravity, and studying the dynamics of a self-gravitating
condensate, could be particularly more interesting as the
main motivations of IDG concern problems emerging when
one tries to quantize gravity. However, in this manuscript
we wish to make a general treatment by considering both
cases of semi-classical and quantized gravitational interac-
tion, and discuss the experimental feasibility of the model in
both cases.

It is also worth emphasizing that the non-linear potential
term in Eq. (1) can be split in two parts as follow [4]:

V [ψ](�x) 	 − Gm2Ms√
π

∫
|�x ′|<2/Ms

d3x ′ ∣∣ψ(�x ′, t)
∣∣2

− Gm2
∫

|�x ′|≥2/Ms

d3x ′
∣∣ψ(�x ′, t)

∣∣2

|�x ′ − �x | . (2)

From the last decomposition one can notice that the first
term contains all information about the non-local nature of
the gravitational interaction, while the second one has the
same form of the usual Newtonian self-potential that also

1 See Refs. [6,7] for more details and a review on these two different
physical approaches in the case of Newtonian gravity, where the main
equation is the Schrödinger-Newton equation.

appears in the well-known Schrödinger–Newton equation,
see [7–11].

In Ref. [4] it was shown that Eq. (1) admits stationary
solitonic-like solutions for the ground-state and it was found
that in the case of IDG the energy E and the spread σ of the
solitonic wave-packet turn out to be larger compared to the
respective ones in Newtonian gravity, i.e. EIDG ≥ EN and
σI DG > σN ; these are effects induced by the non-local nature
of the gravitational interaction [4].

The expression of the ground-state energy is given by

EIDG = 3

4

1

mσ 2 −
√

2

π
Gm2 Ms√

2 + M2
s σ 2

, (3)

that in the limit Msσ > 2 recovers the energy of Newton’s

theory EN = 3
4

1
mσ 2 −

√
2
π

Gm2

σ
[8,9]. The above Eq. (3) shows

the action of two kinds of forces that are completely differ-
ent in nature: a quantum-mechanical kinetic contribution that
tends to spread the wave-packet and the gravitational poten-
tial which takes into account the attractiveness of gravity
coming from the non-linear term of Eq. (1). In a stationary
scenario the two contributions balance each other and the
soliton-like solution above can be found.

In this paper, unlike Ref. [4], we are more interested in
studying non-stationary solutions of Eq. (1). In particular we
want to understand how the spreading of the wave-packet is
affected by the presence of a non-local gravitational self-
interaction. The analysis that we will present will apply to
both cases of semi-classical and quantized gravity as the main
equation is mathematically the same.

As pointed out in Refs. [12–15], 2 where numerical stud-
ies of the Schrödinger–Newton equation were made, there
should exist a threshold mass μ, such that the collapse of
the wave-function induced by gravity will take place for any
m > μ. In Ref. [12] it was noticed that the collapsing behav-
ior appears only if the initial state of the quantum system
has negative energy, such that the attractive contribution of
self-gravity dominates. From this last observation, we under-
stand that a possible way to find an analytical estimation for
the threshold mass μ is to equate kinetic and gravitational
contributions in Eq. (3); thus we obtain

μI DG =
(

3

4

√
π

2

√
2 + M2

s σ 2

Gσ 2Ms

) 1
3

. (4)

2 In Refs. [12–15] the authors mainly focused on the semi-classical
approach, where gravity is treated classically. However, the following
treatment will also apply to the case of quantized gravity as one has
to consider the same integro-differential Eq. (1). Let us keep in mind
that in the semi-classical approach the quantum wave-packet represents
a one-particle wave-function; while, when gravity is quantized, it is
associated to the dynamics of a many-particle system, i.e. a condensate.
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Note that in the limit when Msσ > 2, Eq. (4) gives the
threshold mass similar to the case of Newtonian theory:

μN =
(

3

4

√
π

2

1

Gσ

) 1
3

. (5)

Equations (4) and (5) clearly show that non-locality implies
a larger value of the threshold mass, i.e. μI DG > μN for any
values of Ms and σ . If we choose the current lower bound on
the scale of non-locality, Ms = 0.004 eV [34], and σ = 500
nm, 3 the values of the threshold masses are μI DG 	 3.5 ×
10−17 kg and μN 	 6.7 × 10−18 kg.

