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Abstract We study the innermost stable circular orbit
(ISCO) of the metric of the Kerr black hole in modified grav-
ity (Kerr-MOG black hole), which is one of the exact solu-
tions of the field equation of modified gravity in the strong
gravity regime. The Kerr-MOG metric is constructed; it is
the commonly known Kerr metric in Boyer–Lindquist coor-
dinates by adding a repulsive term like the Yukawa force,
which is explained in quantum gravity. In this paper, we
numerically calculate the circular orbit of a photon and the
ISCO of a test particle of Kerr-MOG black holes.

1 Introduction

General relativity (GR) is a well-established theory to pre-
dicting many cosmological phenomena in the solar system
and the universe. Especially it predicts a black hole, which is
one of the astronomically most surprising phenomena. How-
ever, the interior of the black hole and some other astronomi-
cal observations are not explained by GR. An example in par-
ticular is the strange phenomenon of galaxy rotation curves
found by the study of Zwicky, Rubin and collaborators [1–4].
Zwicky was the first to theoretically and formally postulate
an unknown form of matter, called dark matter. Rubin found
that Einstein’s theory cannot explain the rotation curve of a
spiral galaxy. This phenomenon is an important clue for the
existence of dark matter. However, dark matter has not been
discovered by experimental observation so far. A theory for
this phenomenon without invoking the concept of dark matter
may be necessary. First of all, modified Newtonian dynam-
ics (MOND) was proposed by Milgrom [5] by altering the
“inverse-square” law of gravity in the scalar field of Newto-
nian gravity. This fits some observations and the weak-field
approximation like the solar system but MOND has limited
capability to explain the phenomena at a large scale, such as
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the rotation curve of our galaxy of the spiral region from ∼0.2
kpc out to ∼200 kpc and the velocity dispersion profiles of
globular clusters [6,7].

A scalar–tensor–vector gravity (STVG) theory was pro-
posed by Moffat [8]. STVG was referred to as the modi-
fied gravity theory (MOG), developed to explain the discor-
dance between the general relativity at large scale and many
astronomical observations such as the dynamics of galaxies,
galaxy rotation curves, bullet clusters, the amount of lumi-
nous matter in these galaxies and the accelerating universe
[8–10]. The MOG theory is the field theory which is an addi-
tion of a scalar action, vector action and matter action, thereby
modifying the Einstein–Hilbert action. Moffat also obtained
the metric of Kerr modified gravity (Kerr-MOG) of a black
hole by combining the MOG theory with the Kerr geometry
[11]. This metric is an alternative metric in strong gravity
and an exact solution for a rotating black hole. He also the-
oretically showed observational methods for the black hole
shadow of the Kerr-MOG case [12]. The research for the
shadow of the black hole at our galactic center is in progress
by the Event Horizon Telescope (EHT) [13]. EHT observed
the shadow of a black hole by studying the dynamics near
the black hole such as particles or photons around the accre-
tion disk. Most of all, movement of a particle or photon by
strongly curved spacetime is a relevant subject. In particu-
lar, circular motions of timelike or lightlike geodesics are
important because they give information on the geometric
framework around non-rotating or rotating black holes. For
instance, there is the minimum radius of a trajectory that is
able to maintain a stable circular orbit which does not enter
the event horizon of a black hole; this is called an innermost
stable circular orbit (ISCO) [14]. In the accretion disk the-
ory [15], the ISCO is regarded as one of the rotating black
hole’s important features like the event horizon, ergosphere,
etc. ISCO is believed to be the inner edge of an accretion
disc orbiting a black hole. Iron line profiles for black holes
are determined by the photons that are emitted near the ISCO
[16]. The radius of the ISCO is 6M (M is the total mass of a
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black hole) in the case of the Schwarzschild black hole, while
the radius of ISCO for a Kerr black hole depends on the intrin-
sic angular momentum a, the well-known Kerr parameter.
As an example, the ISCO of the extreme rotating black hole,
which has the intrinsic angular momentum of a Kerr black
hole, which is M (a = M); we have M in the co-rotating and
9M in the counter-rotating cases where GN = c = 1 in the
case of the Schwarzschild and Kerr metric [17]. ISCOs assist
the study which finds the shape of thin disks and Penrose pro-
cesses at the ergosphere as well as properties in the vicinity of
the black hole. Furthermore, an ISCO that is closely related
to a black hole shadow helps the research investigation by
EHT.

