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Abstract A new solution satisfying the Karmarkar con-
dition is presented here. We were first to have discov-
ered a hypergeometric function metric potential represent-
ing embedding class I spacetime. This new solution yields
finite values of metric potentials, density, pressure, redshift,
etc. and hence a non-singular solution. The solution is well
behaved with respect to the parameter n = 12 to n = 24
corresponding to a stable configuration of mass 2.01M� and
radius 9.1 km. The internal properties of the solution are very
different for n = 12 to n = 24; however, the total mass and
radius is independent of the parameter n. The energy con-
ditions are also holds good by the solution which thus can
represent a physically viable matter distribution. The equi-
librium condition and stability are also discussed through
TOV-equation, cracking method and � > 4/3. The static
stability criterion is also well satisfied and the turning point
corresponds to 4.46M� for a radius of 9.1 km.

1 Introduction

The final states of collapsing stars remain an exciting research
area in theoretical astrophysics. Now a days it is a well-
established theory that the final state of a main-sequence star
of mass of more than 8M� is most likely to form a neu-
tron star after a type IIa supernova. However, it is important
to keep in mind that such an evolution in single star sys-
tem is completely different from that of a binary star system.
Also accretion onto a white dwarf leads to a type Ia super-
nova left behind a neutron star as well. Accretion onto a
neutron star (NS) can also initiate a collapse once it crossed
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the Chandrashekhar limit of NS leading to the formation of
more dense objects like quark star (QS) and black hole. Neu-
tron stars and quark stars are the most dense objects ever
existing in the universe that can be practically observed. Due
to their compact nature, many exotic phases are expected to
be present in the interior such as pion condensation, neutron
superfluid, superconducting protons, asymptotic free quarks,
quark gluon plasma etc. Therefore, these compact objects are
the only laboratories existing for testing quantum chromo-
dynamics.

New compact stars other than NS and QS such as strange
stars (SSs) and boson stars (BSs) have also been proposed by
Witten [1], Farhi and Jaffe [2], Kaup [3], Ruffini and Bonaz-
zola [4] and Colpi et al. [5]. The matter at the interior of these
compact stars are not necessarily ideal fluids (isotropic pres-
sure); however, assuming non-ideal (anisotropic pressure)
fluid would be of more general consideration. The existence
of an anisotropic pressure is also highly possible at a den-
sity ∼1014 g/cm3 due to relativistic nuclear interaction [6],
the presence of solid core or the presence of type 3A super-
fluid [7], phase transitions [8], meson condensation [9], slow
rotation [10], a mixture of two gases [11] or strong magnetic
fields [12], and the presence of some electric charge. It is well
known that the behavior of a collapsing star is strongly influ-
enced by its initial static configuration. The evolution of a
collapsing star can be strongly influenced by the presence of
pressure anisotropy, electric charge, EoS, shear, radiations,
magnetic field etc. The initial configurations with the same
masses and radii for pressure isotropy and anisotropy when
undergoing collapse lead to a completely different tempera-
ture evolution at their later stages [13]. Hence, to study the
complete picture of the initial static configuration it is nec-
essary to track the evolution when collapse happens.

Schwarzschild [14] has shown that an incompressible fluid
sphere satisfies the Buchdahl condition 2M/R ≤ 8/9, which
implies an upper bound on the redshift zmax ≤ 2. High red-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5149-2&domain=pdf
mailto:piyalibhar90@gmail.com
mailto:ntnphy@gmail.com
mailto:nayan.mathju@gmail.com
mailto:rahaman@associates.iucaa.in


596 Page 2 of 10 Eur. Phys. J. C (2017) 77 :596

shift can be achieved on account of anisotropic fluid config-
urations [10,15]. Lindblom [16] and Haensel et al. [17] have
shown that neutron stars with causal equations of state can
have a maximum redshift of zmax < 0.9.