From an analytical estimation one expects that for masses,
m > μI DG , the self-gravitating quantum wave-packet col-
lapses, while for masses, m < μI DG , one would expect no
collapse of the wave-packet, but only a slow-down of the
spreading compared to that of the free-particle case.

We now wish to study the quantum spreading of a self-
gravitating wave-packet and understand how it is affected
by singularity-free gravity, without taking into account the
collapsing phase. It means we will work in a regime in which
we can assume that the non-linear contribution in Eq. (1) is
smaller compared to the kinetic term:

√
2

π

Gm2Ms√
2 + M2

s σ 2
<

3

4

1

mσ 2 . (6)

In this regime non-linearity-effects are sufficiently small and
it allows us to find non-stationary solutions by applying the
Fourier analysis to Eq. (1). From Eq. (6), we can also define
the dimensionless parameter

ξ := Gm3σ 2Ms√
2 + M2

s σ 2
, (7)

that quantifies the degree of non-linearity due to self-gravity.
It depends on the initial data through the mass m and σ ,
that can represent the initial spread of the self-gravitating
quantum wave-packet. When ξ < 1, we can assume that the
non-linear effects are sufficiently small. In the Newtonian
limit, Msσ0 > 2, we will obtain ξ ∼ Gm3σ .

A comparison between modified theories of gravity, IDG
in our case, and Newton’s gravity, will provide us a new

3 It is worthwhile to note that the special choice we have made for the
value of the spread, σ = 500 nm, corresponds to the actual slit sepa-
ration d in a Talbot-Lau interferometry setup [16]. The slit separation
is related to both length L of the device and de Broglie wave-length
λ = h/mv, where h is the Planck’s constant, m the mass of the particle
and v is its velocity, through the relation L = d2/λ. The interference
with larger masses requires smaller wavelengths, which in turn means
shorter slit-separations. Moreover, the most massive quantum systems
which have been seen showing interference are organic molecules with
a mass of the order of 10−22-10−21 kg [17,18].

and unique framework to test short-distance gravity beyond
Einstein’s GR. This paper is organized as follows: first of all
we will briefly introduce ghost-free and singularity-free IDG;
then we will study the spreading solutions of Eq. (1) with
the aim of comparing free, Newton and IDG cases; finally
there will be a summary and a discussion on current and near
future experimental scenarios in both cases of semi-classical
and quantized gravity.

2 Infinite derivative ghost-free and singularity-free
gravity

There have been many attempts to modify GR by introducing
higher order derivative contribution in the action, especially a
conformal gravity containing quadratic terms in the curvature
like R2, RμνRμν, RμνρσRμνρσ . Such quadratic theory of
gravity turns out to be conformal as well as renormalizable,
but it suffers from the presence of a massive spin-2 ghost field
that makes the theory classically unstable and non-unitary at
the quantum level [19].

Recently, it has been noticed that by considering an infinite
number of derivatives in the quadratic curvature gravita-
tional action one can prevent the presence of ghost [5,20].
At the same time, such a ghost-free action also improves the
behaviour of the gravitational interaction in the UV regime
showing a non-singular potential and a vanishing gravita-
tional force: 
 → const and Fg → 0 as r → 0, where Fg
represents the mutual force between two particles separated
by the distance r [5].

