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Abstract We provide the detailed calculation of a gen-
eral form for Maxwell and London equations that takes into
account gravitational corrections in linear approximation.
We determine the possible alteration of a static gravitational
field in a superconductor making use of the time-dependent
Ginzburg-Landau equations, providing also an analytic solu-
tion in the weak field condition. Finally, we compare the
behavior of a high-7; superconductor with a classical low-
T, superconductor, analyzing the values of the parameters
that can enhance the reduction of the gravitational field.
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1 Introduction

There is no doubt that the interplay between the theory of the
gravitational field and superconductivity is a very intriguing
field of research, whose theoretical study has been involving
many researchers for a long time [1-20]. Podkletnov and
Nieminem declared the achievement of experimental evi-
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dence for a gravitational shielding in a high-7¢ superconduc-
tor (HTCS) [21,22]. After their announcement, other groups
tried to repeat the experiment obtaining controversial results
[23-25], so that the question is still open.

In 1996, Modanese interpreted the results by Podkletnov
and Nieminem in the frame of the quantum theory of Gen-
eral Relativity [26,27] but the complexity of the formalism
makes it very difficult to extract quantitative predictions.
Afterwards, Agop et al. wrote generalized Maxwell equa-
tions that simultaneously treat weak gravitational and elec-
tromagnetic fields [28,29].

Superfluid coupled to gravity. It is well known that,
in general, the gravitational force is not influenced by any
dielectric-type effect involving the medium. In the classi-
cal case, this is due to the absence of a relevant number of
charges having opposite sign, which, redistributing inside the
medium, might counteract the applied field. On the other side,
if we regard the medium as a quantum system, the probability
of a graviton excitation of a medium particle is suppressed,
due to the smallness of gravitational coupling. This means
that any kind of shielding due to the presence of the medium
can only be the result of an interaction with a different state of
matter, like a Bose condensate or a more general superfluid.

The nature of the involved field is also relevant for the
physical process. If the gravitational field itself is consid-
ered as classical, it is readily realized that no experimental
device — like the massive superconducting disk of the Pod-
kletnov experiment [21,22] — can influence the local geome-
try so much as to modify the measured sample weight. This
means that the hypothetical shielding effect should consist
of some kind of modification (or “absorption”) of the field in
the superconducting disk.

Since the classical picture is excluded, we need a quan-
tum field description for the gravitational interaction [26,27].
In perturbation theory the metric g, (x) is expanded in the
standard way [30]

gu.v(x) =N + h;/,v(x) (1
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as the sum of the flat background 7, plus small fluctuations
encoded in the £, (x) component. The Cooper pairs inside
the superconducting sample compose the Bose condensate,
described by a bosonic field ¢ with non-vanishing vacuum
expectation value ¢g = (0]¢|0).

The Einstein—Hilbert Lagrangian has the standard form'

gEH =

876w (R=2A), @)

where R is the Ricci scalar and A is the cosmological con-
stant. The part of the Lagrangian describing the bosonic field
¢ coupled to gravity has the form

1 1
Ly =—78" 0,0 09 + 5 m? ¢*¢ 3)

where m is the mass of the Cooper pair [26].

If we expand the bosonic field as ¢ = ¢ + ¢, one can
consider the v.e.v. ¢g as an external source, related to the
structure of the sample and external electromagnetic fields,
while the ¢ component can be included in the integration
variables. The terms including the ¢ components are related
to graviton emission—absorption processes (which we know
to be irrelevant) and can safely be neglected in .%}. Perturba-
tively, the interaction processes involving the metric and the
condensate are of the form

Loy o< h*” au¢0* o 4

and give rise to (gravitational) propagator corrections, which
are again irrelevant.

The total Lagrangian . = £, + %} contains a further
coupling between g,,,, and ¢, which turns out to be a contri-
bution to the so-called intrinsic cosmological term given by
A. Explicitly, the total Lagrangian can in fact be rewritten as

§7Gn (R =2MN)+ L+ L+ 25, (5)

where .i%, are the negligible contributions having at least one
field ¢ and where

1 1
Lo = =5 0ud0” 9" d0 + 5 m? |pol*, (©6)

that is, a Bose condensate contribution to the total effec-
tive cosmological term. This may produce slightly localized
“instabilities” and thus an observable effect, in spite of the
smallness of the gravitational coupling (4).

