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Abstract In this paper, we have applied the Lorentz-
invariance violation (LIV) class of dispersion relations (DRs)
with the dimensionless parameter n = 2 and the “sign of
LIV” η+ = 1, to a phenomenological study of the effect
of quantum gravity in a strong gravitational field. Specifi-
cally, we have studied the effect of the LIV-DR induced quan-
tum gravity on the Schwarzschild black hole thermodynam-
ics. The result shows that the effect of the LIV-DR induced
quantum gravity speeds up the black hole evaporation, and
its corresponding black hole entropy undergoes a leading
logarithmic correction to the “reduced Bekenstein–Hawking
entropy”, and the ill-defined situations (i.e. the singularity
problem and the critical problem) are naturally bypassed
when the LIV-DR effect is present. Also, to put our results in
a proper perspective, we have compared results with the ear-
lier findings by another quantum-gravity candidate, i.e. the
generalized uncertainty principle (GUP). Finally, we con-
clude from the inert remnants at the final stage of the black
hole evaporation that, the GUP as a candidate for describing
quantum gravity can always do as well as the LIV-DR by
adjusting the model-dependent parameters, but in the same
model-dependent parameters the LIV-DR acts as a more suit-
able candidate.

1 Introduction

In 2002, Amelino-Camelia constructed a famous theory with
two observer-independent constants (including the speed of
light “c” and the Planck length “L p”) of relativity, which was
known as Double Special Relativity (DSR) [1]. In the DSR,
the modified dispersion relation naturally leads to the Planck-
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scale departure from the Lorentz symmetry, which is referred
to as the Lorentz-invariance violation of dispersion relations
(LIV-DRs) [1]. In the past few decades, since the sponta-
neous violation of Lorentz symmetries in the framework of
the string theory was proposed in [2], the study of the LIV has
attracted great research enthusiasm, which appeared to bear
much fruit [3–9]. For instance, Coleman and Glashow have
suggested a self-consistent framework for discussing the pos-
sible LIV [4]. In the standard model extension (SEM), the
Lorentz-invariance violation has been described by the effec-
tive field theory [5,6]. More importantly, Lorentz invariance
violation has also been intensively investigated in the frame-
work of quantum-gravity theories. In string theory, the spon-
taneous breakdown of Lorentz symmetry can be found when
some tensor fields acquired the nonzero vacuum expectation
value [7]. In loop gravity and Hořava–Lifshitz gravity, one
finds that also Lorentz-invariance violation is incorporated
[8,9]. At present, it is generally believed that the LIV might
act as a relic probe for quantum gravity. Furthermore, there
are a lot of remarkable experimental phenomena that have
been studied, in which constraints on the LIV have attracted
a lot of attention [10–21]. Succinctly stated, one can see that
the Lorentz-invariance violation typically at the Planck scale
has received more and more interests both theoretically and
experimentally in recent years.

For simplicity, we here consider the preferred frames in
which the dispersion relation breaks the boost invariance but
preserves rotation invariance. In this case, by considering the
phenomenological levels, the LIV-DR that may be induced
by quantum gravity can be expected to take the following
form for the massive particles [10–14]:

E2 = p2 + m2 − η± p2
(

E

ξnMQG

)n

, (1)

where this relation occurs at high energy scales. Also, it is
only convenient for us to choose the form (1) to work in the
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current context. In the SME, other different forms of LIV-
DR can and do arise [6,22–25]. The quantities E,m and p
denote the energy, the mass and the 3-component momentum
of particles, respectively. η± is the “sign of the LIV” [10], and
the sign η+ = 1 represents a subluminal correction and the
sign η− = −1 denotes a superluminal one [14]. However, it
is worth noting that one should employ the sign η+ = 1
to coincide with the experimental astrophysical phenom-
ena, which is emphasized by Jacob and Amelino-Camelia
[10,14]. The energy scale of quantum gravity EQG can be
expected to be in the neighborhood of the Planck energy
scale (Ep ≈ 1028eV) [26,27]. The coefficient ξn is a dimen-
sionless parameter, and lower bounds from gamma-ray bursts
(GRBs) have been obtained for the case n = 1, ξ1 ≥ 0.01,
and ξ2 ≥ 10−9 from flaring active galactic nuclei (AGNs)
for the case n = 2 [14,15]. Here, n is also a dimensionless
parameter, usually appearing as an integer. In our consider-
ation, values at n ≤ 0 should be excluded on a high energy
scale, because huge deviations at low energies would occur
at these levels and lead to a strong limit [28]. In the case of
n ≥ 3, the quantum-gravity corrections would be too small to
be observed [10,21]. As a result, more and more researchers
have come to have confidence in the values of n = 1 for
linear suppression and n = 2 for higher-price quadratic sup-
pression by the Planck mass (1/Mp or L p) [3,10,14,21].
For n = 1, Jacobson has shown that the observation of 100-
MeV synchrotron radiation from the Crab Nebula provides
a new constraint η > −7×10−8 on the electron parameter η