Embedding of n-dimensional space Vn into flat En+p

space captured much attention after the investigation of Ran-
dall and Sundrum [18] on brane theory. Embedded spaces
are also used by many authors to investigate extrinsic grav-
ity, string and membranes, rigid particles and Zitterbewegung
theory [19]. If a n-dimensional at space Vn can be embed-
ded in (n + p)-dimensional space, where p is a minimum
number of extra dimensions, then Vn is said to be of embed-
ding class p. Many physically important solutions, e.g. Fried-
mann universe and Schwarzschild’s interior solutions [14]
are of class I, the well-known Schwarzschild exterior solu-
tion [14] is of class II (p = 2) and the Kerr metric [20]
is of class V (p = 5). There are only two solutions for an
isotropic pressure i.e. the Schwarzschild interior and Kohler–
Chao solutions. The Schwarzschild interior solution is con-
formally flat, which represents a bounded configuration and
the Kohler–Chao solution is conformally non-flat, which rep-
resents unbounded or cosmological configurations. However,
on introducing electric charge and pressure anisotropy many
authors have recently presented various conformally non-flat
bounded solutions [21–28].

In this article, we are presenting a new conformally non-
flat embedding class I solution that represents bounded con-
figurations. For the first time we have obtained an embedding
class I solution as special function. The article is organized
as follows: Sect. 2 we are discussing concepts on embedding
class and Einstein’s field equations, in Sect. 3 we discover a
new solution, Sect. 4 is devoted to the physical conditions,
Sect. 5 deals with boundary conditions and a determination
of constants of integration, Sect. 6 is on physical properties
of the new solutions, Sect. 7 discusses the equilibrium condi-
tion and stability analysis in detail and in Sect. 8, we present
our results and discussions.

2 Concepts of embedding classes and basic field
equations

To describe the interior of a static and spherically symmetry
object in the canonical coordinate xμ = (t, r, θ, φ), we take
the line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

(1)

ν and λ being the functions of the radial coordinate r .
Kasner [29] has shown that the Schwarzschild exterior

spacetime i.e. eν = e−λ = 1 − 2m(r)/r in (1) cannot be
embeded in 5-D Euclidean space. Adopting the coordinates

transformation given as

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (2)

the spacetime (1) reduces to

ds2 = r − 2m

r
dt2 − 2m

r − 2m
dr2 − dx2 − dy2 − dz2 (3)

where r2 = x2 + y2 + z2. Further, assuming

dR =
√

2m

r − 2m
dr or R = √

8m(r − 2m) (4)

Equation (3) reduces to

ds2 = R2

R2 + 16m2 dt2 − dR2 − dx2 − dy2 − dz2. (5)

Due to the coefficient of the first term in the above line
element (5) is not a perfect differential. Hence it is clear that
the 4-D spacetime of the form (1) cannot be embedded in 5-D
pseudo-Euclidean space. However, if we introduce another
coordinate transformation:

dS2 = −dR2 + R2

R2 + 16m2 dt2 = dX2 + dY 2 + dZ2 (6)

X = R sin t√
R2 + 16m2

, Y = R cos t√
R2 + 16m2

(7)

Z =
∫ √

1 + 256m4

(R2 + 16m2)3 dR. (8)

Equation (5) finally reduces to

ds2 = −dx2 − dy2 − dz2 + dS2. (9)

Hence the 4-D metric (1) can be embedded in 6-D pseudo-
Euclidean space.

Gupta and Goel [30] also have shown that the metric (1)
can be embedded in 6-D pseudo-Euclidean space given by

ds2 = −dx2 − dy2 − dz2 + dX2 + dY 2 ± dZ2 (10)

where

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,

X = keν/2 cosh(t/k), Y = keν/2 sinh(t/k),

Z = f (r), (11)

provided f ′2(r) = ∓[−(eλ − 1) + k2eνν′ 2/4] and for all
k > 0.

