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Abstract In this work we investigate the equilibrium con-
figurations of white dwarfs in a modified gravity theory, na-
mely, f (R, T ) gravity, for which R and T stand for the Ricci
scalar and trace of the energy-momentum tensor, respec-
tively. Considering the functional form f (R, T ) = R+2λT ,
with λ being a constant, we obtain the hydrostatic equilibrium
equation for the theory. Some physical properties of white
dwarfs, such as: mass, radius, pressure and energy density,
as well as their dependence on the parameter λ are derived.
More massive and larger white dwarfs are found for negative
values of λ when it decreases. The equilibrium configurations
predict a maximum mass limit for white dwarfs slightly above
the Chandrasekhar limit, with larger radii and lower central
densities when compared to standard gravity outcomes. The
most important effect of f (R, T ) theory for massive white
dwarfs is the increase of the radius in comparison with GR
and also f (R) results. By comparing our results with some
observational data of massive white dwarfs we also find a
lower limit for λ, namely, λ > −3 × 10−4.

1 Introduction

White dwarfs (WDs) are the final evolution state of main
sequence stars with initial masses up to 8.5–10.6 M�. They
correspond to 95–97% of all observed stars in the Universe
[1]. The main sequence progenitors can reach sufficiently
high core temperatures (8–12×108 K), to proceed to carbon
burning and produce either oxygen-neon (ONe) core WDs or
undergo a core-collapse supernova (SNII) via electron cap-
ture on the products of carbon burning.
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Chandrasekhar has shown that a WD cannot sustain a mass
over 1.44M�, establishing the so-called Chandrasekhar mass
limit [2]. If a WD grows over this limit, as in binary systems
in which a WD is receiving mass from a nearby star, a type Ia
supernova (SNIa) explosion may occur. SNIa progenitors are
expected to be similar, with nearly equal luminosity, therefore
being considered standard candles [3]. In fact, in the late
1990s, the use of SNIa led to the discovery that the expansion
of the Universe is accelerating [4,5].

Nevertheless, some super luminous SNIas were found
recently [6,7]. It has been suggested that their progenitors
are WDs that exceed the Chandrasekhar mass limit (2.1–2.8
M·) [6–11], being termed “super-Chandrasekhar WDs”.

WDs usually are not considered as a “laboratory” for
strong field regimes. However, general relativistic effects
have shown to be non-negligible in the massive and very mag-
netic WD regime [12–16]. Particularly, it has been shown in
[13] and [17] that the inclusion of general relativistic effects
tends to reduce the maximum mass of WDs with strong mag-
netic fields. Chandrasekhar and Tooper showed that instabil-
ity criteria for WDs under radial oscillations in a general
relativistic framework has its consequences for critical cen-
tral density depending on the composition of the star [18,19].
Moreover, in [20–22] it was shown that this critical central
density yields a larger minimum radius in comparison with
Newtonian gravity outcomes.

On this regard, despite the detection of gravitational waves
[23] and innumerable other positive results, as one can check,
for instance, in [24], there are two cosmological phenomena,
namely dark energy and dark matter, not well understood
within the General Relativity (GR) framework. Such a dark
sector of the universe composition is a possible indication
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that GR is not the ultimate theory of gravity, but a particular
case of a fundamental theory.

Also, the discovery of a very massive pulsar (PSR J1614-
2230) [25], with mass M = 1.97 ± 0.04M�, has led to
interpretative problems either on the neutron star physics or
on the background theory of gravity.

In fact, compact astrophysical objects, such as black ho-
les and neutron stars, are often used as a tool to constrain
extended gravity theories. For instance, in [26,27] the bounds
that could be placed on different gravitational theories using
gravitational wave detection from spiraling compact binaries
were investigated.

In particular, WD properties have been recently verified
from extended theories of gravity, as it can be checked, for
instance, in [28,29].