In this paper, we numerically calculate the trajectories of
null and timelike geodesics of a t and φ coordinate system,
comparing the Kerr-MOG metric with the Kerr metric. In
particular, we study the circular orbit of a photon and ISCO
of a test particle of Kerr-MOG black holes analytically. We
obtain two analytic expressions of the energy E and the angu-
lar momentum L of a photon and a test particle in a circular
orbit for the Kerr-MOG metric, using a method due to Refs.
[18,19]. According to the method, we also numerically cal-
culate the circular orbit of the photon and ISCO of the test
particle of the Kerr-MOG case and analyze the result and will
show how to vary them by the parameter α, which is related
to Newton’s gravitational constant.

2 Field equation of MOG and Kerr-MOG metric

The field equation of MOG is given by [8,11]

Gμν = −8πGTφμν, (1)

where it is postulated that G = GN (1 + α), ∂νG = 0,
whereGN is Newton’s gravitational constant andG is rewrit-
ten as the parameter α. Furthermore, the canonical energy-
momentum tensor of matter TMμν = 0 and the energy-
momentum tensor for the vector field φμ are induced by

Tφμν = − 1

4π

(
Bσ

μBνσ − 1

4
gμνB

σβBσβ

)
, (2)

where Bμν = ∂μφν −∂νφμ and φμ is for the vector field with
the source charge Q = √

αGNM . Moreover, the vacuum
field equations are

∇νB
μν = 1√−g

∂ν

(√−gBμν
) = 0,

∇σ Bμν + ∇μBνσ + ∇νBσμ = 0, (3)

where ∇ν is in regard to the metric tensor gμν . The Kerr-
MOG black hole is a static and axisymmetric solution of
the gravitational field equations. The Kerr-MOG metric in

Boyer–Lindquist coordinates is

ds2 = Δ

ρ2 (dt − a sin2 θdφ)2

− sin2 θ

ρ2 [(r2 + a2)dφ − adt]2 − ρ2

Δ
dr2 − ρ2dθ2,

(4)

where

Δ = r2 − 2GN (1 + α)Mr + a2 + M2G2
Nα(1 + α),

ρ2 = r2 + a2 cos2 θ. (5)

The Kerr-MOG metric has two horizons known as the outer
horizon (r+) and the inner horizon (r−) like a Kerr black
hole determined by Δ = 0. The two horizons are also called
the event horizon and the Cauchy horizon, respectively. They
are given by

r± =GN (1+α)M

[
1 ±

√
1 − a2

G2
N (1 + α)2M2

− α

1 + α

]
.

(6)

3 Total energy of Kerr-MOG metric in circular orbit

To find the circular orbit in any metric one considers the
effective potential for the motion of a massive particle or
photon [14–27]. We approach the problem by solving ISCO
by the well-developed method different from the one that
Moffat has proposed [11,18,19]. We investigate the behavior
of a test particle or a photon in the equatorial plane (θ = π/2).
The covariant components of the Kerr-MOG metric are

gtt = Δ − a2

r2 , gtφ = a

r2 [(r2 + a2) − Δ], grr =−r2

Δ
,

gθθ = −r2, gφφ = − 1

r2 [(r2 + a2)2 − a2Δ]. (7)

Because of the property of stationarity- and axis symmetry
for the Kerr-MOG metric, we consider two conserved quan-
tities to be the specific energy E and the specific angular
momentum L for constant motion of the test particle with
rest mass μ. We use the Lagrangian. The Lagrangian is

L = 1

2
gμν ẋ

μ ẋν . (8)

The Euler–Lagrange equation by solving the geodesic equa-
tion with respect to the affine parameter gives the equation
for t and φ as well as the radial equation,

ṫ = −Egφφ − Lgtφ
g2
tφ − gtt gφφ

, (9)

φ̇ = Egtφ + Lgtt
g2
tφ − gtt gφφ

, (10)
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ṙ2 = 1

r2

[
E2r2 − (L2 − a2E2)

+
(

2Mα

r
− β2

r2

)
(L − aE)2 − Δμ

]
, (11)

where

Mα = GN (1 + α)M, β2 = M2G2
Nα(1 + α). (12)

For convenience of the calculations, we use the above nota-
tions.

