
Eur. Phys. J. C (2017) 77:589
DOI 10.1140/epjc/s10052-017-5172-3

Regular Article - Theoretical Physics

Gravitational effective action at second order in curvature
and gravitational waves

Xavier Calmet1,a, Salvatore Capozziello2,3,4,b, Daniel Pryer1,c

1 Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
2 Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Via Cinthia, 80126 Naples, Italy
3 Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia 9, 80126 Naples, Italy
4 Gran Sasso Science Institute, Via F. Crispi 7, 67100 L’Aquila, Italy

Received: 18 August 2017 / Accepted: 28 August 2017 / Published online: 7 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract We consider the full effective theory for quan-
tum gravity at second order in curvature including non-local
terms. We show that the theory contains two new degrees
of freedom beyond the massless graviton: namely a massive
spin-2 ghost and a massive scalar field. Furthermore, we show
that it is impossible to fine-tune the parameters of the effec-
tive action to eliminate completely the classical spin-2 ghost
because of the non-local terms in the effective action. Being
a classical field, it is not clear anyway that this ghost is prob-
lematic. It simply implies a repulsive contribution to New-
ton’s potential. We then consider how to extract the parame-
ters of the effective action and show that it is possible to mea-
sure, at least in principle, the parameters of the local terms
independently of each other using a combination of obser-
vations of gravitational waves and measurements performed
by pendulum type experiments searching for deviations of
Newton’s potential.

1 Introduction

The aim of this work is to propose a new method to extract the
parameters of the full effective field theory for quantum grav-
ity working at quadratic order in curvature. Furthermore, we
study the field content of this full effective field theory, i.e.,
including both local and non-local operators. We show that,
beyond the massless spin-2 field, the effective theory con-
tains a massive spin-2 field as well as a massive scalar field:
the non-local operators do not introduce new fields beyond
those identified by Stelle a long time ago [1]. We point out
that the mass of the spin-2 field can be bound by using recent
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gravitational wave observations [2–5]. This is interesting as
the usual way to bound the masses of the scalar and spin-2
fields is to use measurements from the Cavendish pendulum
type experiments (e.g. Eöt-Wash) [6–8] which are, however,
sensitive to a combination of these masses. A combination of
the measurements of both Cavendish experiments and grav-
itational wave observations would, in principle, allow one
to disentangle the measurements of these two mass parame-
ters. It is easy to understand why. While both massive fields
contribute to a modification of Newton’s potential, only the
massive spin-2 can be excited by the quadrupole momentum
of the merging two black holes system. We shall first briefly
review the effective field approach to quantum gravity and
then discuss our new proposal.

The quantization of general relativity remains one of the
holy grails of theoretical physics. It is well understood that
because Newton’s constant is dimensionful, general relativity
is not renormalizable, at least not perturbatively. This incom-
patibility between classical general relativity and quantum
field theory has been the motivation to study extensions of
quantum field theory such as e.g. string theory which could
incorporate a consistent theory of quantum gravity. Despite
much work in this direction, it is still unclear what is the cor-
rect ultra-violet completion of Einstein’s theory as making
the connection to infrared physics, and thus testable physics,
is not straightforward. Problems are also present at infrared
scales because retaining strictly Einstein’s theory forces to
introduce dark matter and dark energy at astrophysical and
cosmological scales [9–12].

While we may be very far away from discovering the
correct theory of quantum gravity, there is one framework
which enables one to do quantum calculations within gen-
eral relativity while remaining agnostic about physics above
the reduced Planck scale MP or some 2.4×1018 GeV which
is usually assumed to be the scale of quantum gravity. If
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one is interested in probing quantum gravity experimentally
at energies below MP , an effective field theory approach
to quantum gravity, effective quantum gravity (EQG), is a
possible approach (see e.g. [13–15]). The effective theory
approach is self-consistent up to the scale of quantum gravity
M�, often identified with the reduced Planck mass. Remark-
ably, this approach enables model independent calculations
in quantum gravity without having a full knowledge of the
ultra-violet theory. It is sufficient to specify the symmetries
of the theory below the Planck mass and the field content.
Furthermore, some of the Wilson coefficients of EQG are
calculable given this input while the remaining must be mea-
sured in experiments as we do not have the full ultra-violet
theory to match these Wilson coefficients to the fundamental
theory.