in the context of the effective field theory [3].1 Clearly, this
condition is so strong that Jacobson concludes that quantum-
gravity scenarios implying this sort of the Lorentz violation
are not viable, and the fact that n = 1 was ruled out might
consequently be a result of the CPT symmetry,2 rather than
the Lorentz symmetry. Later, by reviewing Jacobson’s paper
[3], Ellis has reported that the synchrotron constraint pro-
vided by the Crab Nebula on the electron’s dispersion relation
implies that the situation n ≤ 1.74 for the electron should
be removed [29]. In brief, we have good reason to believe
that if one expects Eq. (1) to act as a candidate of quantum
gravity, we should choose the case n = 2 with a form of
constraining the Lorentz violation suppressed by the second
power, E2/(ξ2

2 M
2
p). However, one may argue that it would be

impossible to test this quadratically suppressed LIV effects
in experiments. To answer this question, Amelino-Camelia
has observed that the photon and neutrino observatories do
have the required capability for providing the first elements

1 The coefficient η can be found in [3], which is not same as η± in Eq.
(1) of this paper.
2 As described in Ref. [30], the symmetry under the combinations of
charge conjugation (C), parity (P), and time reversal (T ) transforma-
tions at present appears to be the only discrete symmetry of quantum
mechanics respected in nature experimentally.

of an experimental program [10]. For n = 2, in the spirit of
the time-of-arrival analysis of gamma-ray bursts, especially
when we compared the time of arrival of these neutrinos
emitted by gamma-ray bursts with the corresponding time
of arrival of low-energy photons, one finds that the expected
time-of-arrival difference can reach Δt ∼ 10−6 s. These
remarkable LIV effects in the case n = 2 are within the
realm of possibilities of future observatories, as described by
Amelino-Camelia [10]. Based on the above viewpoints, the
most popular LIV-DR should always be fixed to the case of
n = 2, which is usually expressed as

E2 = p2 + m2 − p2E2l2p, (2)

where l p = L p/ξ2 and L p = 1/Mp is the Planck length.
A black hole, as a special object with the strong gravita-

tional field, has many interesting thermodynamic properties
such as a negative heat capacity and so on. So, when the parti-
cle is gradually emitted from the black hole horizon, the black
hole temperature becomes higher and higher till the final
stage of the black hole evaporation. Thus, the energy of the
emitted particle is getting higher and higher during black hole
emission. As a result, the quantum effect of gravity becomes
more and more important in the study of black hole radiation.
The introduction of gravity into quantum theory brings about
an observer-independent minimum length scale. A minimal
length also occurs in string theory [7], loop quantum grav-
ity [8], Hořava–Lifshitz gravity [9], noncommutative geom-
etry [31], etc. Moreover, some Gedanken experiments in the
spirit of black hole physics have also supported the idea of
the existence of a minimal measurable length [7–9,31–34].
Therefore, the existence of a minimal observable length is
a common feature of all promising quantum-gravity candi-
dates. In the quantum-gravity candidate of doubly special rel-
ativity (DSR), a minimal and observer-independent length is
preserved at the expense of the Planck-scale violation from
the Lorentz invariance for the dispersion relation [1], which
we name the LIV-DR. In another quantum-gravity candi-
date, the generalized uncertainty principle (GUP), a minimal
observable length is preserved by modifying the uncertainty
principle in quantum physics, where the dispersion relation
is not modified and the minimal length is described as an
observer-dependent parameter due to the Lorentz symme-
try [35–42]. Obviously, in the LIV-DR and GUP candidates,
quantum gravity is phenomenologically analyzed from dif-
ferent perspectives, so it is interesting to compare with their
results. On the other hand, when the quantum-gravity effects
are present, many physical phenomena that are absent at
low energies appear at high energies, which maybe provide
an effective window to solve some physical paradoxes that
always occur in the semiclassical theory. Motivated by these
facts, our primary aim in this paper is to apply the LIV-DR
with the dimensionless parameter n = 2 and the “sign of
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LIV” η± = 1 to phenomenologically study the effect of
quantum gravity in a strong gravitational field. Specifically,
we have studied the effect of the LIV-DR induced quantum
gravity on the Schwarzschild black hole thermodynamics and
compared our results with the earlier findings by the GUP.