However, in this transformation it is always possible to
find λ(r) and ν(r) such that dZ2 = f ′2(r) = 0 or equiva-
lently

eλ = 1 + 1

4
k2ν′2eν . (12)
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Hence with the transformation (11), the metric (1) can be
embedded in 5-D pseudo-Euclidean space (i.e. class I solu-
tion) provided the condition (12) is satisfied. This condition
(12) is known as the Karmarkar condition; it was presented
in terms of components of the Riemann tensor by [31] as

Rrtrt = Rrθrθ Rφtφt + Rrθθ t Rrφφt

Rθφθφ

(13)

with Rθφθφ �= 0 [32].
Now the above components of Rμναβ for the metric (1)

are

Rθφθφ = r2 sin2 θ
[
1 − e−λ

]
,

Rrθrθ = 1

2
λ′ r,

Rrθθ t = 0,

Rrtrt = eν

[
1

2
ν′′ + 1

4
ν′2 − 1

4
λ′ ν′

]
,

Rφtφt = r

2
sin2 θ ν′ eν−λ.

We assume that the matter distribution within the star is
locally anisotropic and therefore the energy-momentum ten-
sor is described by

Tμν = (ρ + pr)vμvν − ptgμν + (pr − pt)χμχν (14)

where ρ, pr and pt represent the matter density, radial and
transverse pressure of the fluid distribution. The quantities
vμ and χμ are four-velocity and the unit spacelike vector in
the radial direction satisfying −vμvμ = χμχμ = 1.

Assuming G = c = 1, for the line element (1) and the
matter distribution (14) the Einstein field equations are writ-
ten as

1 − e−λ

r2 + e−λλ′

r
= 8πρ(r), (15)

e−λ − 1

r2 + e−λν′

r
= 8πpr (r), (16)

e−λ

(
ν′′

2
+ ν′2

4
− ν′λ′

4
+ ν′ − λ′

2r

)
= 8πpt(r), (17)

where (′) represents differentiation with respect to the radial
coordinate r . From Eqs. (16) and (17) the anisotropy factor
� is obtained:

�(r) = pt − pr

= e−λ

8π

[
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r
+ eλ − 1

r2

]
. (18)

On integration (12) we get the following relationship
between the metric potentials ν and λ:

eν =
(
A + B

∫ √
eλ − 1 dr

)2

(19)

where A = 3C/2 and B = 3/k are constants of integration.
By using (19) we can rewrite (18) as

�(r) = ν′

4eλ

[
2

r
− λ′

eλ − 1

] [
ν′eν

2r B2 − 1

]
. (20)

We have to solve the Einstein field equations (15)–(17)
with the help of Eq. (19). One can notice that we have four
equations with five unknowns, namely λ, ν, ρ, pr and pt .

3 Solutions to the Einstein field equation

To generate the model let us assume a completely new expres-
sion for the grr metric potential:

eλ = 1 + a2r2

(1 + b2r4)n
(21)

where a and b are constants having the dimensions length−1

and length−2, respectively.
Solving Eqs. (19) and (21) we obtain the expression for

the metric coefficient eν :

eν =
(
A + 1

2
aBr2

2F1

[
1

2
,
n

2
; 3

2
; − b2r4

])2

(22)

where 2F1 is the usual hypergeometric function defined as

2F1(a, b; c; z) =
∞∑
i=0

(a)i (b)i
(c)i

zi

i ! . (23)

Here (x)n is the Pochhammer symbol, which is defined as

(x)i =
{

1 for i = 0
x(x + 1) . . . (x + i − 1) for i > 0.

(24)

Using Eqs. (21) and (22) the expressions for matter den-
sity, radial and transverse pressure are obtained:

8πρ = a2

(1 + b2r4)
[
a2r2 + (1 + b2r4)n

]2

×
[
(1 + b2r4)n

{
3 + b2(3 − 4n)r4}

+a2(r2 + b2r6)
]
, (25)

8πpr = a
[ − 2aA + 4B(1 + b2r4)n/2 − a2Br2 f1(r)

]
[
a2r2 + (1 + b2r4)n

][
2A + aBr2 f1(r)

] ,

(26)

8πpt = a(1 + b2r4)n/2−1

[
a2r2 + (1 + b2r4)n

]2[2A + aBr2 f1(r)
]

×
[
2a2Br2(1 + b2r4) + 4B(1 + b2r4)n

×{
1 − (n − 1)b2r4} − a(1 + b2r4)n/2

×{
1 − (2n − 1)b2r4}{2A + aBr2 f1(r)

}]
, (27)
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where

f1(r) = 2F1

[
1

2
,
n

2
; 3

2
; − b2r4

]
.