Assuming general coordinate invariance below the Planck
scale, the effective field theory describing the dynamics for
the metric gμν (which is a massless spin-2 field), a cosmolog-
ical constant �C and the standard model of particle physics
LSM (including the Higgs doublet H ) is given by

S =
∫

d4x
√−g

[ (
1

2
M2 + ξH†H

)
R

−�4
C + c1R2 + c2RμνRμν + c4�R

+b1R log
�
μ2

1

R + b2Rμν log
�
μ2

2

Rμν

+b3Rμνρσ log
�
μ2

3

Rμνρσ + O(M−2
� ) + LSM

]
, (1)

where R, Rμν and Rμνρσ are, respectively, the Ricci scalar,
Ricci tensor and Riemann tensor and μi are renormaliza-
tion scales. Note that each of these structures are functions
of the metric and they contain second order derivatives. The
effective action can be seen as a derivative expansion, in
full analogy to chiral perturbation theory in quantum chro-
modynamics. It is obtained by integrating out the graviton
and massless matter fields (see e.g. [16]). The calculation
is done at the one-loop level in perturbation theory using
dimensional regularization, the divergencies of the diagrams
giving rise to the non-local terms of the type R log �R are
absorbed in the corresponding local terms R2 and RμνRμν .
In the following, we drop the total derivative �R as it does
not affect the equations of motion. Note that the Riemann
tensor squared term RμναβRμναβ can be eliminated using
the Gauss–Bonnet identity: this cannot be done though for
the corresponding non-local term. It is worth emphasizing
that the effective action could be constrained further if we
imposed new symmetries such as conformal invariance, see
e.g. [17,18], here we choose to stick to Einstein’s formulation
of gravity as the leading order term of our effective action.
We shall now describe the parameters of this effective action
and describe its dynamical content.

2 The parameters of the effective action and its
dynamical content

The effective action contains both dimensionful and dimen-
sionless parameters. The most familiar one is certainly the
reduced Planck scale MP , which is given by

M2
P = (M2 + ξv2) , (2)

where v = 246 GeV is the Higgs boson’s expectation value
and ξ is the non-minimal coupling of the Higgs boson. The
non-minimal coupling is a free parameter unless conformal
invariance is imposed. Measurements of the properties of the
Higgs boson imply that |ξ | > 2.6 × 1015 is excluded at the
95% C.L. [19]. M is the coefficient of the Ricci scalar. It has
mass dimension 2. The scale M� is the scale up to which we
can trust the effective field theory. It is traditionally identified
with MP but this needs not to be the case. Direct searches
for strong gravitational effects at colliders in the form of
quantum black holes [20] lead to a bound on M� of the order
of 9 TeV; see e.g. [21]. The renormalization scales μi could,
in principle, be different for the three non-local operators,
but we will assume that μi = μ. It seems reasonable to take
it of the order of M� as this is the energy scale at which the
effective theory needs to be matched to the underlying theory
of quantum gravity.

While the Wilson coefficients of the local operators R2

and RμνRμν are not calculable within the effective field
theory approach, the Wilson coefficients bi of the non-local
operators are calculable from first principles and are truly
model independent predictions of quantum gravity. Their val-
ues are reproduced in Table 1.

The effective action can be linearized around flat space-
time. One obtains

�
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= 0 , (3)

where we used the harmonic gauge (∂νhμν = 1
2∂μh) and

κ2 = 32πG. It is straightforward to see that the effective
action contains two new degrees of freedom besides the mass-
less spin-2 “classical” graviton (the “quantum graviton” has
been integrated out of the effective action). We have a mas-
sive spin-2 field and a massive scalar field. The linearized
effective action reads
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Table 1 Calculable Wilson
coefficients, see e.g. [16], where
they are calculated using
dim-reg. These results match the
classical ones published in [22]
where they are calculated using
the conformal anomaly method

b1 b2 b3

Real scalar 5(6ξ − 1)2/(11520π2) −2/(11520π2) 2/(11520π2)

Dirac spinor −5/(11520π2) 8/(11520π2) 7/(11520π2)

Vector −50/(11520π2) 176/(11520π2) −26/(11520π2)

Graviton 430/(11520π2) −1444/(11520π2) 424/(11520π2)
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∫
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with
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2
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3
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P(0)
μνρσ = 1

3
LμνLρσ , (6)

where Lμν = ημν − ∂μ∂ν/�.
The dynamical content of the theory can be made explicit

by calculating
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where T (1)μν and T (2)ρσ are two conserved sources. In
momentum space, one obtains
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to leading order in κ2. As mentioned before, the effective
action contains, besides the usual massless graviton (first
term in Eq. (8)), a massive spin 2 particle (second term in
Eq. (8)) and a massive scalar field (third term in Eq. (8)).