4 Circular orbit of a photon of Kerr-MOG black hole

We can obtain circular orbits of photons in Kerr-MOG geom-
etry, setting the finite rest mass of a particle at zero; i.e.,
μ = 0. The radial equation (11) becomes

ṙ2 = 1

r2

[
E2r2 − (L2 − a2E2) +

(
2Mα

r
− β2

r2

)

×(L − aE)2
]
. (13)

We consider the impact parameter D to easily distinguish the
geodesic,

D = L

E
. (14)

We can also introduce the condition regarding the princi-
pal null geodesics [18–21,28]:

D = a (15)

and thus Eq. (14) becomes L = aE . Substituting L = aE
into Eqs. (9), (10) and (11), they become

ṫ = r2 + a2

Δ
E, (16)

φ̇ = a

Δ
E, (17)

ṙ = ±E . (18)

Because the radial coordinate is described at constant ratio
corresponding to the affine parameter, we take

dt

dr
= ṫ

ṙ
= r2 + a2

Δ
, (19)

dφ

dr
= φ̇

ṙ
= a

Δ
. (20)

When a2 < M2, Eqs. (19) and (20) can be integrated to give

t = r +
(
M2

α + M2
α√

M2
α − a2

)
ln

∣∣∣∣
r

r+
− 1

∣∣∣∣ +
(
M2

α

− M2
α√

M2
α − a2

)
ln

∣∣∣∣
r

r+
− 1

∣∣∣∣, (21)

Fig. 1 The trajectory of a photon in the case of the Kerr black hole
with a = 0.8 (in the figure, we set M = 1). The trajectory of a photon
is plotted by the solid line, two horizons are illustrated by the dashed
circles and the ring singularity is shown by short dot circle. In the (x, y)-
plane, x = √

r2 + a2 cos φ and y = √
r2 + a2 sin φ. As a photon

approaches the Kerr black hole, it has a discontinuous orbit at the outer
and inner horizons (r+ = 1.6 and r− = 0.4). That is, the motion of
the photon reverses at the horizons (see the left panel); thereafter, it is
bending to the ring singularity

Fig. 2 The trajectory of the photon in the case of the Kerr-MOG black
hole with a = 0.8 and α = 0.5. As a photon approaches the Kerr-MOG
black hole, it has a discontinuous orbit at the outer and inner horizons
(r+ = 2.4274 and r− = 0.5726). Consequently, the trajectory of the
photon is similar to the Kerr black hole for horizons but the photon is
bending rapidly to the ring singularity compared to the Kerr black hole

φ = a

2
√
M2

α − a2
ln

∣∣∣∣
r − r+
r − r−

∣∣∣∣. (22)

Like the Kerr black hole, Eqs. (21) and (22) show the
motion of t and φ as r approaches r+ and r−. They also
show null geodesics of the equatorial plane. Figures 1 and 2
describe the trajectory of an incoming a photon in the (x, y)-
plane where x = √

r2 + a2 cos φ and y = √
r2 + a2 sin φ.

They have null geodesics in a Kerr black hole with intrinsic
angular momentum a = 0.8M and a Kerr-MOG black hole
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Fig. 3 The trajectory of a photon in the case of the Kerr-MOG black
hole with a = 0.8 and α = 9. As a photon approaches the ring singular-
ity from the inner horizon, the trajectory of a photon explicitly shows
that the photon is bending rapidly to the singularity compared to the
case shown in Fig. 2