4 Physical acceptability conditions

For the well-behaved nature of the solution, the following
conditions should be satisfied [33]:

(i) The metric potentials should be free from singularities
inside the radius of the star; moreover, the fluid sphere
should satisfy eν(0) = constant, and e−λ(0) = 1.

(ii) The density ρ and pressures pr, pt should be positive
inside the fluid configuration.

(iii) The radial pressure pr must be vanishing but the tan-
gential pressure pt needs not necessarily vanish at the
boundary r = r
 . However, the radial pressure is
equal to the tangential pressure at the center of the fluid
sphere, i.e., the pressure anisotropy vanishes at the cen-
ter, �(0) = 0 [34,35] and �(r = r
) = pt(r
) > 0
[36].

(iv) The radial pressure gradient dpr/dr ≤ 0 for 0 ≤ r ≤
r
 .

(v) The density gradient dρ/dr ≤ 0 for 0 ≤ r ≤ r
 .
(vi) A physically acceptable fluid sphere must satisfy the

causality conditions; the radial and tangential adiabatic
speeds of sound should be less than the speed of light.
In the unit c = 1 the causality conditions take the form
0 < v2

sr = dpr/dρ ≤ 1 and 0 < v2
st = dpt/dρ ≤ 1.

(vii) The interior solution should satisfy either:

• strong energy condition (SEC) ρ− pr −2pt ≥ 0, ρ−
pr ≥ 0, ρ − pt ≥ 0 or,

• dominant energy condition (DEC) ρ ≥ pr and ρ ≥
pt .

(viii) The interior solution should continuously match with
the exterior Schwarzschild solution.

Conditions (iv) and (v) imply that pressure and density should
be maximum at the center and monotonically decreasing
towards the surface.

5 Exterior spacetime and boundary condition

To fix the values of the constants a, b, A and B we match our
interior spacetime to the exterior Schwarzschild line element
given by

ds2 =
(

1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2) (28)

outside the event horizon r > 2m, m being the mass of the
black hole.

Using the continuity of the metric coefficients eν, eλ

across the boundary we get the following three equations
(Table 3):

1 + a2r2



(1 + b2r4

)n

=
(

1 − 2m

r


)−1

, (29)

1 − 2m

r

=

[
A + 1

2
aBr2


 f1(r
)

]2

, (30)

and pr(r = r
) = 0 gives

−2aA + 4B(1 + b2r4

)n/2 − a2Br2


 f1(r
) = 0. (31)

Solving Eqs. (29)–(31) we get

a = (1 + b2r4

)n/2

r


√
2m/r


1 − 2m/r

, (32)

B = a

2(1 + b2r4

)n/2

√
1 − 2m

r

, (33)

A =
√

1 − 2m

r

− 1

2
aBr2


 f1(r
). (34)

6 Physical analysis

At the center of the star the expressions for metric potentials
are obtained:

eλ|r=0 = 1, eν |r=0 =
(
A − aB

2b

)2

,

which are constants and

(eλ)′|r=0 = 0, (eν)′|r=0 = 0.