The authors of Ref. [29] have explored WD properties
from an extension of GR, named f (R) gravity, with R being
the Ricci scalar. They have shown that extended theories of
gravity effects are significant in high density WDs and that
the Chandrasekhar limit is not unique. By assuming f (R) =
R + αR2, with constant α, they have obtained super and
sub-Chandrasekhar limiting mass WDs, depending on the
magnitude and sign of α, getting in touch with observations
hardly explained within GR framework.

WD properties also proved to be useful to constrain modi-
fied theories of gravity. For instance, in [30] the free parame-
ters of a scalar-tensor theory of gravity was widely restricted
by WD observational data.

In the present work, we are interested in analyzing WDs
within the f (R, T ) gravity [31], with T being the trace of
the energy-momentum tensor. More precisely, we will inves-
tigate the hydrostatic equilibrium [32,33] of WDs in such a
theory.

The f (R, T ) gravity has as its starting point a gravitational
action which depends generally on R and T . In this way, after
the application of the variational principle, the field equations
of the model are expected to present correction terms on both
geometrical and material sides.

The f (R, T ) gravity application is motivated by its recent
outcomes in different areas. It has been shown that from a
minimal coupling between matter and geometry, predicted in
f (R, T ) theories, it is possible to obtain a flat rotation curve
in the halo of galaxies [34]. f (R, T ) models passed through
solar system tests in [35]. A complete cosmological scenario
was constructed from the f (R, T ) gravity in [36]. In [37],
a cosmological model in accordance with observations was
obtained from the simplest non-minimal matter-geometry
coupling within the f (R, T ) formalism. The validity of first
and second laws of thermodynamics was discussed in [38].

Furthermore, the hydrostatic equilibrium equation in the
f (R, T ) gravity was originally derived in [39] and further
studied in [40]. In [41], the stability of collapsing spherical
body coupled with isotropic matter was investigated. In [42],

the collapse equation in f (R, T )gravity was derived from the
perturbation scheme application. In [43], the instability range
of the f (R, T ) gravity for an anisotropic background con-
strained by zero expansions has been developed. Moreover,
the evolution of a spherical star by employing a perturbation
scheme was explored in [44,45].

As it shall be outlined below, the f (R, T ) gravity may be
an important tool to study WD macroscopical properties. It
also can present some advantages when compared to f (R)

gravity predictions for such objects, as we will show.

2 A brief review of the f (R, T ) gravity formalism

Proposed by Harko et al. [31], the f (R, T ) gravity is a gener-
alization of the f (R) theories (check, for instance, [46]). Its
gravitational action depends on an arbitrary function of both
the Ricci scalar R and the trace of the energy-momentum ten-
sor T . The dependence on T is inspired by the consideration
of quantum effects.

The f (R, T ) action reads [31]

S =
∫

d4x
√−g

[
f (R, T )

16π
+ Lm

]
. (1)

In (1), f (R, T ) is the general function of R and T , Lm is
the matter Lagrangian density and g is the determinant of the
metric tensor gμν . Throughout this work, it will be considered
the metric signature −2 and c = 1 = G.

The field equations of the theory are obtained by varying
the action with respect to the metric gμν , yielding [31]

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − ∇μ∇ν) fR(R, T )

= 8πTμν − fT (R, T )(Tμν + Θμν), (2)

where

fR(R, T ) ≡ ∂ f (R, T )

∂R
, fT (R, T ) ≡ ∂ f (R, T )

∂T
, (3)

Θμν ≡ gαβ δTαβ

δgμν
, Tμν = gμνLm − 2

∂Lm

∂gμν
. (4)

Still in Equation (2) above, Rμν represents the Ricci tensor,
� = ∇μ∇μ is the D’Alembertian and ∇μ is the covariant
derivative.