The outlines of this paper are as follows. In Sect. 2, we
rewrite the Dirac equation with the inclusion of the LIV-DR
in the curved spacetime, and we study the LIV-DR effect on
the emission rate of the Schwarzschild black hole in the tun-
neling framework.3 In Sect. 3, in the presence of the LIV-DR
induced quantum gravity, we further analyze the thermody-
namic properties at the final stage of the black hole evapora-
tion, and we reconsider the well-known singularity problem
and the critical problem that often occur in a semiclassical
theory. Also, we compare our results with the GUP findings
by Nozari [38] and Chen [41,42]. Section 4 ends up with
conclusions and discussions.

2 Quantum gravity and fermions’ tunneling

In this section, we attempt to study the effect of the LIV-DR
induced quantum gravity on fermions’ tunneling radiation.
Before that, we should first rewrite the Dirac equation with
the inclusion of the LIV-DR. In the presence of the LIV-DR
(2), it is easy to write the modified Dirac equation for spin-1/2
particles as4 [64]

[
γ μ∂μ + m − il p

(
γ t∂t

) (
γ j∂ j

)]
× Ψ = 0. (3)

Here μ is for the spacetime coordinates, j is for the space
coordinates, and γ μ is the ordinary gamma matrix. This
modified Dirac equation has been proved to be compat-
ible with the quadratically suppressed dispersion relation
(2) when one adopts the wave function as the plane-wave
solution Ψ (x) = Ψ (p) exp

[
i
(−→p · −→x − p0 · x0

)]
to Eq.

(3) [64]. Here, if we want to study the fermions’ tunnel-
ing radiation in curved spacetime, we should first replace
the gamma matrix and the partial derivative in (3) with
γ μ → γ μ, ∂μ → Dμ = ∂μ + Ωμ + (

i
/
h̄
)
eAμ, where γ μ

satisfies the relation {γ μ, γ ν} = γ μγ ν + γ νγ μ = 2gμν I ,
eAμ is the charge term of the Dirac equation, and Ωμ is the
spin connection. So, in curved spacetime, the deformed Dirac

3 Here, the Hawking radiation is treated as a tunneling process at the
horizon of black hole [43–63]. This is a popular and intuitive method to
study the Hawking radiation of a black hole, and it provides a possible
solution for the black hole information loss after considering the black
hole background as dynamical and accounting for the conservation of
energy.
4 We note that this observation extends to the Dirac equation (3), which
arises from a very particular (D = 5→the dimension 5 operators) term
in the SME, however, many other choices are possible [6,22–25].

equation with the inclusion of the LIV-DR can be written as

[
γ μDμ + m

h̄
− i h̄l p

(
γ t Dt

) (
γ j D j

)]
× Ψ = 0. (4)

Following the standard ansatz, it is necessary for us to rewrite
the wave function of the Dirac equation as

Ψ = ξ
(
t, x j

)
× exp

[
i

h̄
S

(
t, x j

)]
, (5)

where S is the action of the tunneling fermions. Substituting
this wave function into the deformed Dirac equation (4) and
carrying out the separation of variables,

S = −ωt + W (r) + Θ(θ, ϕ) (6)

for the spherically symmetric spacetime, we finally obtain
the following motion for the action S:[
iγ μ(∂μS + eAμ) + m − il pγ

t (ω − eAt )γ
j (∂ j S + eA j )

]
× ξ(t, r, θ, ϕ) = 0, (7)

where ∂t S = −ω, and ω is the energy of the emitted
Dirac particles. The terms of h̄Ωμ have been neglected
at high energies. In this paper, we take the Schwarzschild
black hole as an example to study the effect of LIV-DR
induced quantum gravity on the fermions’ tunneling radi-
ation. For the Schwarzschild black hole, the line element is
ds2 = − f (r)dt2+g(r)−1dr2+r2

(
dθ2 + sin2θdϕ2

)
, where

f (r) = g (r) = 1−2M/r , and rh = 2M is the event horizon
of the black hole. For the Dirac particles with spin 1/2, there
are two spin states, i.e. a spin-up state (↑) and a spin-down
state (↓). In our case, we choose the spin-up state without
loss of generality. So, we have

ξ↑(t, r, θ, ϕ) =
(
A(t, r, θ, ϕ)ζ↑
B(t, r, θ, ϕ)ζ↑

)
, (8)

where ζ↑ =
( 1

0

)
for the spin-up state. Now, we choose

the suitable gamma matrices to further simplify the Dirac
equation (7). For the Schwarzschild spacetime, we choose