The central density and central pressure are obtained:

8πρc = 3a2, (35)

8πprc = 8πptc = a
[ − 2aA + 4B

]

2A
. (36)

To satisfy Zeldovich’s condition at the interior, pr/ρ at the
center must be ≤1. Therefore

−2aA + 4B

6Aa
≤ 1. (37)

From Eqs. (36) and (37) we get

1

2a
≤ A

B
<

2

a
. (38)
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Differentiating Eqs. (25)–(27) we get the density and pres-
sure gradient:

8π
dρ

dr
= − 2a2r

(1 + b2r4)2(a2r2 + (1 + b2r4)n)3

×[
2b2nr2(1 + b2r4)2n{7 + b2(3 − 4n)r4}

+a4(r + b2r5)2 + a2(1 + b2r4)n f2(r)
]
, (39)

8π
dpr

dr
= − 2ar

(1 + b2r4)
[
a2r2 + (1 + b2r4)n

]2
f6(r)

×
[

4b2Bnr2(1 + b2r4)3n/2(2A + aBr2 f1(r))

+4a2B(1 + b2r4)n/2{1 − b2(n − 1)r4}

×{
2A + aBr2 f1(r)

} − a3(1 + b2r4) f3(r)

× f4(r) − 2a(1 + b2r4)n f5(r)

]
, (40)

8π
d�

dr
= − 2ar

(1 + b2r4)2(a2r2 + (1 + b2r4)n)3 f6(r)

×
[

4a4ABr2(1 + b2r4)1+n/2{(n − 1)b2r4 − 1
}

−8Ab2Bnr2(1 + b2r4)5n/2(b2nr4 − 2) + 2a5

×(2A2 − B2r2)(r + b2r5)2 + 4a2AB

×(1 + b2r4)3n/2 f7(r) − 4ab2nr2(1 + b2r4)2n

f8(r) − 2a3(1 + b2r4)n f9(r) + aBr2 f1(r){
2
(
a4Br2(1 + b2r4)1+n/2{(n − 1)b2r4 − 1

}

− f10(r) + 8aAb2nr2 f11(r) + 2a5A(r + b2r5)2

+a2B(1 + b2r4)3n/2 f12(r) − 2a3A(1 + b2r4)n

f13(r)
)

+ a2Br2 f1(r) f16(r)

}]
, (41)

dpt

dr
= dpr

dr
+ d�

dr
, (42)

where

f2(r) = 5 − 2b2(−5 + n)r4 + b4{5 + 2n(−5 + 4n)
}
r8,

f3(r) = 2(A + Br) + aBr2 f1(r),

f4(r) = 2A − 2Br + aBr2 f1(r),

f5(r) = −2
{ − 2A2b2nr2 + B2(1 + b2r4)

}

+ab2Bnr4 f1(r)(4A + aBr2 f1(r)),

f6(r) = {
2A + aBr2 f1(r)

}2
,

f7(r) = (1 + b2(2 − 3n)r4

+b4(−1 + n)(−1 + 6n)r8),

f8(r) = (B2r2(1 + b2r4) + A2(4 − 4b2nr4)),

f9(r) = B2r2(1 + b2r4)
{
1 + b2(1 + 2n)r4}

+2A2
[
1 + 2b2(1 − 2n)r4

+b4{1 + 4(−2 + n)n
}
r8

]
,

f10(r) = 2b2Bnr2(1 + b2r4)
5n
2 (b2nr4 − 2),

f11(r) = (1 + b2r4)2n(b2nr4 − 1),

f12(r) = 1 + b2(2 − 3n)r4 + b4(−1 + n)(−1 + 6n)r8,

f13(r) = 1 + 2b2(1 − 2n)r4 + b4{1 + 4(−2 + n)n
}
r8,

f14(r) = (1 + b2r4)2n(−1 + b2nr4),

f15(r) = 1 + 2b2(1 − 2n)r4 + b4{1 + 4(−2 + n)n
}
,

f16(r) = 4b2nr2 f14(r) + a4(r + b2r5)2

−a2(1 + b2r4)n f15(r)r
8.