with a = 0.8M and parameter α = 0.5. Since the horizons
of the Kerr-MOG black hole are greater than the horizons of
the Kerr black hole, the scale of the dynamics is different,
as shown in Figs. 1 and 2. We explain the properties of the
expanded horizons of the Kerr-MOG black hole in the next
section in detail. Figure 3 clearly shows that the photon of the
Kerr-MOG black hole is bending rapidly to the ring singular-
ity compared to the case of a Kerr black hole when the photon
shifts from the inner horizon into the singularity. But because
the trajectory of a photon is discontinuous at the horizons the
coordinate φ and t are not ‘good’ coordinates. The reason
for the discontinuous orbit is that the radial motion for t is
infinite at the two horizons (see the left panel of the Figs. 1
and 2). In other words, there is the coordinate singularity that
is not an intrinsic singularity at two horizons. This problem
can be resolved by a coordinate transformation such as the
Kruskal coordinate transformation.

However, because we want to obtain a circular orbit we
consider the critical value of the impact parameter Dc. In the
case of D = Dc the geodesic equation shows an unstable
circular orbit of radius rc. For D < Dc, the photon arrives
near the black hole from infinity and crosses both horizons
and falls into the singularity. (For D > Dc, two types of orbits
can be obtained such as a photon arriving near the black hole
from infinity and having perihelion distances greater than rc
or aphelion distances less than rc. Then the photon falls into
the singularity at r = 0 and θ = π

2 .) [18].
The radial equation is obtained at ṙ = 0 and ∂ ṙ/∂r = 0

as follows:

E2+
(

2Mα

r3
c

− β2

r4
c

)
(L − aE)2 − (L2 − a2E2)

(
1

r2
c

)
= 0

(23)

and
(

−6Mα

r4
c

+ 4β2

r5
c

)
(L − aE)2 + (L2 − a2E2)

(
2

r2
c

)
= 0.

(24)

Substituting Dc = L
E in Eqs. (23) and (24), we obtain

r4
c −(D2

c − a2)r2
c + 2Mα(Dc − a)2rc − β2(Dc − a)2 = 0

(25)

and

(Dc + a)r2
c − 3Mα(Dc − a)rc + 2β2(Dc − a) = 0. (26)

We get solutions of the quadratic formula with respect to rc
and Dc in Eqs. (25) and (26), respectively, as follows:

Dc = 1

(2Mαrc − β2 − r2
c )

[
a(2Mαrc − β2)

±{(a(2Mαrc − β2))2 − (2Mαrc − β2 − r2
c )

× (r4
c + a2r2

c + 2Mαa
2rc − β2a2)} 1

2

]
(27)

and

rc = 1

2(Dc + a)

[
3Mα(Dc − a) ± {(3Mα(Dc − a))2

−4(2β2(Dc − a)(Dc + a))} 1
2

]
. (28)

The values of the negative part of Eq. (27) and the positive
part of Eq. (28) correspond to the prograde circular photon
orbit. Also, their opposite values are corresponding to a ret-
rograde circular photon orbit.

Therefore, we investigate the prograde and retrograde cir-
cular photon orbit outside the event horizon except for the
circular photon orbit inside the inner horizon. A circular pho-
ton orbit of a Kerr-MOG black hole can be found numerically
where we adopt M = 1. Figure 4 shows the circular photon
orbit of the Kerr-MOG black holes with respect to the intrin-
sic angular momentum a and parameter α. We address a
prograde circular orbit. The circular photon orbit of the Kerr
black hole converges to 1 and is equal to the event horizon
when a = 1 but there are circular photon orbits of Kerr-MOG
black holes at a = 1. Thus, for rapidly spinning black holes
(a > 1), there are always the circular photon orbits of the
Kerr-MOG case. A Kerr black hole with a = 0.95 has the
radius of the circular photon orbit rc = 1.386 and the impact
parameter Dc = 2.582 for the null geodesics, while a Kerr-
MOG black hole with a = 0.95 and α = 9 has the radius of
the circular photon orbit rc = 20.007 and the impact param-
eter Dc = 21.0097. In Ref. [11], the photosphere is given by
(Figs. 5 and 6)
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Fig. 4 Circular photon orbit of the Kerr black hole and the Kerr-MOG
black hole. The solid line is the case of the Kerr black hole. A circular
photon orbit is plotted on some intrinsic angular momentum a and
parameter α. In particular, it has a value greater than 3, different from
the Schwarzschild metric, when a is zero. Moreover, the circular photon
orbit of an extreme Kerr black hole (a = 1) has 1 but the Kerr-MOG
black hole shows rc > 1