Because of the negative sign in front of the second term,
the massive spin 2 object carries negative energy, i.e., it is a
ghost. It should, however, be kept in mind that we are con-
sidering the effective action obtained after integrating out the
particles. This ghost thus does not need to be quantized and
it is a classical field. The mass of the spin-2 ghost is given
by the solution to the equation

k2 − 2

κ2
(
c2 + (b2 + 4b3) log

(−k2

μ2

)) = 0. (9)

One finds

m2 = 2

(b2 + 4b3)κ2W

(
− 2 exp c2

(b2+4b3)

(b2+4b3)κ2μ2

) , (10)

where W (x) is the Lambert function. The squared mass is,
in general, a complex number and the pair of complex ghosts
will thus have a width with an extremely short lifetime close
to the Planck time [26]. The conservative assumption is that
the presence of these poles simply signals a breakdown of
perturbation theory at the corresponding energy scale. This
is the true scale of quantum gravity M� and the effective field
theory must be abandoned at this energy scale.

One may be tempted to shift the mass of the ghost above
the reduced Planck mass to extend the validity range of the
effective field theory by adjusting the coefficient c2 to be very
small or zero as it is sometimes advocated [1]. However, it
is clear that setting c2 = 0 will not remove the ghost. The
non-local terms will not be eliminated by this choice and as
emphasized before, the Wilson coefficients of the non-local
terms are not free parameters but rather they are calculated
from first principles. A small c2 would not compensate the
contribution from the non-local term. Let us introduce the
parameter

N = 1

6
[NS(b2 + 4b3)scalar + NF (b2 + 4b3)fermion

+NV (b2 + 4b3)vector] , (11)

where NS , NF and NV are, respectively, the number of real
scalars, Dirac fermions and real vector fields in the theory.
We see that N cannot be too large or the mass of the ghost will
drop below the reduced Planck mass and we would have to
abandon the effective theory below the reduced Planck mass.
These results are in accordance with previous work [26–28],
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where it was shown that although perturbative unitarity can
be restored below the Planck mass, the presence of ghosts
signals the breakdown of the effective field theory. It was
shown in [26] that this energy scale is associated with strong
quantum gravitational effects.

Furthermore, it is impossible to find a combination of mat-
ter fields that would compensate the graviton contribution to
b2 +4b3, which can be written as 252+36N f +6Ns +72Nv .
This quantity is positive and larger than 252 for any matter
content. There is thus no obvious manner to avoid the mas-
sive spin-2 ghost. We would also like to point out that setting
c2 = 0 is not very satisfactory anyway. It is a renormal-
ized coupling constant (see e.g. [29]), while it may take the
value 0 at some energy scale, it would take some symmetry
argument to enforce c2(μ) = 0 at all scales. Note that the
physical consequences of the renormalization group equa-
tions for the coefficients of the local part of the action have
been investigated in [30–32]. Obviously, the renormalization
group equation of c2 modifies the structure of the massive
ghost at higher order in perturbation theory.

We thus have to accept that the effective field theory, which
contains classical fields after the quantum fields have been
integrated out, contains a classical ghost. Whether or not this
is a problem remains to be understood, however, it does not
appear to be a dramatic issue as a classical ghost may not
cause any instability in contrast to quantum ghosts. Let us
now turn out attention to experimental bounds on the coeffi-
cients of the effective field theory to second order in curva-
ture.