From the covariant derivative of the field equation (2), one
obtains [39,47,48]

∇μTμν = fT (R, T )

8π − fT (R, T )

×
[
(Tμν + Θμν)∇μ ln fT (R, T )

−1

2
gμν∇μT + ∇μΘμν

]
. (5)

123



Eur. Phys. J. C (2017) 77 :871 Page 3 of 8 871

We will consider the energy-momentum tensor of a perfect
fluid, such that

Tμν = (p + ρ)uμuν − pgμν, (6)

where p and ρ represent the pressure and the energy den-
sity of the fluid, respectively, and uμ is the four velocity of
the fluid, with uμuμ = 1 and uμ∇νuμ = 0. The energy-
momentum tensor and the conditions aforementioned imply
that

Lm = −p, (7)

Θμν = −pgμν − 2Tμν. (8)

In order to obtain exact solutions in the f (R, T ) theory,
it is necessary to consider a specific form for the function
f (R, T ). Following a previous work [39], we will consider
the functional form f (R, T ) = R+2 f (T ) with f (T ) = λT
and λ a constant. Such a functional form has been broadly
applied in f (R, T ) models [49–53] and allows the recovering
of GR by simply taking λ = 0.

By considering f (R, T ) = R + 2λT in Eqs. (2) and (5),
it follows that

Gμν = 8πTμν + λ[Tgμν + 2(Tμν + pgμν)], (9)

∇μTμν = − 2λ

8π + 2λ

[
∇μ(pgμν) + 1

2
gμν∇μT

]
, (10)

with Gμν in Eq. (9) representing the usual Einstein tensor.

3 Stellar structure equations in f (R, T ) gravity

The line element used to describe spherical objects follows
the form:

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2 θdφ2), (11)

where (t, r, θ, φ) are the Schwarzschild-like coordinates and
the exponents a(r) and b(r) are functions of the radial coor-
dinate r .

Considering the space-time metric (11) in the field equa-
tion (9) we obtain:

G0
0 = e−b

r2

(
b′r + eb − 1

)
= 8πρ + λ(3ρ − p), (12)

G1
1 = −e−b

r2

(
a′r − eb + 1

)
= −8πp + λ(ρ − 3p), (13)

G2
2 = G3

3 = e−b

4r

((
a′b′ − 2a′′ − a′2) r + 2(b′ − a′)

)

= −8πp + λ(ρ − 3p), (14)

in which primes (′) indicate derivatives with respect to r .

Now, we introduce a new function m(r) which depends
on the radial coordinate only, in such a form that

e−b = 1 − 2m

r
. (15)

By replacing it in Eq. (12) yields

dm

dr
= 4πρr2 + λ

2
(3ρ − p)r2, (16)

for which the function m = m(r) represents the gravita-
tional mass enclosed in a surface of radius r according to the
f (R, T ) gravity.

An additional equation is derived from (10) and reads

dp

dr
+ (ρ + p)

a′

2
= − λ

8π + 2λ
(p′ − ρ′). (17)

Considering the relation ρ = ρ(p) and Eqs. (13) and
(15) in (17), the hydrostatic equilibrium equation for the
f (R, T ) = R + 2λT gravity is obtained as

dp

dr
= −(p + ρ)

[
4πpr + m

r2 − λ(ρ − 3p)r

2

]

×
(

1 − 2m

r

)−1 [
1 + λ

8π + 2λ

(
1 − dρ

dp

)]−1

.

(18)

It is quite simple to recover the usual TOV equation [32,
33] in (18) by making λ = 0.