γ t = √
f −1

( 0 I
−I 0

)
, γ r = √

g
( 0 σ 3

σ 3 0

)
,

γ θ = √
gθθ

( 0 σ 1

σ 1 0

)
, γ ϕ = √

gϕϕ
( 0 σ 2

σ 2 0

)
,

(9)

where σ i (i = 1, 2, 3) represent the Pauli matrices. Substi-
tuting ξ↑(t, r, θ, ϕ) and Eq. (9) into Eq. (7), we finally obtain
four simplified equations related to the functions A and B.
Two of them are

B
(
−iω/

√
f + i

√
g∂rW

)
+ A

(
m − il pω∂rW

)
= 0, (10)
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A
(
iω/

√
f + i

√
g∂rW

)
+ B

(
m + il pω∂rW

)
= 0. (11)

In Eqs. (10) and (11), if the functions A and B are required to
have non-trivial solutions, the determinant of the coefficient
matrices must be zero. That requires

∂rW (r) = ±
√(ω2

f 2 − m2

f

)
×

(
1 − l2pω

2

2 f

)
, (12)

where we have carried out the Taylor expansion with respect
to l p, and the high-order terms, i.e. O(l4p), have already
been neglected. Basing on the value of ∂rW (r), by using the
residue principle near the event horizon of the Schwarzschild
black hole [65,66], we have

W± = ±2iπωM
(

1 + l2p
(
m2/4 − ω2)), (13)

where the sign ± corresponds to the outgoing/ingoing Dirac
particle across the event horizon of the black hole. Based on
the WKB approximation, the relationship between the imag-
inary part of the action and the tunneling probability is given

by P = exp
(
− 2

h̄ ImS
)

. Then, during the Dirac particle’s

tunneling across the black hole horizon, the total emission
rate is

Γ = Pout

Pin
= exp(−2ImW+)

exp(−2ImW−)

= exp

[
−8πMω

(
1 − l2p

(
ω2 − m2

4

))]
.

(14)

Clearly, a small correction to the tunneling rate has been
exhibited by the effect of the LIV-DR induced quantum grav-
ity. At first sight, this correction speeds up the black hole
evaporation, which is consistent with the findings by Nozari
[38–40] and Banerjee [67], but it is in contradiction with
those by Chen [41,42]. In [38–40,67], the effect of quantum
gravity was present by demanding the generalized uncer-
tainty principle (GUP) with the incorporation of both a min-
imal observable length and a maximal momentum. Instead,
the simplest GUP relation which implies only the appearance
of a nonzero minimal length was incorporated in [41,42].
Magueijo and Smolin have shown that in the context of the
DSR, a test particle’s momentum cannot be arbitrarily impre-
cise and therefore there is an upper bound for momentum
fluctuations [68,69]. Then, it has been shown that this may
lead to a maximal measurable momentum for a test particle
[70]. That means that, in the GUP model, the appearance of
the maximal momentum could provide a better description
of the effect of quantum gravity. Combined with these facts,
it also is confirmed by (14) that, as a candidate for describing
quantum gravity, the LIV-DR with the dimensionless param-
eter n = 2 and the “sign of LIV” η± = 1 can always do as

well as the GUP with a minimal observable length and a max-
imal momentum. On the other hand, this correction (14) due
to the presence of LIV-DR induced quantum gravity becomes
drastic at the Planck scale, and the final stage of the black
hole evaporation would exhibit some interesting properties,
which will be detailed in Sect. 3. In addition, the quantum-
gravity correction of the tunneling rate (14) is related not
only to the mass of black hole, but also to the Planck length
and the emitted fermions’ mass and energy. So, we see that
in the presence of the quantum-gravity effect, the emission
spectrum cannot be strictly thermal. This happens to coincide
with Parikh–Wilczek’s observation [47], where a leading cor-
rection to the tunneling rate has been present by the incorpo-
ration of the emitted particle’s self-gravitational interaction.
However, because of the lack of correlation between differ-
ent emitted modes in the black hole emission spectrum, the
form of the Parikh–Wilczek correction is not adequate by
itself to recover information [93]. This semiclassical correc-
tion with the incorporation of a minimal measurable length
and possible resolution of the information loss problem in
this framework has been studied in [39]. Later, in the tun-
neling framework, further research with the GUP including
all natural cutoffs showed that information emerges continu-
ously during the evaporation process at the quantum-gravity
level [38]. This property has the potential to answer some
questions about the black hole information loss problem and
provides a more realistic background for treating the black
hole evaporation in its final stage. In fact, these observations
only provide evidence of correlations between the two tun-
neling particles in the presence of quantum gravity, but they
are not adequate by themselves to recover information. Sec-
tion 4 ends up with some discussion of the information loss.