The mass function, compactness parameter and redshift
can be determined as

m(r) = 4π

∫ r

0
r2ρ(r) dr = a2r3

2
[
a2r2 + (b2r4 + 1)n

] , (43)

u(r) = 2m(r)

r
= a2r2

a2r2 + (
b2r4 + 1

)n , (44)

z(r) = e−ν(r)/2 − 1,

=
(
A + aBr2

2
2F1

[
1

2
,
n

2
; 3

2
;−b2r4

])−1

− 1. (45)

7 Equilibrium and stability analysis

7.1 Equilibrium analysis via TOV-equation

Equilibrium condition under three forces, vi z. the gravita-
tional, hydrostatic and anisotropic forces, can be analyze via
a generalized Tolman–Oppenheimer–Volkoff (TOV) equa-
tion expressed as

−Mg(r)(ρ + pr)

r
e

ν−λ
2 − dpr

dr
+ 2

r
(pt − pr) = 0, (46)

where Mg(r) represents the gravitational mass within the
radius r . It is defined using the Tolman–Whittaker mass for-
mula through the Einstein field equations as

Mg(r) = 4π

∫ r

0

(
T t
t − T r

r − T θ
θ − T φ

φ

)
r2e(ν+λ)/2dr

= 1

2
re(λ−ν)/2 ν′. (47)

Plugging the value of Mg(r) in Eq. (46), we get

−ν′

2
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) = 0

or Fg + Fh + Fa = 0 (48)

123
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where Fg, Fh and Fa represent the gravitational, hydrostatic
and anisotropic forces, respectively, and it gives

Fg = −ν′

2
(ρ + pr) =

[
a2Br

(
a2Br2(b2r4 + 1)n/2

×{
b2(2n − 1)r4 − 1

}
2F1

[
1

2
,
n

2
; 3

2
;−b2r4

]

−2
{
a2Br2(b2r4 + 1) − aA

{
b2(2n − 1)r4 − 1

}

×(b2r4 + 1)n/2 + B(b2r4 + 1)n+1
})]

×
[

2(πb2r4 + π)
{
(a2r2 + (b2r4 + 1)n

}2

×
(
aBr2

2F1

[
1

2
,
n

2
; 3

2
;−b2r4

]
+ 2A

)2
]−1

, (49)

Fh = − 1

8π

dpr

dr
(50)

Fa = 2�

r
=

[
ar

{
a2(b2r4 + 1) + 2b2nr2(b2r4 + 1)n

}

×
{
a2Br2

2F1

[
1

2
,
n

2
; 3

2
;−b2r4

]

+2aA − 2B(b2r4 + 1)n/2
}]

×
[

4π(b2r4 + 1)
{
a2r2 + (b2r4 + 1)n

}2

×
{
aBr2

2 F1

[
1

2
,
n

2
; 3

2
;−b2r4

]
+ 2A

}]−1

. (51)

All the solutions have to satisfy TOV equation if the con-
figurations are at equilibrium.

7.2 Causality condition and stability criterion

In general relativity, since the maximum possible speed is
the speed of light, the speed of sound when traveling within
the interior of the star has to be less than or equal to the speed
of light. This condition is known as the causality condition.
The speed of sound can be determined using

v2
r = dpr/dr

dρ/dr
and v2

t = dpt/dr

dρ/dr
(52)

and in the light of (39)–(42). To satisfy the causality condition
v2
r and v2

t have to lie in the range of 0 to 1. Using the cracking
method of analysis stability by Herrera [37] and Abreu et al.
[33] one finds a stability condition in terms of the speed of
sound. They have proposed that −1 ≤ v2

t −v2
r ≤ 0 is satisfied

for stable configurations and 0 < v2
t −v2

r ≤ 1 is satisfied for
unstable configurations.
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Fig. 1 Variation of metric potentials with radial coordinate for the
parameters given in Table 1