We remark that stellar equilibrium configurations are
found only for:

λ

8π + 2λ

(
1 − dρ

dp

)
> −1. (19)

If Eq.(19) is not satisfied, the sign of the pressure gradient is
changed, what makes the pressure to grow up from the center
of the star to its surface, instead of decreasing, which is nec-
essary for the star hydrostatic equilibrium. Since the sound
velocity v2

s = dp/dρ is in the interval 0 < dp/dρ < 1 and
for the WD equation of state (EoS), where the electron degen-
eracy pressure is very small compared to the energy density,
due to the very large ion contribution, dρ/dp becomes very
large, and we can rewrite (19) as

λ

8π + 2λ
<

dp

dρ
. (20)

Considering that dp/dρ tends to zero at the surface of the
WD, we have from (20) that only negative values for λ are
allowed.
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4 Numerical procedure, boundary conditions and
equation of state

By using the set of Eqs. (22) and (23), the equilibrium Eqs.
(16) and (18) will be solved numerically through the Runge-
Kutta 4th-order method for diverse values of central density
ρc and λ.

The boundary conditions in f (R, T ) gravity will be the
same as in GR, i.e., at the center (r = 0) we have

m(0) = 0, p(0) = pc and ρ(0) = ρc. (21)

The surface of the star r = R is reached when the pressure
vanishes, i.e., p(R) = 0.

The EoS which describes the fluid properties inside WDs
follows the model used for complete ionized atoms embed-
ded in a relativistic Fermi gas of electrons [2,54]:

p(kF ) = 1

3π2h̄3

∫ kF

0

k4√
k2 + m2

e

dk, (22)

ρ(kF ) = 1

π2h̄3

∫ kF

0

√
k2 + m2

ek
2dk + mNμe

3π2h̄3 k
3
F , (23)

where the last term of the right hand side of Eq. (23) is the ions
energy contribution, and mN represents the nucleon mass,
me the electron mass, kF is the Fermi momentum, h̄ is the
reduced Planck constant and μe = A/Z is the ratio between
the nucleon number A and the atomic number Z for ions, such
that in the present work we use μe = 2, valid for He, Ca,
and O WDs. We neglected the lattice ion energy contribution
that is small and responsible for a small reduction of the WD
radius [12].

5 Results

The mass of the WDs as a function of their total radii is shown
in Fig. 1 for six different values of λ. λ = 0 recovers the GR
case.

From Fig. 1, we note that the masses of the stars grow and
their total radii increase until attain the maximum mass point,
which will be represented by full magenta circles. After that,
the masses decrease with the total radii. It is important to
remark that the total maximum mass grows with the decre-
ment of λ and the radius increases much more when we con-
sider a fixed star mass. We also mention that the curves above
tend to a plateau when λ is ≈ −4 × 10−4. For smaller values
of the parameter λ, all stars are unstable, what can be seen in
Figs. 1 and 4 for λ = −1 × 10−3, where ∂M/∂R < 0 and
the necessary stability criterion ∂M/∂ρc > 0 are not satis-
fied. So, from the equilibrium configurations, the minimum
value allowed for λ is ∼ −4 × 10−4, which defines a limit

Fig. 1 Total mass as a function of the total radius for different values
of λ. The full magenta circles indicate the maximum mass points

Fig. 2 Mass as a function of the radius for massive WDs with different
values of λ. The blue circles with error bars represent the observational
data of a sample of massive WDs taken from the catalogs [55,56]

for the maximum mass of the WD in the f (R, T ) gravity to
be ∼ 1.467M�.

In addition, in Fig. 2 we highlight the massive WDs region
of Fig. 1, in which we have also inserted some observational
data taken from the catalogs of Refs. [55,56]. It can be clearly
seen from Fig. 2 that some of the data can hardly be described
purely from General Relativity, while some values of λ can,
indeed, predict the existence of massive WDs with larger
radii.

Thus, according to observations of some massive WDs,
in particular the most massive, WD (1659+440J), found in
[55], the inferior limit for λ is λmin ≈ −3×10−4. We regard
that this restriction is obtained by neglecting the WD data
(0003+436J) with the largest error bar in Fig. 2. Such a con-
straint is more restrictive than the one obtained from Fig. 1,
with no observational data.
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In Fig. 3 the energy density, fluid pressure and mass profile
in the interior of the star are plotted on the top, central and
bottom panels, respectively, as functions of the radial coor-
dinate. We take into account ρc = 109 [g/cm3] and different

Fig. 3 On the top panel it is presented the star energy density as a
function of the radial coordinate, on the central panel we show the star
pressure fluid against the radial coordinate and on the bottom panel we
display the mass (in solar masses, M�) inside the star versus the radial
coordinate. We consider ρc = 109 [g/cm3] and the displayed values of λ

values of λ. On the top and central panels, we can observe
that the energy density and the fluid pressure decrease mono-
tonically towards the surface of the object.