3 Remnant values of temperature, mass and entropy

At the quantum-gravity level, an interesting attempt is to
observe the Planck-scale physics. At the final stage of the
black hole evaporation, some exciting findings due to the
presence of the quantum-gravity effect would be exhibited.
In this section, with the inclusion of the LIV-DR induced
quantum-gravity effect, we attempt to obtain the Planck-
scale thermodynamic quantities at the final stage of the
black hole evaporation. Before that, we should first find
the quantum-gravity induced thermodynamic relations. As
defined by [41,42,71–77], using the principle of “detailed
balance” for the emission rate (14), it is easy for us to obtain
the effective temperature of the Schwarzschild black hole,

that is, T = Th
(

1 + l2p
(
ω2 − m2/4

))
, where l p = L p/ξ2

and L p = 1/Mp is the Planck length, Th = M2
p/(8πMkB)

is the standard semiclassical temperature of the black hole
and other terms are the corrections due to the quantum-
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Fig. 1 The LIV-DR induced black hole heat capacity versus its mass,
where L p = kB = 1

gravity effect, and we use the relations c = h̄ = 1 and
h̄ = L pMp = GM2

p. To further facilitate our calculations,
deforming the effective temperature at the final stage of black
hole evaporation, we have

M = M2
p

8πT kB

(
1 + k2

BT
2L2

p

ξ2
2

)
, (15)

where we have approximately replaced ω in the effective tem-
perature with the characteristic energy of the emitted particle
[37,67]. For the particle with temperature T , its characteris-
tic energy is given by kBT [67]. Normally, a black hole has
a negative heat capacity, so its temperature would increase
when the black hole loses mass and energy by the emission
process. In Fig. 1, we show the LIV-DR induced black hole
heat capacity versus its mass for different values for ξ2. Obvi-
ously, the heat capacity of the black hole under the quantum-
gravity corrections is bigger than that of the semiclassical
case. With the increase of the parameter ξ2, the corrected
heat capacity is much closer to the semiclassical one.

When considering the quantum-gravity effect into the
emission process, the negative heat capacity increases mono-
tonically as the energy gradually reaches the Planck energy.
There is a point at which the heat capacity vanishes. The
corresponding temperature is considered to be the maximum
temperature attainable by black hole evaporation. So, at the
final stage of the black hole evaporation, there is no further
change of the black hole mass with its temperature. This
means that the heat capacity of the black hole defined by
C = dM

dT becomes zero, at which the emission process ends
with a finite remnant mass and temperature. According to
Eq. (15), the final stage of the black hole evaporation leaves
the remnant temperature

Trem = ξ2Mp

kB
, (16)
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Fig. 2 The LIV-DR induced black hole temperature versus its mass

and the corresponding remnant mass given by

Mrem = Mp

4πξ2
. (17)

Alternatively, the remnant mass can also be obtained by min-
imizing the black hole entropy, that is, dS

dM = 0, and for the

second derivative d2S
dM2 > 0. In Fig. 2, we show the LIV-DR

induced black hole temperature versus its mass for differ-
ent values for ξ2. Obviously, in the presence of the LIV-DR
effect, the quantum-gravity corrected temperature is higher
than the semiclassical case. With the increase of the parame-
ter ξ2, the corrected temperature is much closer to the semi-
classical temperature, meanwhile the final stage of the black
hole evaporation leaves a higher remnant temperature and a
smaller remnant mass.

Next, we attempt to obtain the modified black hole entropy
in the presence of the LIV-DR effect. According to the first
law of black hole thermodynamics, the black hole entropy is
given by

S =
∫

dM

T
=

∫
CdT

T
= kB

16π

[( Mp

kBT

)2+ 1

ξ2
2

ln
(kBT

Mp

)2]
.

(18)

So, at the final stage of the black hole evaporation, we are
left with the remnant entropy,

Srem = kB

16πξ2
2

(
1 − ln

1

ξ2
2

)
. (19)

In (18), the corrected black hole entropy is expressed in
terms of the corrected temperature, so it is inconvenient to
observe the quantum-gravity corrections to the semiclassi-
cal Bekenstein–Hawking entropy. To specifically exhibit the
quantum-gravity induced black hole entropy in terms of the
semiclassical Bekenstein–Hawking entropy, we should first
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find an expression for T 2 in terms of M . We can do this by
squaring (15), that is,

(kBT

Mp

)2 =

[(
8πM
Mp

)2 − 2
ξ2

2

]
±

√[(
8πM
Mp

)2 − 2
ξ2

2

]2 − 4
ξ4

2

2ξ−4
2

.