The most general torsion-free, parity-invariant and
quadratic covariant action that contains an infinite number
of derivatives has been constructed around constant curva-
ture backgrounds, and reads [5,21–23]:

S = 1

16πG

∫
d4x

√−g
[R + α (RF1(�s)R

+RμνF2(�s)Rμν + RμνρσF3(�s)Rμνρσ
) ]

, (8)

where α is a dimensionful coupling, �s ≡ �/M2
s and � ≡

gμν∇μ∇ν , where μ, ν = 0, 1, 2, 3, and the mostly positive
metric signature, (−,+,+,+), is chosen. The information
about the presence of infinite derivatives is contained in the
three gravitational form factors Fi (�s) which have to be
analytic functions of �, Fi (�s) = ∑∞

n=0 fi,n (�s)
n , thus

we can smoothly recover GR when we take the limit � → 0.
These form factors can be further constrained by requiring
general covariance, that no additional dynamical degrees of
freedom propagate other than the massless graviton and the
ghost-free condition, that around Minkowski background is
given by 2F1(�s) + F2(�s) + 2F3(�s) = 0 [5]. Note that
around a constant curvature spacetime we can set F3 = 0
[5], without loss of generality.
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As we have already mentioned above, the parameter Ms

represents the scale of non-locality where gravity, described
by this class of ghost- and singularity-free theories, shows a
non-local nature [20,24–33]. The current constraints on Ms

comes from torsion-balance experiments which have seen
no departure from the Newtonian 1/r -fall up to a distance of
5.6 × 10−5 meters, that implies Ms ≥ 0.004 eV [34,35].

Furthermore, it is worth noting that IDG-theory can also
resolve cosmological singularity, see [5,20,36–38], and the
non-local nature of gravity can possibly even play a crucial
role in the resolution of blackhole singularity as pointed out
in Ref. [39]; while at the quantum level it is believed that
the action in Eq. (8) describes a gravitational theory that is
UV-finite beyond 1-loop [24–28,31,32].

The ghost-free condition of IDG demands a special choice
for the gravitational form factors, see [5,20]:4

αF1(�s) = −α

2
F2(�s) = a(�s) − 1

�
, a(�s) = e−�/M2

s .

(9)

Generally, a(�s) should be exponential of an entire func-
tion [5,20,25–28,31], in order to avoid additional dynamical
degrees of freedom other than the massless spin-2 graviton,
therefore no propagating ghost-like states. In fact, any gen-
eralised form of exponential of an entire function yields a
similar behavior in the UV and IR regimes, namely a similar
non-singular modified gravitational potential that for large
distances recovers the Newtonian 1/r -fall [34,42].

By linearizing the action in Eq. (8) and going to momen-
tum space one can easily show that the choice in Eq. (9)
does not introduce any extra degrees of freedom in the grav-
ity sector. Indeed, as shown in Ref. [5,43,44], the gauge-
independent part of the propagator corresponding to the lin-
earized action around Minkowski spacetime is given by

�(− k2) = 1

a(−k2)

(P2

k2 − P0

2k2

)
, (10)

4 The exponential choice e−�/M2
s is made in order to have a UV-

suppression in the propagator in momentum space. Indeed, the dressed
physical propagator turns out to be suppressed either for time-like and
space-like momentum exchange [40]. Note that if we had assumed to
work with the mostly negative signature, we would have had to choose
e�/M2

s . In both cases one obtains a well-defined gravitational poten-
tial that recovers the correct Newtonian limit in the IR. Both choices
are also compatible with the change of sign of the kinetic term in the
graviton Lagrangian depending on the signature convention, hμν �hμν

and −hμν � hμν , respectively, where hμν is the graviton field defined
as metric perturbation around flat spacetime, gμν = ημν + hμν . More-
over, integrations in momentum space with such exponentials can be
performed by following various prescriptions as, for example, Wick
rotation to Euclidean space, or for alternative prescriptions see also
[32,40] and [41].

where P2 and P0 are the well known spin projector oper-
ators that project any symmetric two-rank tensor along
the spin-2 and spin-0 components, respectively; �GR =
P2/k2−P0

s /2k2 is the GR propagator. For the special choice

a(−k2) = ek
2/M2

s , there are no additional poles in the com-
plex plane and thus only the massless graviton propagates.