3 How to measure the masses of the massive spin-2
and spin-0 fields?

We have seen that the Wilson coefficients bi are small unless
the number of fields N introduced in the model is very large.
On the other hand, ci could be arbitrarily large and we shall
thus assume that they are larger than bi . Unless ci are very
large (as we shall see at least 1061), then their effect on
any observable is minuscule. Our approximation is thus cer-
tainly a good one. Stelle [1] has pointed out that it is pos-
sible to derive bounds on c1 and c2 using torsion pendulum
experiments of the Cavendish type experiments searching
for deviations of Newton’s potential. Indeed,the terms c1R2

and c2RμνRμν lead to Yukawa-like corrections to Newton’s
potential of a point mass m:

�(r) = −Gm

r

(
1 + 1

3
e−m0r − 4

3
e−m2r

)
(12)

with

m −1
0 = √

32πG (3c1 − c2) (13)

and

m −1
2 = √

16πGc2. (14)

Sub-millimeter tests of Newton’s law [6] using sophisticated
pendulums are used to bound c1 and c2. One finds that, in
the absence of accidental fine cancellations between both
Yukawa terms, they are constrained to be less than 1061 [6,
33]. Note that this bound is obtained assuming that the bi
Wilson coefficients are small which as argued above is a
reasonable assumption.

Torsion pendulum experiments do not allow one to mea-
sure c1 and c2 independently. Recently, it was argued that
is it possible to bound c1 using data from black hole merg-
ers on c1 [23]. However, this bound was obtained under the
assumption that there is a shell of scalar field around the
binary black hole which is not a necessity. Here we want
to point out another possibility, to measure c1 and c2 inde-
pendently. This involves using the recent discovery of grav-
itational wave measurements on top of the usual Cavendish
type experiment.1

The detections of three binary black hole mergers were
recently announced [2–4]. In each case, the final merged
black hole had a smaller mass than the two progenitors, with
this lost mass being radiated away as gravitational waves. The
LIGO–VIRGO collaboration has used their observations to
set a limit on the mass of the graviton. Constraining the gravi-
ton mass from these observations is performed by comparing
arrival times of the signals at each detector; a massive gravi-
ton implies subluminal velocity, with differing frequencies
of gravitational waves propagating at different speeds. The
bound on a graviton mass derived by LIGO–VIRGO reads
[2]

mg < 1.2 × 10−22eV. (15)

To obtain a conservative bound on c2, we assume that all
of the energy of the merger is emitted into the massive spin-2
field. The Wilson coefficient c2 is related to mass mg via

c2 = 1

16πGm2
g
. (16)

We thus get the following bound:

c2 <

(
1.22 × 1028eV

)2

16π
(
1.2 × 10−22eV

)2 = 2.1 × 1098. (17)

Although this is not a strong bound, it does, however, directly
apply to the coefficient of RμνRμν and it is independent of
the R2 term.

1 We note that upper bounds on m0 and m2 can be achieved also by
satellite experiments [24] or stellar dynamics around the Galactic Centre
[25].
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One may wonder whether scalar gravitational waves might
be produced during the merger of the two black holes. How-
ever, as shown in [34] for a Kerr metric, the mass monopole
represents the total mass-energy in a system, which is con-
served thus it does not give off radiation. This implies that
the scalar field, present in the classical propagator, cannot be
produced. The mass dipole corresponds to the center of mass
of the system. Its first derivative is the angular momentum
which is conserved as well. On the other hand, the mass
quadrupole moment is not constant in time and it is the
source of the emission of spin-2 gravitational waves. Both
the massive and the massless spin-2 fields can be produced.
We note that the local and non-local terms at second order
in curvature do not modify the Schwarzschild metric at this
order in the curvature expansion [35]. The same applies to
the Kerr metric. Furthermore, due to their design as inter-
ferometers, gravitational wave detectors are only sensitive
to the changes of the quadrupole moment, i.e., to waves of
spin-2.

Thus far we have assumed that only the massive spin-
2 wave was produced to derive our bound. Improving the
bound and measuring directly c2 requires one to differen-
tiate between the massive and massless spin-2 modes. The
massless spin-2 mode has two polarizations while the mas-
sive mode has five; see e.g. [36]. It has been shown in [37,38]
that the two modes, because of the differences in their polar-
izations, would lead to different signatures in the interferom-
eter detectors such as the LIGO–VIRGO system and it is thus
possible to disentangle these two contributions. This is the
final ingredient necessary to establish that c2 can, in prin-
ciple, be measured independently of c1 using gravitational
wave detectors.