Fig. 5 The trajectory of a test particle of the Kerr black hole with
a = 0.8. The trajectory of a test particle is plotted by the solid line, two
horizons are illustrated by the dashed circles and the ring singularity is
shown by a short dot circle

rps = 3

2
GN (1 + α)M

(
1 +

√
1 − 8α

9(1 + α)

)
. (29)

We consider the non-rotating case a = 0, like the Schwarzs-
child-MOG black hole. Comparing this with a circular pho-
ton orbit of the Kerr-MOG, we obtain the same result (rps =

Fig. 6 The trajectory of a test particle of the Kerr-MOG black hole with
a = 0.8 and α = 0.5. As a test particle approaches the two horizons,
it is bending rapidly to the ring singularity comparing with Kerr black
hole

21.7082, rc = 21.7082) numerically in the case of a = 0
and α. We demonstrate that the photon circular orbit of Kerr-
MOG black hole obeys the same results as the case of the
Schwarzschild-MOG black hole for all values of parameter
α when a = 0. That is, Fig. 7 shows that the two lines overlap
and increase as α.

5 Innermost stable circular orbit (ISCO) of a test
particle of Kerr-MOG black hole

The null geodesics of coordinate t and φ are ‘bad’ coordi-
nates. Nevertheless, the null geodesics of coordinates t and
φ are a valuable tool to study a spacetime diagram of the
light-cone structure, like the Penrose diagram, by describing
the conformal geometry of a black hole of coordinate t and
φ. Thus, we study timelike geodesics of the coordinates t and
φ of the Kerr and the Kerr-MOG black hole.

For simplicity, we consider a a test particle of zero angular
momentum. Thus, we set L = 0 and E = 1 and can avoid
the complexity of the geodesic equations [18–21]. From Eq.
(9), we obtain

ṫ = 1

Δr2 [(r2 + a2)2 − a2Δ], (30)

φ̇ = a

Δr2 [(r2 + a2) − Δ], (31)

ṙ2 =
(

2Mα

r
− β2

r2

)(
1 + a2

r2

)
. (32)
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Fig. 7 rps is photosphere or photon circular orbit of the Schwarzschild-
MOG black hole and rc is the photon circular orbit of a Kerr-MOG black
hole when a = 0. For the two cases, the solutions coincide for all values
of α

The radial motions of the trajectory of the test particle are
expressed by differentiating of the coordinate t and φ with
respect to r :

dt

dr
= ṫ

ṙ
= 1

Δr2 [(r2 + a2)2 − a2Δ]

×
[(

2Mα

r
− β2

r2

)(
1 + a2

r2

)]− 1
2

, (33)

dφ

dr
= φ̇

ṙ
= a

Δr2 (2Mαr − β2)

[(
2Mα

r
− β2

r2

)

×
(

1 + a2

r2

)]− 1
2

. (34)

We numerically calculate dt/dr and dφ/dr where we adopt
M = 1. Figures 5 and 6 illustrate orbits of the test particles
of the Kerr and Kerr-MOG black holes in the (x, y)-plane
where x = √

r2 + a2 cos φ and y = √
r2 + a2 sin φ. They

have timelike geodesics of a Kerr black hole with intrinsic
angular momentum a = 0.8 and Kerr-MOG black hole with
a = 0.8 and parameter α = 0.5. The trajectories of the test
particles of the Kerr and Kerr-MOG black holes are described
by the solid line. The horizons are described by the broken
lines. Since the two horizons of the Kerr-MOG black hole
are greater than the horizons of the Kerr black hole with
parameter α, the trajectory of the test particle is different from
the case of the Kerr black hole. It is bending rapidly to the
singularity. To obtain ISCO of a test particle around the Kerr-
MOG black hole, we study timelike geodesics (μ = 1) of the
circular orbit of the test particle. We will use the reciprocal
radius u(= 1/r) and x = L − aE as independent variables
and we consider ṙ = 0 and ∂ ṙ/∂r = 0. The radial equations

are

E2 − (x2 + 2aEx)u2 + (2Mα − β2u)x2u3

−(1 + a2u2 − 2Mαu + β2u2) = 0 (35)

and

−(x2 + 2aEx)u2 + 3Mαx
2u3 − 2β2x2u4

−(a2u2 − Mαu + β2u2) = 0. (36)