Table 1 Values of the constants for different values of n

n a (km)−1 b (km)−2 A B (km)−1

12 0.122563 0.0013 0.531349 0.0413491

14 0.123644 0.0013 0.530285 0.0413491

16 0.124735 0.0013 0.529214 0.0413491

18 0.125835 0.0013 0.528135 0.0413491

20 0.126945 0.0013 0.527049 0.0413491

22 0.128065 0.0013 0.525955 0.0413491

24 0.129195 0.0013 0.524853 0.0413491

Table 2 Central values of some physical quantities for different values
of n

n ρc (g/cc) ρs (g/cc) pc (dyne/cm)2 zc

12 2.419 × 1015 6.607 × 1014 49.23 × 1035 0.882

14 2.462 × 1015 46.478 × 1014 48.51 × 1035 0.886

16 2.506 × 1015 6.347 × 1014 47.76 × 1035 0.890

18 2.550 × 1015 6.217 × 1014 46.99 × 1035 0.893

20 2.596 × 1015 6.087 × 1014 46.19 × 1035 0.897

22 2.642 × 1015 5.957 × 1014 45.36 × 1035 0.901

24 2.688 × 1015 5.827 × 1014 44.51 × 1035 0.905

7.3 Stability analysis using relativistic adiabatic index

One of the important parameters needed to analyze whether
a configuration is potentially stable or not is the relativistic
adiabatic index �r and it is defined as

�r = ρ + pr

pr

dpr

dρ
. (53)

Bondi had clearly mentioned that a stable Newtonian
sphere has �r > 4/3 and �r = 4/3 for a neutral equi-
librium. However, Chan et al. [38] have shown that in the
general relativistic case the above condition is modified as
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Table 3 Variation of metric
potentials with radial
coordinates r for different
values of n

Model n r
r


= 0 r
r


= 0.2 r
r


= 0.4 r
r


= 0.6 r
r


= 0.8 r
r


= 1

Parameters

eλ 12 1.0 1.04341 1.17318 1.38539 1.66518 1.97674

16 1.0 1.04495 1.17921 1.39735 1.67909 1.97674

20 1.0 1.04656 1.18545 1.40968 1.6933 1.97674

24 1.0 1.04822 1.19191 1.4224 1.7078 1.97674

eν 12 0.282332 0.290167 0.314304 0.356536 0.419486 0.505882

16 0.280068 0.288011 0.312489 0.355318 0.419025 0.505882

20 0.277781 0.285833 0.310657 0.354089 0.418561 0.505882

24 0.275471 0.283633 0.308805 0.352849 0.418094 0.505882

�r >
4

3
+

[
4

3

(pti − pri )

|p′
ri |r

+ 8π

3

ρi pri
|p′

ri |
r

]

max

, (54)

where pri , pti , and ρi are the initial values of radial, tangen-
tial and energy densities in static equilibrium satisfying (46).
The first and last term inside the square brackets represent
the anisotropic and relativistic corrections, respectively, and
both quantities are positive increasing the unstable range of
�.

7.4 Static stability criterion

The static stability criterion (Harrison–Zeldovich–Novi–
kov) [39,40] states that any stellar configuration has an
increasing mass profile with increasing central density i.e.
dM/dρc > 0 represents stable configurations and vice versa.
The turning point between stable and unstable region is
achieved when the mass remains constant with increase in
central density, i.e. dM/dρc = 0. For the new solution M(ρc)

and dM/dρc we find

M(ρc) = 8πρcR3/3

16πρcR2/3 + 2(1 + b2R4)n
, (55)

dM

dρc
= 12πR3

(
b2R4 + 1

)n
[
3
(
b2R4 + 1

)n + 8πR2ρc
]2 > 0. (56)

Hence the presenting new solutions can represent static stable
configurations according to the above discussions.

8 Results and discussions

The central values of the metric potentials are regular and
finite throughout the interior and free of any singularity (Fig.
1). The values of eν are almost the same and eλ is slightly
changed for n = 12 to n = 12 (see Table 3). The central den-
sity is also regular and finite everywhere inside the boundary;
however, n = 12 gives lower ρc than n = 24 (Fig. 2; Table
2). The interior pressures are also finite and regular. Here
n = 12 gives a higher pressure than n = 24 (Fig. 3). Since

n 24 Red
n 12 Dashed

0 2 4 6 8

400

600

800

1000

r m

Fig. 2 Variation of density with radial coordinate for the parameters
given in Table 1
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Fig. 3 Variation of pressure with radial coordinate for the parameters
given in Table 1