On the other hand, concerning the bottom panel, it can be
noted that the mass profile m/M�, with M� representing the
Sun’s mass, grows until it reaches the surface of the star. It
can also be seen that the total mass of the star increases with
λ. This is due to the effect caused by the term 2λT .

Figure 4 shows the behavior of the total mass against the
central energy density of the stars. The values considered
for the central energy density are between 1.3 × 108 and
4.2×1011 [g/cm3]. The upper limit is the neutron drip limit,
i.e., the point where the WD turn into a neutron star. We can
note that the total mass grows monotonically with central
energy density until it attains a maximum value, except for
λ = −1 × 10−3. After that point, the stellar mass decreases
with the increment of ρc and becomes unstable.

Additionally, in Fig. 4, we observe an increment of the
maximum mass with λ (see also Table 1). For example, the
maximum mass value found in GR case (λ = 0) is 1.417M�,
while for λ = −4×10−4, it is 1.467M�. A similar effect for
λ in the structure of the stars has been found for neutron stars
and strange stars [39,57]. Moreover, it is remarkable that for
lower values of λ, the maximum mass point is reached for
lower values of ρc, which can be considered an advantage of
this approach when compared with f (R) theory of gravity
or GR outcomes, as we will argue in the next section.

In Fig. 5 the dependence of the total radius with the central
energy density is shown. In all cases presented, we can note
that the total radius decreases when the central energy den-
sity is incremented. Larger radii are found for smaller central
energy densities when λ is decreased. This is the most impor-
tant effect of f (R, T ) theory for massive WDs, that is, the
increase of the radius, and as a consequence, the decrease of
the central density, in comparison with GR and also f (R)

Fig. 4 The dependence of the total mass of the white dwarfs on central
density for different values of λ
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Table 1 The maximum masses of the white dwarfs found for each value
of λ with their respective total radii and central energy densities

λ M/M� R [km] ρc [g/cm3]
0.0 × 10−4 1.416 1021 2.307 × 1010

−0.5 × 10−4 1.420 1146 1.803 × 1010

−1.0 × 10−4 1.425 1247 1.558 × 1010

−2.0 × 10−4 1.437 1590 9.567 × 109

−3.0 × 10−4 1.450 2168 5.345 × 109

−4.0 × 10−4 1.467 2970 3.366 × 109

Fig. 5 The total star radius versus central density for different values
of λ

results. This is mainly due to the fact that the sound velocity
becomes very small near the surface of the star, so that the
term (19) weakens the gradient of pressure, yielding to the
predicted larger radii.

In Table 1 the maximum masses are presented, with their
total radii and central energy densities, for each value ofλ. We
can see that more massive and larger WDs are found with the
decrement of λ. The values of maximum masses are obtained
for lower central densities (range of ρc ∼ 109−1010[g/cm3])
when compared with those predicted in the f (R) gravity or
GR scope (ρc ∼ 1011[g/cm3]) [29].

6 Discussion and conclusions

In this paper we investigated the effects of an extended theory
of gravity, namely f (R, T ) gravity, in WDs, by developing
the hydrostatic equilibrium analysis for such a theory. Our
main goal was to check the imprints of the extra material
terms - coming from the T−dependence of the theory - on
WD properties.