Subtracting Eq. (36) from Eq. (35), we take

E2 = 1 − Mαu + Mαx
2u3 − β2x2u4 (37)

and from Eq. (36), we obtain

2aExu= x2[3Mαu−2β2u2 − 1]u − (a2u − Mα) − β2u.

(38)

We also can derive the quadratic equation for x from com-
bining Eq. (37) with Eq. (38) and eliminating E ,

x4u2[(3Mαu − 1)2 − 4a2Mαu
3 + 4β4u4

−4β2u2(3Mαu − 1) + 4a2β2u4] + (a2u − Mα)2 + β4u2

+2β2u(a2u − Mα) − 2x2u[(3Mαu − 1)(a2u − Mα)

+2a2u−2Ma2u2−2β2u2(a2u − Mα) + β2u(3Mαu − 1)

−2β4u3] = 0. (39)

The discriminant 1
4 (b2 − 4ac) of this equation is

4a2u3(Mα − β2u)Δ2
u, (40)

where

Δu = a2u2 − 2Mαu + 1 + β2u2. (41)

We take

x2u2 = Q±Δu − Q+Q−
Q+Q−

= 1

Q∓
(Δu − Q∓), (42)

where

Q+Q− = (3Mαu − 2β2u2 − 1)2 − 4a2u3(Mα − β2u),

(43)

Q± = 1 + 2β2u2 − 3Mαu ± 2a
√

(Mα − β2u)u3, (44)

and

Δu − Q∓ = u
[
a
√
u ±

√
(Mα − β2u)

]2
. (45)

Therefore, the solution of the quadratic equation for x can be
found:

x = −a
√
u ± √

(Mα − β2u)√
uQ∓

. (46)

Equation (46) shows that the upper sign in the foregoing
equation refers to the counter-rotating orbit; on the other
hand, the lower sign refers to the co-rotating orbit. We will
use the lower sign to find ISCO of Kerr-MOG. The equation
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Fig. 8 Radius of stable circular orbit and energy E of a function of r .
For α = 9, a = 0.95, there is a minimum point at ISCO r = 38.672 and
energy E is a function of r . For α = 0.5, a = 0.95, there is a minimum
point of the effective potential equal to ISCO at r = 4.328

of energy E can be derived by substituting Eq. (46) in Eq.
(37), with Eq. (12);

E = 1√
Q∓

[
1 − 2GN (1 + α)Mu + M2G2

Nα(1 + α)u2

∓ a
√

[GN (1 + α)M − M2G2
Nα(1 + α)u]u3

]
. (47)

According to x = L − aE , we find

L = ∓
√
GNM(1 + α) − M2G2

Nα(1 + α)u
√
uQ∓

[
a2u2 + 1

± a
√
u3

√
GNM(1 + α) − M2G2

Nα(1 + α)u

[
2GNM(1

+α) − M2G2
Nα(1 + α)u]

]
. (48)

We easily find the Kerr metric when α is zero,

E = 1√
Q∓

[
1 − 2GNMu ∓ a

√
GNMu3

]
. (49)

We have

L = ∓
√
GNM√
uQ∓

[
a2u2 + 1 ± 2a

√
GNMu3

]
. (50)

Thus, we obtain numerical values of the ISCOs of Kerr-MOG
black holes from Eq. (49) where we adopt M = 1. Differen-
tiating E for radius r leaves us with zero, that is,

dE

dr
= 0. (51)

By the condition of Eq. (51), the radius of the ISCO is
obtained at a minimum value of E . Figure 8 shows some

Fig. 9 Comparing ISCOs of the Schwarzschild-MOG and Kerr black
holes when a = 0, two values coincide for all values of α