We are interested in the non-relativistic, weak-field and
static spacetime approximations, such that we can compute
the gravitational potential from which, in turn, one can write
down the Hamiltonian interaction coupling gravity and mat-
ter sectors in both cases of semi-classical and quantized grav-
itational interaction, as it has been done in Ref. [4].

As shown in Ref. [4], in the semi-classical approach grav-
ity is coupled to the expectation value of the quantum energy-
stress tensor, and the field equation for the potential, with the
choice Eq. (9), reads:5

e−∇2/M2
s ∇2
 = 4πG

〈
ψ

∣∣τ̂00
∣∣ψ 〉

= 4πGm |ψ(�x, t)|2 , (11)

whose solution is given by


[ψ](�x) = −Gm
∫

d3x ′ Erf
(
Ms
2

∣∣�x ′ − �x∣∣)
|�x ′ − �x |

∣∣ψ(�x ′, t)
∣∣2

,

(12)

i.e. one has a classical gravitational potential generated by the
probability density |ψ(�x, t)|2 that plays the role of a semi-
classical source. In a Hamiltonian formulation the potential
in Eq. (12) contributes to the self-interaction of matter as
described by the modified Schrödinger equation in Eq. (1),
see [4].

In the case of quantized gravity instead, the graviton field
is directly coupled to the quantum energy-stress tensor so
that the analog of Eq. (11) reads

e−∇2/M2
s ∇2
̂ = 4πGτ̂00, (13)

whose solution is given by


̂(�x) = −Gm
∫

d3x ′ Erf
(
Ms
2

∣∣�x ′ − �x∣∣)
|�x ′ − �x | ψ̂†(�x ′)ψ̂(�x ′).

(14)

5 Since terms with derivatives of order higher than four are usually
neglected at small curvature, one could be brought to think that the
Taylor expansion of the exponential e−∇2/M2

s can be truncated. How-
ever, it is not the case here: in fact, in Eq. (8) we are considered the most
general quadratic-curvature action, and the infinite-order in derivatives
comes from the form factorsFi (�) and not from higher order curvature-
invariants. Moreover, even if we wanted to truncate the series, we would
suffer from the ghost problem again.
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Note that we have used τ̂00 ≡ ρ̂ = mψ†ψ. By calculat-
ing also in this case the Hamiltonian interaction, it becomes
clear that the quantum gravitational potential in Eq. (14) does
not introduce any non-linearity in a N -particle Schrödinger
equation, but the non-linear integro-differential Eq. (1) would
emerge when considering mean-field regime for the many-
body system (N → ∞) [4].

In the following section we will study the spreading solu-
tions of Eq. (1) and, by comparing to the case of Newtonian
gravity, we will be able to see which is the effect of non-
locality on a self-gravitating wave-packet in IDG-theory. The
analysis will hold for both cases of semi-classical and quan-
tized gravity as the main dynamical equation is mathemati-
cally the same, i.e. Eq. (1).

3 Spreading solutions for a self-gravitating wave-packet

We now wish to study non-stationary solutions of the non-
linear integro-differential equation in Eq. (1) by working in
a regime where non-linearity-effects can be considered suf-
ficiently small such that there will be no gravity-induced col-
lapse. Such a regime is the one described by the inequality in
Eq. (6) which gives the range of masses [see Eqs. (4) and (5)]
for which the self-gravitating wave-packet will not collapse,
as the attractive contribution due to gravity is not dominat-
ing, but it can allow only the spread of the wave-packet. In
this scenario, we are allowed to study Eq. (1) in the Fourier
space.