One can argue that the hydrostatic equilibrium of com-
pact objects was already performed, originally in [39] and

posteriorly in [40], which is true, however those analysis
have not considered the WDs EoS (22)-(23) to close the sys-
tem of equilibrium equations to be solved, which character-
izes the path to obtain the new information content of the
present paper when compared to [39,40]. In this way, since
recently it was shown that alternative gravity theories may
contribute also to the macroscopical features of WDs (check,
for instance, [28,29]), the present analysis is worthed.

The hydrostatic equilibrium configurations of WDs in
alternative gravity theories others than f (R, T ) gravity can
be seen in the recent literature. In [28] the consequences of
modifications in GR were deeply analyzed in the WDs per-
spective. A similar approach can be seen in [29]. In [30] it was
shown that WDs provide a unique setup to constrain Horn-
deski theories of gravity. In [58], it was explored the effects
that WDs suffers when described in various modified grav-
ity models, such as scalar-tensor-vector, Eddington inspired
Born-Infeld and f (R) theories of gravity. Furthermore, WDs
have been used to constrain hypothetical variations on the
gravitational constant [59–61].

The equilibrium configurations of WDs were analyzed for
f (R, T ) = R + 2λT with different values of λ and central
energy densities. We showed that the extended theory of grav-
ity affects the maximum mass and radius of WDs depending
on the value of λ.

Since gravitational fields are smaller for WDs than for
neutron stars or quarks stars, the scale parameter λ used here
is small when compared to the values used in Ref. [39]. In
this way, WDs data can be used as a tool to constrain an
inferior limit on λ, which is λmin ≈ −3 × 10−4.

The values of the parameter λ used in the present article
are clearly small when compared to those of Ref. [39], in
which the hydrostatic equilibrium configurations of neutron
and quark stars were calculated in f (R, T ) gravity. This may
be due to the fact that the compactness M/R of WDs is
small when compared to those of neutron and quark stars. In
fact, it can be seen in [39] that the values of λ needed to get
stable quark stars are greater than the values used for neutron
stars, as a probable consequence of the higher compactness
of quarks stars in relation to neutron stars. In this way, these
analysis indicate that higher compactness objects would need
higher deviations from GR.

We found that for λ = −4 × 10−4, the maximum mass
of the WD is 1.47M�. This value is determined in a central
energy density ∼ 85% lower and radius ∼ 110% greater than
those values used to find the maximum mass value in the GR
case (λ = 0). The outcomes for the central energy density
are also smaller than those obtained in f (R) = R + αR2

gravity, for different values of α [29].
We argue about the advantages of having WDs with lower

central energy densities in the following. In [62] some con-
straints on the central density of a WD were obtained. The
authors have derived a system of equations and inequalities
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that allows one to determine constraints on ρc. They have
found that ρc ≤ 109 g/cm3. Moreover, in a seminal paper
by Hamada and Salpeter [63], it was found that for the max-
imum masses of WDs, ρc ∼ 109 − 1010 g/cm3. Recently,
WD calculations in GR also showed that central energy den-
sities are limited by nuclear fusion reactions [12,16,64]. It is
worth quoting that the values of the central energy densities
that we have obtained for the f (R, T ) gravity respect these
constraints. In contrast, what has been found for the central
energy density of WDs in f (R) gravity is ρc ∼ 1011 g/cm3

[29].
As a direct extension of the present work, one can also

consider quadratic terms on T for the functional form of
f (R, T ), that is, f (R, T ) = R + 2λT + ξT 2, with ξ being
a free parameter. Since the extra material terms seem to
yield an increment on the mass of WDs, one may expect
the presence of the quadratic term T 2 to significantly elevate
the Chandrasekhar limit and predict the existence of super-
Chandrasekhar WDs [6,7], which still require convincing
physical explanation.

Also, in a further work, the analysis presented here can be
performed in models of nonminimal torsion-matter coupling,
like those in References [65,66]. While the hydrostatic equi-
librium of quark stars has already been performed in such
models [67], the application for neutron stars and WDs still
lacks.
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