Fig. 10 Event horizons (EH) and ISCOs of the Kerr-MOG black holes.
The difference between ISCO and the outer horizon (EH) of Kerr-MOG
black hole increases as parameter α increases

examples of the minimum point of the energy of test parti-
cles having the radius of an ISCO of the Kerr-MOG black
hole when α is 9 and a is 0.95 and when α is 0.5 and a is
0.95. In the case of a Kerr black hole, the radius of the ISCO
depends on the intrinsic angular momentum a of the black
hole. However, the radius of the ISCO of the Kerr-MOG black
hole depends on a and the parameter α, which is related to
the gravitational constant G. In Fig. 9, there is the ISCO
of the Schwarzschild-MOG black hole in Ref. [14] and we
numerically calculate it by differentiating the critical energy
(dε0/dr ). We demonstrate that ISCOs of Kerr-MOG black
holes lead to the same result as ISCOs of Schwarzschild-
MOG black holes when a = 0. Therefore, the two values
for ISCOs of Kerr-MOG (a = 0) and Schwarzschild-MOG
black holes coincide for α. Figure 10 shows that event hori-
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Fig. 11 ISCOs of Kerr-MOG black holes. ISCOs are plotted on some
intrinsic angular momentum a and parameter α. The solid line is the
case of the Kerr black hole. The ISCO of the Kerr black hole converges
to 1 at a = 1, while the ISCO of the Kerr-MOG case is not. Thus, for
rapidly spinning black holes (a > 1), there is an ISCO in the Kerr-MOG
case

zons and ISCOs of Kerr-MOG black holes are proportional to
the parameter α. It shows that the difference between event
horizon and ISCO of the Kerr-MOG black hole gradually
increases as the parameter α increases. In the Fig. 10, the
outer horizons for a = 0.5 and a = 0.95 show a slight dif-
ference. In Fig. 11, Comparing the Kerr with the Kerr-MOG
black hole, the ISCO of the Kerr-MOG black hole is always
greater than the ISCO of the Kerr black hole. In the case of a
co-rotating orbit, the ISCO of the Kerr black hole converges
to 1 and is equal to the event horizon when a = 1, while the
ISCO of the Kerr-MOG black hole is not. Thus, for rapidly
spinning black holes (a > 1), there are ISCOs for the Kerr-
MOG black holes. Figure 12 shows the curves for ISCOs of
high values of parameter α. The radius of the ISCO increases
as the parameter α increases.

The Kerr-MOG ISCO can help in the study of comparing
black hole shadows of the Kerr-MOG case with the astro-
nomical observation of supermassive black holes like SgA*
at the center of the Milky Way. It also can be expected to
radiate more around a black hole as the difference between
the ISCO and the event horizon of the black hole increases.

6 Conclusions

In this paper, we investigated the rotating black hole in modi-
fied gravity theory, called the Kerr-MOG black hole. We have
shown the trajectory of null and timelike geodesics of coordi-
nates t and φ for the Kerr-MOG black hole. In particular, we
have calculated conserved quantities for a photon and a test
particle of Kerr-MOG black holes by using a well-established

Fig. 12 ISCOs of Kerr-MOG black holes with large values of α. The
radii of the ISCOs decrease with increasing values of a and increase as
α increases

method [18,19] and numerically computed the radius of the
ISCO in a Kerr-MOG black hole. We also investigated the
phenomena determined by the parameter α by comparing
with the ISCO of the Kerr black hole. Thus, the following
properties can be discovered:

1. For the Kerr-MOG black hole, the radius of the ISCO
depends on parameter α as well as intrinsic angular
momentum a.

2. The difference between the ISCO of the Kerr-MOG black
hole and event horizon increases as the parameter α

increases.
3. The ISCO of the Kerr black hole converges to 1 at a = 1,

while the ISCO of Kerr-MOG does not. Thus, for rapidly
spinning black holes (a > 1), there are ISCOs of Kerr-
MOG black holes.

4. Because the ring singularity of Kerr-MOG black hole
does not change by α and two horizons have larger radii
than the horizons of the Kerr black hole, trajectories of
a photon and a test particle are bending rapidly to the
singularity compared with a Kerr black hole.
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