Let us suppose we start with an initial Gaussian wave-
packet:

ψ(�x, 0) = 1

π3/4σ
3/2
0

e−|�x |2/2σ 2
0 ,

∫
d3xψ(�x, 0)2 = 1,

(15)

where σ0 is the initial spread. A formal expression of the
wave-packet at a generic time t > 0 can be found in terms
of its Fourier transform:

ψ(�x, t) =
∫

d3kdω

(2π)4 φ(�k, ω)ei(
�k·�x−ωt)

=
∫

d3k

(2π)3 φ(�k)ei(�k·�x−ω(�k)t), (16)

where we have used φ(�k, ω) = 2πφ(�k)δ(ω − ω(�k)), and
φ(�k) can be obtained by calculating the anti-Fourier trans-
form at the initial time t = 0:

φ(k) =
∫

d3xψ(�x, 0)e−i �k·�x

= 2
√

2π3/4σ
3/2
0 e− 1

2 k
2σ 2

0 , (17)

where k ≡ |�k|. By using Eq. (16), and the expression of the
IDG potential in the momentum space,

Erf
(
Ms
2

∣∣�x ′ − �x∣∣)
|�x ′ − �x | =

∫
d3k

(2π)3

4πe−k2/M2
s

k2 ei
�k·(�x ′−�x), (18)

and by acting with
∫
d3xdte−i(�k·�x−ωt) on both sides of the

modified Schrödinger equation in Eq. (1), we obtain the
dispersion-frequency ωI DG as a function of k:

ωI DG(k) = k2

2m
− 32Gm2π5/2σ 3

0 DI DG(k), (19)

where

DI DG(k)

=
∫

d3k′d3k′′

(2π)3(2π)3

e−|�k′′−�k′|2(σ 2
0 +1/M2

s )e[(�k′′−�k′)·�k−�k′′·�k′]σ 2
0

|�k′′ − �k′|2 .

(20)

In order to solve the integral in Eq. (20) we can make the
following change of integration variables: �X := �k′′ − �k′,
�Y := �k′′ + �k′, thus �k′′ · �k′ = (Y 2 − X2)/4 and the integral
turns out to be decoupled in two other integrals that can be
easily calculated by using polar coordinates: 6

DI DG(k) = 1

8

∫
d3X

(2π)3

e
−

(
3
4 σ 2

0 + 1
M2
s

)
| �X |2

e �X ·�kσ 2
0

| �X |2
∫

d3Y

(2π)3 e
− | �Y |2σ2

0
4

= 1

32π5/2σ 5
0

1

k
Erfi

⎛
⎝ kMsσ

2
0√

4 + 3M2
s σ 2

0

⎞
⎠ , (21)

From Eq. (21) we obtain an expression for the dispersion
relation in Eq. (19) in the case of IDG self-interaction:

ωI DG(k) = k2

2m
− Gm2

σ 2
0

1

k
Erfi

⎛
⎝ kMsσ

2
0√

4 + 3M2
s σ 2

0

⎞
⎠ , (22)

note that in the regime Msσ0 > 2, gives the corresponding
Newtonian limit:

ωN (k) = k2

2m
− Gm2

σ 2
0

1

k
Erfi

(
kσ0√

3

)
. (23)

In Fig. 1 it is shown the behavior of the dispersion relation
ω(k) in the free, Newtonian and IDG cases, and one can
immediately notice that as the parameter Ms increases the
frequency ωI DG tends to ωN .

6 The special function Erfi(x) is the imaginary error-function and is
defined as Erfi(x) := 2√

π

∫ x
0 dtet

2 ≡ −iErf(i x).
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Fig. 1 In the above plot we have drawn the dispersion relations (in
s−1) for the free particle case ωfree (orange line), for the Newtonian
case ωN (dashed red line), and for the IDG case ωI DG , with respect to
the wave-vector k (in nm−1). For IDG-theory, we have also considered
different values of Ms = 300 eV (purple line), 500 eV (green line) and
103 eV (blue line). We have chosen the values m = 4.8 × 10−17 kg and
σ0 = 1 nm for the mass and the initial spread, respectively

The dispersion relation in Eq. (22) is crucial in order to
determine the time evolution of the wave-packet, indeed from
Eq. (16) the solution ψI DG(�x, t) is expressed in terms of the
frequency ωI DG :

ψI DG(�x, t) = 2
√

2π3/4σ
3/2
0

∫
d3k

(2π)3 e
− 1

2 k
2σ 2

0 ei(
�k·�x−ωI DG (k)t).