(20)

Here, only the part with the (−) sign is acceptable, since the
(+) part cannot produce the semiclassical mass–temperature
result in the absence of the quantum-gravity effect (i.e. ξ−2

2 =
0). Now, rearranging (20) with the binomial expansion, we
have

(kBT

Mp

)2 = 1[(
8πM
Mp

)2− 2
ξ2

2

]
⎡
⎢⎣1+ ξ−4

2[(
8πM
Mp

)2 − 2
ξ2

2

]2 + · · ·
⎤
⎥⎦ .

(21)

Substituting (21) into (18), we can obtain the modified black
hole entropy

S

kB
=

( SBH

kB
− 2

16πξ2
2

)
− 1

16πξ2
2

ln
( SBH

kB
− 2

16πξ2
2

)

+
∞∑
j=0

c j (ξ
−2
2 )

( SBH

kB
− 2

16πξ2
2

)− j − 1

16πξ2
2

ln16π,

(22)

where the semiclassical Bekenstein–Hawking entropy is
given by SBH = kB

4πM2

M2
p

, and the coefficients c j are func-

tions of ξ−2
2 . This is the modified black hole entropy in

the presence of the LIV-DR induced quantum-gravity effect,
and the semiclassical Bekenstein–Hawking entropy would
be reproduced when the quantum-gravity effect is absent (i.e.
ξ−2

2 = 0). We subsequently attempt to obtain the area theo-
rem from the expression of the modified black hole entropy
(22). Before that, we introduce a new variable Ã defined by
Ã = 16πG2M2 − 2

4πξ2
2
G2M2

p = A − 2
4πξ2

2
L2
p, which is

named the reduced area, and A = 16πG2M2 is the usual
area of the black hole horizon. In terms of the reduced area,
the modified black hole entropy can be written in a familiar
form,

S

kB
= Ã

4L2
p

− 1

16πξ2
2

ln
( Ã

4L2
p

)

+
∞∑
j=0

c j (ξ
−2
2 )

( Ã
4L2

p

)− j − 1

16πξ2
2

ln16π.

(23)

This is the area theorem in the presence of the LIV-
DR induced quantum-gravity effect. The usual Bekenstein–
Hawking semiclassical area law is reproduced for ξ−2

2 = 0.
This quantum-gravity induced area theorem looks like the
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Fig. 3 The LIV-DR induced black hole entropy versus its mass
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Fig. 4 The LIV-DR induced remnant entropy versus ξ2

standard modified area theorem [71–73,78–91], with the role
of the usual area A being played by the reduced area Ã. We
also note that as usual the leading order correction term to the
black hole entropy has a logarithmic nature, which is con-
sistent with the earlier findings by the loop quantum gravity
considerations [71–73,79,91], the field theory calculations
[84,85], the quantum geometry method [78,90], and the sta-
tistical method [87,88]. The higher order corrections involve
inverse powers of the reduced area Ã. In Fig. 3, we have
shown the LIV-DR induced black hole entropy versus its
mass in the different values for ξ2. Obviously, the quantum-
gravity corrected entropy is lower than the semiclassical case.
With the increase of the parameter ξ2, the corrected entropy
is much closer to the semiclassical entropy.

Also, in Fig. 4, we have shown the LIV-DR induced rem-
nant entropy versus ξ2. Obviously, when 0.6065 ≤ ξ2 ≤ 1,
the remnant entropy increases with the increasing parameter
ξ2. When ξ2 > 1, the remnant entropy decreases with the
increasing parameter ξ2. At the point ξ2 = 1, the remnant
entropy reaches a maximum.

When the reduced area is zero (i.e. Ã = 0), there is a
singularity for the modified black hole entropy (23), which

123



Eur. Phys. J. C (2017) 77 :666 Page 7 of 10 666

corresponds to the singular mass given by

Msin =
√

2Mp

8πξ2
. (24)

On the other hand, the critical mass below which the tem-
perature (20) becomes a complex quantity is given by

Mcri = Mp

4πξ2
. (25)