n = 12 exerts a higher outward pressure, the corresponding
density is also smaller. The increasing nature of anisotropy
is shown in Fig. 4; n = 12 shows smaller anisotropy than
n = 24. This anisotropy is zero at the center since the mat-
ter is highly packed. The mass function and compactness
parameter are shown in Fig. 5 signifying that the maximum
mass is 2.1M� and the maximum compactness parameter
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Fig. 4 Variation of anisotropy with radial coordinate for the parameters
given in Table 1
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Fig. 5 Variation of mass function with radial coordinate for the param-
eters given in Table 1
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Fig. 6 Variation of redshift with radial coordinate for the parameters
given in Table 1

0.469 is with Buchdahl limit. The redshift at the center yield
by the solutions is minimum for n = 12 and maximum for
n = 24; however, the surface redshift is exactly equal for all
values of n (Fig. 6). These solutions obey the causality con-
dition perfectly for n = 12 to n = 24, being well-behaved,
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Fig. 7 Variation of sound speed with radial coordinate for the param-
eters given in Table 1

n 24 Red
n 12 Dashed

0 2 4 6 8
0.08

0.07

0.06

0.05

0.04

0.03

0.02

r km

v t
2

v r
2

Fig. 8 Variation of stability factor with radial coordinate for the param-
eters given in Table 1
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Fig. 9 Variation of ρ − pr with radial coordinate for the parameters
given in Table 1

i.e. decreasing radially outward (Fig. 7). The stability fac-
tor v2

t − v2
r holds the cracking stability criterion since it lies

between −1 and 0 (Fig. 8).
In a previous research article, Herrera et al. [41] proposed

that any solution describing a static anisotropic fluid distri-
bution is fully determined by the two generating functions �
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Fig. 10 Variation of ρ − pt with radial coordinate for the parameters
given in Table 1
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Fig. 11 Variation of ρ− pr −2pt with radial coordinate for the param-
eters given in Table 1
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Fig. 12 Variations of gravitational, hydrostatic and anisotropic forces
acting on the system with radial coordinate for the parameters given in
Table 1

and Z given by

� = 8π(pr − pt) (57)

and

eν(r) = e
∫ (

2Z(r)− 2
r

)
dr

. (58)
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Fig. 13 Variation of relativistic adiabatic index with radial coordinate
for the parameters given in Table 1
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Fig. 14 Variation of mass with central density for R = 9 km and for
the parameters given in Table 1

In our present model these two generating functions are
obtained:

� = −8π�, (59)

Z = 1

r
+ 2aBr(1 + b2r4)−n/2

2A + aBr2
2F1

[
1
2 , n

2 ; 3
2 ; − b2r4

] . (60)

The satisfaction of the strong energy condition (SEC), null
energy condition (NEC), the weak energy condition (WEC)
and the dominant energy condition (DEC) ensure that the
solution can represent a physically possible matter distribu-
tion. The presented new solutions do satisfy all these energy
conditions, signifying that these are physical solutions (Figs.
9, 10, 11). The equilibrium condition is possible only when
all the applied forces satisfy the TOV equation and balance
each other. The solutions present here also satisfy the TOV
equation and hence can represents equilibrium conditions
(Fig. 12).

These solutions yield an almost equal central adiabatic
index �rc of about 1.735 (Fig. 13). This central value is
larger than 4/3 and hence these solutions can represent stable
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Fig. 15 Variation of equation of state parameters with radial coordinate
for the parameters given in Table 1

stellar objects. The static stable criterion also hold good by
our solutions. For R = 9 km, the maximum mass allowed
by this criterion is 4.46 M� and it is obtained from about
ρc = 2.021 × 1017 g/cm3 (see Fig. 14). The equation of
state parameters i.e. ωr = pr/ρ and ωt = pt/ρ are less than
1, showing that it describes physical matters (Fig. 15). Thus
from all these analyses, one can conclude with certainty that
the new solutions are physically possible well-behaved solu-
tions that can be used to describe physical compact models.
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