4 Conclusions

In this paper, we have considered the full effective theory for
quantum gravity at second order in curvature including non-
local terms. We have shown that the theory contains two new
degrees of freedom beyond the massless graviton namely a
massive spin-2 ghost and a massive scalar field. We have
shown that it is impossible to fine-tune the parameters of the
effective action to eliminate completely the classical spin-2
ghost. As this is a classical field, it is not clear anyway that
this ghost is problematic as it is not obvious that it would lead
to physical pathologies. It simply implies a repulsive contri-
bution to Newton’s potential. We then have considered how
to extract the parameters of the effective action and shown
that it is possible to measure, at least in principle, the param-
eters of the local terms independently of each other using
a combination of observations of gravitational waves and
measurements performed using pendulum type experiments
searching for deviations of Newton’s potential.

Acknowledgements The work of XC is supported in part by the Sci-
ence and Technology Facilities Council (grant number ST/J000477/1).
SC acknowledges the COST Action CA15117 (CANTATA) and INFN
Sez. di Napoli (Iniziative Specifiche QGSKY and TEONGRAV).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. K.S. Stelle, Gen. Rel. Grav. 9, 353 (1978). doi:10.1007/
BF00760427

2. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys.
Rev. Lett. 116, no. 6, 061102 (2016). doi:10.1103/PhysRevLett.
116.061102. arXiv:1602.03837 [gr-qc]

3. B.P. Abbott et al., [LIGO Scientific and Virgo Collabora-
tions], Phys. Rev. Lett. 116(24), 241103 (2016). doi:10.1103/
PhysRevLett.116.241103. arXiv:1606.04855 [gr-qc]

4. B.P. Abbott et al. [LIGO Scientific and VIRGO Collabora-
tions] Phys. Rev. Lett. 118(22), 221101 (2017). doi:10.1103/
PhysRevLett.118.221101. arXiv:1706.01812 [gr-qc]

5. M. De Laurentis, O. Port, L. Bovard, B. Ahmedov, A. Abdujab-
barov, Phys. Rev. D 94, 124038 (2016). doi:10.1103/PhysRevD.
94.124038. arXiv:1611.05766 [gr-qc]

6. C.D. Hoyle, D.J. Kapner, B.R. Heckel, E.G. Adelberger, J.H. Gund-
lach, U. Schmidt, H.E. Swanson, Phys. Rev. D 70, 042004 (2004).
doi:10.1103/PhysRevD.70.042004. arXiv:hep-ph/0405262

7. D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach,
B.R. Heckel, C.D. Hoyle, H.E. Swanson, Phys. Rev. Lett.
98, 021101 (2007). doi:10.1103/PhysRevLett.98.021101.
arXiv:hep-ph/0611184

8. W.H. Tan et al., Phys. Rev. Lett. 116(13), 131101 (2016). doi:10.
1103/Phys.Rev.Lett.116.131101

9. S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011).
doi:10.1016/j.physrep.2011.09.003. arXiv:1108.6266 [gr-qc]

10. S.D. Odintsov, S. Nojiri, Phys. Rept. 505, 59 (2011). doi:10.1016/
j.physrep.2011.04.001. arXiv:1011.0544 [gr-qc]

11. S. Capozziello, M. Francaviglia, Gen. Rel. Grav. 40, 357 (2008).
doi:10.1007/s10714-007-0551-y. arXiv:0706.1146 [astro-ph]

12. S. Capozziello, M. De Laurentis, Ann. Phys. 524, 545 (2012).
doi:10.1002/andp.201200109

13. J.F. Donoghue, Phys. Rev. D 50, 3874 (1994). doi:10.1103/
PhysRevD.50.3874. arXiv:gr-qc/9405057

14. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective action in
quantum gravity, Bristol (IOP, London, 1992)

15. X. Calmet, Int. J. Mod. Phys. D 22, 1342014 (2013). doi:10.1142/
S0218271813420145. arXiv:1308.6155 [gr-qc]

16. J.F. Donoghue, B.K. El-Menoufi, Phys. Rev. D 89(10), 104062
(2014). doi:10.1103/PhysRevD.89.104062. arXiv:1402.3252 [gr-
qc]

17. I. Antoniadis, P.O. Mazur, E. Mottola, Nucl. Phys. B
388, 627 (1992). doi:10.1016/0550-3213(92)90557-R.
arXiv:hep-th/9205015