(24)

The integral in Eq. (24) cannot be solved analytically, but we
will be able to find numerical solutions.

First of all, note that in the free-particle case there exists
a well know analytical solution that describes a quantum-
mechanical spreading of the wave-packet, and the corre-
sponding probability density reads:

|ψfree(�x, t)|2 = 1

π3/2σ 3
0

e

− |�x |2

σ2
0

⎛
⎝1+

(
t

mσ2
0

)2
⎞
⎠

(
1 +

(
t

mσ 2
0

)2
)3/2 , (25)

from which one can see that there exist a time-scale for the
spreading, i.e. a time after which the particle turns out to be
de-localized, and it is given by:

τfree = mσ 2
0 . (26)

Note that the time-scale in Eq. (26) can be also obtained by
imposing the equality τfree = 1/2ωfree(1/σ0). We argue that
in the same way we can also obtain an analytical estimation
for the spreading time-scale of a self-gravitating system, thus

by using Eq. (22) and imposing τI DG = 1/2ωI DG(1/σ0) we
obtain7

τI DG ∼ mσ 2
0

1 − 2Gm3σ0Erfi

(
Msσ0√

4+3M2
s σ 2

0

) , (27)

that in the case of Newtonian self-interaction reduces to

τN ∼ mσ 2
0

1 − 2Gm3σ0Erfi
(

1√
3

) . (28)

In the opposite regime Msσ0 < 2, when non-locality-effects
become dominant, the time-scale in Eq. (27) assume the fol-
lowing form:

τ
(Msσ0<2)

I DG ∼ mσ 2
0

1 − 2Gm3Msσ
2
0√

π

, (29)

that is the same time-scale that we would have if there was a
constant gravitational potential.

Since we are considering non-linear effects sufficiently
small, in order to be consistent with the inequality in Eq. (6)
we need to require

2Gm3σ0Erfi

⎛
⎝ Msσ0√

4 + 3M2
s σ 2

0

⎞
⎠ < 1, (30)

that can be seen as a quantifier of non-linearity, as the one
in Eqs. (6)–(8), and from which we can determine again a
threshold value for the mass:

χI DG =
⎡
⎣2Gσ0Erfi

⎛
⎝ Msσ0√

4 + 3M2
s σ 2

0

⎞
⎠

⎤
⎦

− 1
3

, (31)

that in the regime Msσ0 > 2 reduces to the one of Newton’s
gravity:

χN =
[

2Gσ0Erfi

(
1√
3

)]− 1
3

. (32)

If we choose the values Ms = 0.004 eV and σ0 = 500 nm for
the scale of non-locality and the initial spread, respectively,
we obtain χI DG 	 3.1 × 10−17 kg and χN 	 6.1 × 10−18

kg. These values are of the same order of the threshold

7 Although an exact analytical derivation is lacking for such a time-
scale, our argument turns out to be consistent with the numerical anal-
yses, some of which are presented in the end of this section.
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Fig. 2 In the above plots we have shown the radial probability density
ρ(�x, t) (in nm−1) as a function of the radial coordinate |�x | (in nm) at
two different fixed times a t = 0.4 s and b t = 0.8 s, in the cases of
free-particle (orange line), Newton’s gravity (dotted red line) and IDG
(dashed purple line). The initial probability density ρ(�x, 0) is repre-
sented by the black line. We have chosen the values m = 4.8 × 10−17

kg, σ0 = 1 nm and Ms = 300 eV for the mass, the initial spread and
the scale of non-locality, respectively

masses μI DG and μN that we have found above by equat-
ing kinetic and gravitational energy contributions. Thus, Eq.
(30) is consistent with the inequality in Eq. (6).

It is very clear by comparing Eqs. (26), (27) and (28) that

τfree < τI DG ≤ τN , (33)

namely the gravitational self-interaction causes a slow-down
of the spreading of the wave-packet compared to the free-
particle case. Moreover, since at short distances IDG inter-
action is weaker than the Newtonian one, a self-gravitating
wake-packet in the IDG case will spread more quickly com-
pared to Newton’s theory.