In short, the quantum-gravity induced LIV-DR speeds up
the black hole evaporation, and its corresponding black hole
entropy undergoes a leading logarithmic correction to the
“reduced Bekenstein–Hawking entropy”. At the final stage
of the black hole evaporation when the heat capacity reaches
zero, the quantum-gravity effect stops the further collapse of
the black hole with the remnant mass Mrem, the remnant tem-
perature Trem and the remnant entropy Srem. We also note that
the remnant mass Mrem is greater than the singular mass Msin

but equal to the critical mass Mcri. So, during the black hole
evaporation, we can easily find that the singularity problem
is naturally avoided, and the reduced area is always positive.
Meanwhile, we manage to avoid the critical problem of deal-
ing with the complex values for the thermodynamic entities.
Consequently, ill-defined situations are naturally bypassed in
the presence of LIV-DR induced quantum-gravity effects. In
addition, we have shown in Figs. 1, 2 and 3 that the quantum-
gravity effect lowers the black hole entropy, but it elevates the
black hole heat capacity and temperature. In Fig. 4, we have
shown that the remnant entropy increases with the increas-
ing parameter 0.6065 ≤ ξ2 ≤ 1, and it decreases with the
increasing parameter ξ2 > 1. At the point ξ2 = 1, the rem-
nant entropy reaches a maximum.

To put our results in a proper perspective, let us compare
with the earlier findings by another quantum-gravity candi-
dates, i.e. the generalized uncertainty principle (GUP) [35–
42,92], where the dispersion relation is not modified and the
minimal length is instead described as an observer-dependent
parameter due to the Lorentz symmetry. In Figs. 5, 6 and 75,
when employing the GUP parameters β0 = α = 1 and the
LIV parameter ξ2 = 1, we have specifically compared the
LIV-DR induced results with the GUP induced findings by

5 In Figs. 5, 6, and 7: (a), to plot the curve “Chen”, we have applied the
mass–temperature relationship 2β0T 2 −2β0MT +1 = 0, which comes

from the equation (M − dM)(1 + 2β0ω2

M2
p

) � M under the situation

dM = ω = kBT in Refs. [41,42]; (b), to plot the curve “Nozari”,
we have used the mass–temperature relationship with the expression of
4
3 α2T 2 − 4

3 α2MT +1 = 0, since the equation (M−dM)(1+ 4α2ω2

3M2
p

) �
M was obtained from the tunneling rate Γ ∼ exp

[−8πMω+4πω2 −
2παL2

pω
3( 16

3 −5ω)+O(α2L4
p)

]
in Ref. [38], in which the background

variation in black hole evaporation is neglected and only the second-
order correction of α is considered.
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Fig. 5 The black hole’s modified heat capacity versus its mass when
employing the GUP parameters β0 = α = 1 and the LIV parameter
ξ2 = 1
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Fig. 6 The black hole’s modified temperature versus its mass when
employing the GUP parameters β0 = α = 1 and the LIV parameter
ξ2 = 1

Nozari [38–40] and Chen [41,42] without loss of generality.
In Fig. 5, we show that the LIV-DR induced heat capacity is
higher than the semiclassical one, but is lower than the GUP
induced one. In Fig. 6, we show that the LIV-DR induced
black hole temperature is higher than the semiclassical one,
but lower than that of the GUP case. Meanwhile, at the final
stage of the black hole evaporation, the LIV-DR induced
quantum-gravity effect leaves a smaller remnant mass, and a
higher remnant temperature than in the case of GUP induced
quantum gravity. In Fig. 7, we note that the LIV-DR induced
black hole entropy is lower than the semiclassical one, but
higher than that of the GUP case. And, at the final stage of
the black hole evaporation, the remnant entropy induced by
the LIV-DR quantum gravity is smaller than that induced by
GUP quantum gravity.
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Fig. 7 The black hole’s modified entropy versus its mass when
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4 Conclusions and discussions

In this paper, we have applied the Lorentz-invariance-
violation (LIV) class of dispersion relations (DR) with the
dimensionless parameter n = 2 and the “sign of LIV”
η± = 1, to a phenomenological study of the effect of quan-
tum gravity in a strong gravitational field. Specifically, we
have studied the effect of LIV-DR induced quantum grav-
ity on the Schwarzschild black hole thermodynamics. First,
we have written out the modified Dirac equation in accor-
dance with the deformed dispersion relation with the Lorentz-
invariance violation. Then, in the tunneling framework, we
have applied the deformed Dirac equation to study the effect
of quantum gravity on the black hole emission. Finally, we
have shown some peculiar properties of LIV-DR induced
quantum gravity at the final stage of the black hole evapo-
ration and compared them with the GUP induced observa-
tions. The result shows that, the effect of the LIV-DR induced
quantum gravity speeds up the black hole evaporation, and
its corresponding black hole entropy undergoes a leading
logarithmic correction to the “reduced Bekenstein–Hawking
entropy”, and the ill-defined situations (i.e. the singularity
problem and the critical problem) are naturally bypassed in
the presence of this quantum-gravity effect. Our work once
again provides a piece of evidence for the dimensionless
parameter n = 2 in the LIV-DR. Also, the result shows
that, for the same quantum-gravity-dependent parameters,
the LIV-DR induced black hole heat capacity and tempera-
ture are lower than the GUP induced ones, but the LIV-DR
induced black hole entropy is higher than the GUP induced
one; meanwhile, at the final stage of the black hole evapo-
ration, the LIV-DR effect leaves a smaller remnant mass, a
higher remnant temperature, and a smaller remnant entropy
than the case of the GUP.