The above instabilities can be found in the superconduc-
tor regions where the condensate density is larger: in these

I'We work in the “mostly plus”
diag(—1,+1,+1,+1),andsetc =7h =1

framework, 7 =

@ Springer

regions, the gravitational field would tend to assume fixed
values due to some physical cutoff that prevents arbitrary
growth. The mechanism is similar to classical electrostatics
in perfect conductors, where the electric field is constrained
to be globally zero within the sample. In the latter case, the
physical constraint’s origin is different (and is due to a charge
redistribution), but in both cases the effect on field propaga-
tion and on static potential turns out to be a kind of partial
shielding.

In accordance with the framework previously exposed, the
superfluid density ¢ (x) is determined not only by the inter-
nal microscopic structure of the sample, but also by the same
magnetic fields responsible for the Meissner effect and the
currents in the superconductor. The high-frequency compo-
nents of the magnetic field can also provide energy for the
above gravitational field modification [26].

The previous calculation shows how Modanese was able
to demonstrate, in principle, how a superfluid can determine a
gravitational shielding effect. In Sect. 3 we will quantify this
effect by following a different approach, as the Ginzburg—
Landau theory for a superfluid in an external gravitational
field.

2 Weak field approximation

Now we consider a nearly flat spacetime configuration, i.e.
an approximation where the gravitational field is weak and
where we shall assume Eq. (1), that is, the metric g,, can be
expanded as:

v = Ny +h/w, @)

where the symmetric tensor /4, is a small perturbation of
the flat Minkowski metric in the mostly plus convention,?
Nuv = diag(—1, +1, 41, 41). The inverse metric in the lin-
ear approximation is given by

g’ = " —ht. ®)

2.1 Generalizing Maxwell equations

If we consider an inertial coordinate system, to linear order
in A, the connection is written as

1
My 5 " (Ouhp + Ovhpp — Ophyu) » ©)

The Ricci tensor (Appendix 1) is given by the contraction of
the Riemann tensor

Ry = R% 6. (10)

2 see Appendix 1 for definitions and sign conventions.
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and, to linear order in h,,,, it reads
Ry >~ akrkuv + 8MF)L)LU + T — P
1
) (040°hup + 009" yp)

1 1
=5 000 hyy = 5 Bl

1 1
= 0”0k — 5 O*hy — 5 dudh, (11)
where we have used Eq. (9) and where i = h%;.

The Einstein equations have the form [30,31]

® 1
Gy =R — 5 8y R =87Gy Ty, (12)

and the term with the Ricci scalar R = g"V R, can be rewrit-
ten, in first-order approximation and using Eq. (11), as

1 1 1
= &uw R =~ —nu np”Rpa = 5 Nuv (apadhpa - 82h) )

2 2
(13)

so that the l.h.s. of the Einstein equations in weak field
approximation reads

(E) 1
Guu =R — Eg/w R
~ 379, h —182}1 —la ah
— (ntv)p ) w75 Oul
1
- 3 (apa”hm - 82h> . (14)

If one introduces the symmetric tensor

- 1

=N h, (15)

hyy = hyy — 5

the above expression can be rewritten as

®
py =

i} 1 - 1 _
G 33y — 3 3%h,,, — 5 v 3P9% h py

= 3p8[VI/_lP]IL + apaon,u[d Ev]p
= 0” (Aphpi + 9% Mutp huio) » (16)

where we have exchanged dumb indices in the last term of
the second line.
If we now define the tensor

Guvp = Oholu + 0 upe Moo (17)
whose structure implies the property
G, (18)

g/wp =

the Einstein equations can be rewritten in the compact form

Gy = "%y = 871Gy Ty | (19)

We can impose a gauge fixing making use of the harmonic
coordinate condition, expressed by the relation [30]

h(V—gg")=0 <« x'=0, (20)
where g = det [, ]; it can be rewritten in the form
g T, =0, 1)
also known as the De Donder gauge.
Imposing the above condition and using Eqs. (7) and (9),
in first-order approximation we find
1 v oA v 1 v
0~ 5 7’]’u n o (ap,hvp + 81)]1,0,;' — E)ph,w) = auhﬂ —5 0 I’l,
(22)
that is, we have the condition
v l % 1
9 h" ~ 3 3'h & hy 3 ayh. (23)

Now, one also has
W w ! n !
0" hyy = 0" [ hy + 3 Nuh | = 0"hy, + 3 ovh, 24)

and, using Eq. (23), we find the so-called Lorenz gauge con-
dition:

3 hyy ~ 0. (25)

The above relation further simplifies Eq. (17) for ¢,,,,,, which
takes the very simple form

Guvp = 3[1)};0]#’ (26)

and verifies also the relation

0o =0 = Douw x 9, A, — AL, 27
which implies the existence of a potential.