18. S.D. Odintsov, Z. Phys. C 54, 531 (1992). doi:10.1007/
BF01559475

19. M. Atkins, X. Calmet, Phys. Rev. Lett. 110(5), 051301 (2013).
doi:10.1103/PhysRevLett.110.051301. arXiv:1211.0281 [hep-ph]

20. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008).
doi:10.1016/j.physletb.2008.08.011. arXiv:0806.4605 [hep-ph]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1103/PhysRevLett. 116.241103
http://dx.doi.org/10.1103/PhysRevLett. 116.241103
http://arxiv.org/abs/1606.04855
http://dx.doi.org/10.1103/PhysRevLett. 118.221101
http://dx.doi.org/10.1103/PhysRevLett. 118.221101
http://arxiv.org/abs/1706.01812
http://dx.doi.org/10.1103/PhysRevD.94.124038
http://dx.doi.org/10.1103/PhysRevD.94.124038
http://arxiv.org/abs/1611.05766
http://dx.doi.org/10.1103/PhysRevD.70.042004
http://arxiv.org/abs/hep-ph/0405262
http://dx.doi.org/10.1103/PhysRevLett.98.021101
http://arxiv.org/abs/hep-ph/0611184
http://dx.doi.org/10.1103/Phys.Rev.Lett.116.131101
http://dx.doi.org/10.1103/Phys.Rev.Lett.116.131101
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://arxiv.org/abs/1108.6266
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://arxiv.org/abs/1011.0544
http://dx.doi.org/10.1007/s10714-007-0551-y
http://arxiv.org/abs/0706.1146
http://dx.doi.org/10.1002/andp.201200109
http://dx.doi.org/10.1103/PhysRevD.50.3874
http://dx.doi.org/10.1103/PhysRevD.50.3874
http://arxiv.org/abs/gr-qc/9405057
http://dx.doi.org/10.1142/S0218271813420145
http://dx.doi.org/10.1142/S0218271813420145
http://arxiv.org/abs/1308.6155
http://dx.doi.org/10.1103/PhysRevD.89.104062
http://arxiv.org/abs/1402.3252
http://dx.doi.org/10.1016/0550-3213(92)90557-R
http://arxiv.org/abs/hep-th/9205015
http://dx.doi.org/10.1007/BF01559475
http://dx.doi.org/10.1007/BF01559475
http://dx.doi.org/10.1103/PhysRevLett.110.051301
http://arxiv.org/abs/1211.0281
http://dx.doi.org/10.1016/j.physletb.2008.08.011
http://arxiv.org/abs/0806.4605


589 Page 6 of 6 Eur. Phys. J. C (2017) 77 :589

21. A.M. Sirunyan et al. [CMS Collaboration], Search for black holes
in high-multiplicity final states in proton-proton collisions at sqrt(s)
= 13 TeV. arXiv:1705.01403 [hep-ex]

22. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space
(Cambridge University Press, Cambridge, 1982). doi:10.1017/
CBO9780511622632

23. Z. Cao, P. Galaviz, L.F. Li, Phys. Rev. D 87(10), 104029 (2013).
doi:10.1103/PhysRevD.87.104029. arXiv:1608.07816 [gr-qc]

24. S. Capozziello, G. Lambiase, M. Sakellariadou, An. Stabile, Ar.
Stabile, Phys. Rev. D 91, 044012 (2015). doi:10.1103/PhysRevD.
91.044012. arXiv: 1410.8316 [gr-qc]

25. S. Capozziello, D. Borka, P. Jovanovic, V. Borka Jovanovic, Phys.
Rev. D 90, 044052 (2014). doi:10.1103/PhysRevD.90.044052.
arXiv:1408.1169 [astro-ph]

26. X. Calmet, Mod. Phys. Lett. A 29(38), 1450204 (2014). doi:10.
1142/S0217732314502046. arXiv:1410.2807 [hep-th]

27. X. Calmet, R. Casadio, Eur. Phys. J. C 75(9), 445 (2015). doi:10.
1140/epjc/s10052-015-3668-2. arXiv:1509.02055 [hep-th]

28. X. Calmet, R. Casadio, A.Y. Kamenshchik, O.V. Teryaev, Gravi-
ton propagator, renormalization scale and black-hole like states.
arXiv:1708.01485 [hep-th]