We have solved numerically the integral in Eq. (24) for
both IDG and Newton’s theory, and in Fig. 2 we have plotted
the radial probability density ρ(�x, t) = 4π |�x |2|ψ(�x, t)|2 in
the free, Newtonian and IDG cases at two fixed values of time

as a function of the radial coordinate |�x |. We can immediately
notice that the results in the two plots are in agreement with
the analytical estimation made in Eq. (33).

Such gravitational inhibitions of the spreading, not only
would offer a way to explore classical and/or quantum prop-
erties of the gravitational interaction, but would also provide
a new framework to test short-distance gravity beyond GR,
by investigating the real nature of the gravitational potential.

4 Discussion

In the previous section we have found quantum spreading
solutions for a self-gravitating wave-packet both in the case
of IDG and Newtonian self-interactions. The results we have
obtained, especially the analytical estimation in Eq. (33) and
the numerical solutions in Fig. 2, provide us a unique window
of opportunity to test modified theories of gravity in a labo-
ratory, in particular IDG- as an example of singularity-free
theory of gravity.

Although the previous analysis holds for both cases of
semi-classical and quantized gravity, in order to discuss the
experimental testability of the model we need to distinguish
between the two cases. As we have already mentioned above:

1. In the case of quantized gravitational interaction, Eq. (1)
describes the dynamics of a condensate, where the mutual
gravitational interaction of all components would give an
effective self-potential-contribution as result of the mean-
field approximation;

2. In the semi-classical approach Eq. (1) can describe the
dynamics of a self-gravitating one particle system, as for
instance elementary particles, or molecules whose center-
of-mass’ dynamics would be taken into account.

The first case might be more interesting to explore: let
us remind that the main motivations of IDG concern prob-
lems arising when trying to quantize the gravitational inter-
action, for example unitarity and renormalizability as already
mentioned in Sect. 2. Moreover, a semi-classical approach to
IDG, would also imply a modification of quantum mechanics
such that the fundamental equation governing the dynamics
of a single-particle state would be non-linear. In this respect,
case 1. seems less speculative than case 2.

However, in this section we wish to study the current and
future experimental testability of our predictions about both
classical and quantum aspects of gravity.

As far as case 1. is concern, there is a very promising exper-
iment that is aimed to test quantum mechanics of weakly
coupled Bose-Einstein condensates (BEC) in a freely falling
system, where the spread of the quantum wave-packet would
be tested in microgravity, see Ref. [45]. The used BEC was
made of about 104 atoms, but technology is progressing and
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Table 1 Values of the time-scales τfree, τN and τI DG of the spreading wave-packet (in s) for fixed values of the initial spread σ0 (in nm), of the mass
m (in kg), chosen of the order of the threshold χN , and for sample values of Ms = 1 eV, 300 eV, 103 eV

σ0 (nm) m ∼ χN (kg) τfree (s) τN (s) τI DG(1 eV) (s) τI DG(300 eV) (s) τI DG(103 eV) (s)

500 6.0 × 10−18 14285.7 325995 97105.2 325985 325994

100 1.0 × 10−17 952.381 8306.86 1407.93 8304.58 8306.65

10 2.2 × 10−17 20.9524 365.794 21.756 345.655 363.876

1 4.8 × 10−17 0.457143 21.9005 0.458905 1.81058 8.99465

0.5 6.0 × 10−17 0.142857 3.25995 0.143125 0.277719 0.971052

in the near future it will be possible to consider BEC with 106,
or even more, atoms, allowing us to compare our predictions
with the experimental data in such a way to constrain the
scale of non-locality Ms , that so far has been only bounded
in torsion-balance experiments [34].

Regarding case 2., molecule-interferometry [46] seems to
be one of the most favorable scenario to verify predictions
of the semi-classical approach. Although it is not the con-
figuration analyzed in this paper, it is also worth mentioning
that another promising scenario aimed to test semi-classical
gravity is given by optomechanics as explained in Refs. [47–
49], where one considers many-body systems with a well-
localized wave-function for the center of mass.