In the standard view of black hole thermodynamics, a
black hole should emit blackbody radiation, thereby becom-

ing lighter and hotter, and so on, leading to an explosive end
when the mass approaches zero. However, when including of
the effect of quantum gravity during the emission process, a
black hole stops further collapse at a remnant mass, tempera-
ture and entropy, and it becomes an inert remnant, possessing
only gravitational interactions. Obviously, the black hole’s
remnants contain information of quantum gravity, and need
not have a classical black hole horizon structure. In this paper,
we have shown that, when the quantum-gravity-dependent
parameters ξ−1

2 = β0 = α, the LIV-DR induced remnant
entropy is smaller than the GUP induced one, which sug-
gests that the final structure of the black hole is unstable in the
GUP induced remnant entropy, and it can further evolve till
its final entropy at least reaches the LIV-DR induced remnant
entropy. This also suggests that in the information theory, if
the remnant entropy (information) is used to describe the
basic structure of quantum gravity (in fact, this is well done
in accordance with the following discussion on the informa-
tion loss), the LIV-DR induced remnants contain more infor-
mation of quantum gravity than the GUP induced one. So,
by analyzing the influence of the two quantum-gravity candi-
dates on the final stage of black hole evaporation, we find that,
the LIV-DR acts as a more suitable candidate for describing
quantum gravity in comparison with the GUP. However, it is
noteworthy that, the above discussions are only valid when
the LIV-DR parameter is exactly equal to the GUP parame-
ter. Normally, when ξ−1

2 > β0, α, we can always adjust the
model-dependent parameters to make the LIV-DR and GUP
induced remnant entropy equal. We also note that, when the
GUP includes all natural cutoffs and higher order corrections
[67], its induced remnant entropy is exactly equal to the LIV-
DR induced one (19) when ξ−1

2 = a′
1. This shows that at the

final stage of black hole evaporation, the GUP with all nat-
ural cutoffs and higher order corrections contains the same
amount of information of quantum gravity as the LIV-DR.
On the other hand, the third law of thermodynamics requires
that the remnant entropy at the final stage of black hole evap-
oration should be greater than zero (i.e. Srem ≥ 0), which,
in our case, determines the LIV-DR parameter ξ2 ≥ 0.6065.
Obviously, this parameter range is within a range of parame-
ters from flaring active galactic nucleus(AGNs) for the case
n = 2, ξ2 ≥ 10−9, and gamma-ray bursts(GRBs) for the case
n = 1, ξ1 ≥ 0.01.

The information loss paradox occurring during the Hawk-
ing radiation is an outstanding issue for black hole physics.
As a heuristic method to proceed, the semiclassical method
that treats the Hawking radiation as tunneling has been pro-
posed by Parikh and Wilczek to recover the unitarity for the
black hole emission [47]. However, further research also by
Parikh has shown that there is a lack of correlations between
the tunneling radiation of two particles [93]. This means that,
although the tunneling picture might recover the unitarity for
the black hole emission, it is not sufficient by itself to relay

123



Eur. Phys. J. C (2017) 77 :666 Page 9 of 10 666

information. Later on, with the inclusion of quantum gravity,
some attempts have been proposed to recover information in
the tunneling picture [38,39]. In fact, these observations only
provide evidence of correlations between the two tunneling
particles in the presence of quantum gravity, but they are not
adequate by themselves to recover information. Recently, an
interesting observation has shown that the Hawking radiation
as tunneling is an entropy conservation process, which leads
naturally to the conclusion that the process of Hawking radi-
ation is unitary, and no information loss occurs [94]. When
the effect of quantum gravity is included, more information
would be present in the black hole radiation, but we assert
that the Hawking radiation as tunneling is still an entropy
conservation process, which will be reported by us in the
near future. So, at the final stage of black hole evaporation,
the inert remnant contains information of quantum gravity,
possessing only gravitational interactions.
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