29. E. Elizalde, S.D. Odintsov, Mod. Phys. Lett. A 10, 1821 (1995).
doi:10.1142/S0217732395001952. arXiv:gr-qc/9508041

30. E. Elizalde, S.D. Odintsov, L. Sebastiani, R. Myrzakulov, Nucl.
Phys. B 921, 411 (2017). doi:10.1016/j.nuclphysb.2017.06.003.
arXiv:1706.01879 [gr-qc]

31. R. Myrzakulov, S. Odintsov, L. Sebastiani, Nucl. Phys. B 907, 646
(2016). doi:10.1016/j.nuclphysb.2016.04.033. arXiv:1604.06088
[hep-th]

32. R. Myrzakulov, S. Odintsov, L. Sebastiani, Phys. Rev.
D 91(8), 083529 (2015). doi:10.1103/PhysRevD.91.083529.
arXiv:1412.1073 [gr-qc]

33. X. Calmet, S.D.H. Hsu, D. Reeb, Phys. Rev. D 77, 125015 (2008).
doi:10.1103/PhysRevD.77.125015. arXiv:0803.1836 [hep-th]

34. K.S. Thorne, Rev. Mod. Phys. 52, 299 (1980). doi:10.1103/
RevModPhys.52.299

35. X. Calmet, B.K. El-Menoufi, Eur. Phys. J. C 77(4), 243 (2017).
doi:10.1140/epjc/s10052-017-4802-0. arXiv:1704.00261 [hep-th]

36. H. van Dam, M.J.G. Veltman, Nucl. Phys. B 22, 397 (1970). doi:10.
1016/0550-3213(70)90416-5

37. C. Bogdanos, S. Capozziello, M. De Laurentis, S. Nesseris,
Astropart. Phys. 34, 236 (2010). doi:10.1016/j.astropartphys.2010.
08.001. arXiv:0911.3094 [gr-qc]

38. S. Capozziello, A. Stabile, Astrophys. Space Sci. 358(2), 27 (2015).
doi:10.1007/s10509-015-2425-1

123

http://arxiv.org/abs/1705.01403
http://dx.doi.org/10.1017/CBO9780511622632
http://dx.doi.org/10.1017/CBO9780511622632
http://dx.doi.org/10.1103/PhysRevD.87.104029
http://arxiv.org/abs/1608.07816
http://dx.doi.org/10.1103/PhysRevD.91.044012
http://dx.doi.org/10.1103/PhysRevD.91.044012
http://arxiv.org/abs/1410.8316
http://dx.doi.org/10.1103/PhysRevD.90.044052
http://arxiv.org/abs/1408.1169
http://dx.doi.org/10.1142/S0217732314502046
http://dx.doi.org/10.1142/S0217732314502046
http://arxiv.org/abs/1410.2807
http://dx.doi.org/10.1140/epjc/s10052-015-3668-2
http://dx.doi.org/10.1140/epjc/s10052-015-3668-2
http://arxiv.org/abs/1509.02055
http://arxiv.org/abs/1708.01485
http://dx.doi.org/10.1142/S0217732395001952
http://arxiv.org/abs/gr-qc/9508041
http://dx.doi.org/10.1016/j.nuclphysb.2017.06.003
http://arxiv.org/abs/1706.01879
http://dx.doi.org/10.1016/j.nuclphysb.2016.04.033
http://arxiv.org/abs/1604.06088
http://dx.doi.org/10.1103/PhysRevD.91.083529
http://arxiv.org/abs/1412.1073
http://dx.doi.org/10.1103/PhysRevD.77.125015
http://arxiv.org/abs/0803.1836
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1140/epjc/s10052-017-4802-0
http://arxiv.org/abs/1704.00261
http://dx.doi.org/10.1016/0550-3213(70)90416-5
http://dx.doi.org/10.1016/0550-3213(70)90416-5
http://dx.doi.org/10.1016/j.astropartphys.2010.08.001
http://dx.doi.org/10.1016/j.astropartphys.2010.08.001
http://arxiv.org/abs/0911.3094
http://dx.doi.org/10.1007/s10509-015-2425-1

	Gravitational effective action at second order in curvature  and gravitational waves
	Abstract 
	1 Introduction
	2 The parameters of the effective action and its dynamical content
	3 How to measure the masses of the massive spin-2  and spin-0 fields?
	4 Conclusions
	Acknowledgements
	References