All these kinds of experiments are very sensitive and,
unfortunately, there are several sources of noise that need
to be taken into account, as for example decoherence effects,
see Ref. [50] for a review, and they represent a big challenge
to overcome.

The choices of the initial spread σ0 and the massm are very
crucial in order to determine the time-scale for the spreading.
First of all, to have appreciable gravity-induced effects we
need values of the mass that are not much smaller than the
threshold mass. Moreover, if we take σ0 = 500 nm and
m ∼ χN 	 6.0×10−18 kg, the time-scales are of the order of
τI DG, τN ∼ O(105)-O(106) s and τfree ∼ O(104) sec. In an
interferometric experimental setup, for example, these values
would not be suitable to test short-distance gravity, because
the time-scales are too large compared to the coherence-times
achieved by a modern matter-wave interferometer (1-3 s)
[51]. This means that we need smaller initial spreads so that
the values of the time-scales will also decrease. For instance,
if we choose σ0 = 1 nm, m = 4.8 × 10−17 kg and Ms =
300 eV, the time-scales turn out to be of the order of τfree ∼
O(10−1) , τI DG ∼ O(1) and τN ∼ O(10) s, which are more
suitable values of time to test and compare modified theories
of gravity.

In the Table 1 we have shown some values of the three
time-scales for fixed values of initial spreads and masses. It
is very clear that by decreasing the initial spread, the time-
scales also decrease. Those numerical values apply to both
cases 1. and 2.; of course the setup can be different depend-

ing on the kind of experiments, and so the preparation of
the initial state will also differ. In tests with BEC [45] the
experimental configuration is given by an asymmetric Mach-
Zehnder interferometer, while molecular-interferometry can
be performed, for instance, with a Talbot–Lau interferometer
[46]. In both cases the spread σ0 of the initial wave-packet is
related in some way to the size of the slit separation d in the
interferometric setup.

For example, as we have already mentioned in the foot-
note 3, in a Talbot–Lau interferometry setup the initial spread
σ0 is of the same order of the slit separation d, that in turn
is expressed in terms of the length L of the interferometric
device and of the the wave-length λ of the particle: L = d2/λ.
The smallest slit separation that has been achieved so far is
d = 500 nm [17,18], which also implies σ0 ∼ 500 nm.
However, we have seen that in order to build a very suitable
experimental scenario in which we can test modified theories
of gravity we need at least a value σ0 = 1 nm for the ini-
tial spread, which means that technology should decrease at
least of two orders of magnitude the slit-separation d. More-
over, we also need masses of the order of O(10−18-10−17)

kg, and this is one of the biggest challenge to overcome: in
fact, the most massive systems for which interference pat-
terns have been observed are organic molecules with a mass
of 10−22–10−21 kg, see Ref. [17,18]. In view of this last
observation, it is worthwhile to mention that in Ref. [52] the
authors present a new exciting proposal in which one might
be able to perform quantum-interference with superconduct-
ing spheres with masses of the order of 10−14 kg, and in
such a regime both gravitational and quantum effects should
be not negligible.

In this manuscript we have extended the window of oppor-
tunity to test classical and quantum properties of modified
gravity provided in Ref. [4], where stationary properties of a
quantum wave-packet were taken into account. Indeed, here
we have made additional predictions that might allow us to
test and constrain gravitational theories by studying non-
stationary properties, in particular the quantum spreading of
the wave-packet associated to a self-gravitating meso-scopic
system in alternative theories beyond Einstein’s GR. We have
found a unique feature of IDG, as example of singularity-free
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theory of gravity, that predicts a faster spreading of the wave-
packet compared to Newton’s theory. A future observation
of these predictions, even in a table-top experiment, might
allow us a deeper and clearer understanding of short-distance
gravity and let us learn more about its real nature, whether it
is classical or quantum.
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