Gravito-Maxwell equations. Now, let us define the
fields? [28]

1 1 - .

E, = E = —E%Oi = — Ea[Ohi]O» (28.1)
I~ .

A, = A = Zh()i, (28.i1)

3 For the sake of simplicity, we initially set the physical charge ¢ =
m=1.

@ Springer
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1.
B, = B, = Zsif"%jk, (28.iii)
where obviously i = 1,2, 3 and

_ 1 _ -
“oij = oihjpo = 3 (aihj() — aj/’li()) =40;A)). (29)

One can immediately see that
| .
B, = ei/* 401 Axy = &7* 3jAr = V x Ag,
= V- By =0. (30)

Then one also has

using Eq. (19) and having defined p; = —Tpp.
If we consider the curl of E4, we obtain

. . @
V x Eg = Si]k 8jEk = —Eijk a,'—(;()k
| -
= —5 Si]k 8]3[ohk]o
0B,

1 'k
= _Z4 do &’ 0jAr = —0yB; = — o

(32)

Finally, one finds for the curl of B,
. 1 .
V xBg = 8i]k 0j By = 1 Eijk eklm 0;%0em
1 . . 1.
= (887 = 687%) 8%0um = 5 0%,

(0" %oi . — d0%00i)

1 . O0E;
=5 (87 Gy Toi — 90%00i) = 4nGy ji + —

ot
%
ar ’
using again Eq. (19) and having defined j, = j; = To;.
Summarizing, once defined the fields of (28) and having
restored physical units, one gets the field equations:

R —

1
=5 (0" %oiy + 30%0i0) =

— 4Gy jg + (33)

2
- mo. = e
VEg—47TGNe—2pg—¥
V-By =0
9B,
VxEg=—-——
ot
2
m? . 1 0K, ) 1 0K,
V3B =IOl T G Tk T 50
(34)

formally equivalent to Maxwell equations, where E; and
B, are the gravitoelectric and gravitomagnetic field, respec-
tively, and where we have defined the vacuum gravitational
permittivity

@ Springer

1 e (35)
&g = —
g 47 GN m2
and the vacuum gravitational permeability
4Gy (36)
= 471Gy -
/’Lg N C2 62

For example, on the Earth’s surface, Eg is simply the New-
tonian gravitational acceleration and the B, field is related
to angular momentum interactions [28,29,32-34]. The mass
current density vector j, can also be expressed as

Je=pgV, (37)

where v is the velocity and pg is the mass density.

Gravito-Lorentz force. Let us consider the geodesic
equation for a particle in the field of a weakly gravitating
object:

d2x* A dx* dxV —0 (38)
ds? Mds ds —

If we consider a particle in non-relativistic motion, the veloc-

; ; P~ dxf
ity of the particle becomes ”? ~ G- If we also neglect

v; v/

terms in the form === and limit ourselves to static fields

(0:guv = 0), it can easily be verified that a geodesic equa-
tion for a particle in non-relativistic motion can be written as
[35,36]

i—::Eg—i—vag, (39)
which shows that the free fall of the particle is driven by
the analogous of a Lorentz force produced by the gravito-
Maxwell fields.

Generalized Maxwell equations. It is possible to define
the generalized electric/magnetic field, scalar and vector
potentials containing both electromagnetic and gravitational
term as

m m m
EZE5+;E3; BZB6+;B{>’; ¢=¢e+?¢g§
A=A+ 2 A, (40)

e

where m and e are the mass and electronic charge, respec-
tively, and the subscripts identify the electromagnetic and
gravitational contributions.

The generalized Maxwell equations then become

11
V-E=(—+—)p
gg &0
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. 1 9E
VxB=(ug+mo)+ 55— (41)
cs ot

where we have set
e
Pg = m P,
. e .
Je=—1J (42)
m

and where gg and o are the electric permittivity and mag-
netic permeability in the vacuum.

2.2 Generalizing London equations

The London equations for a superfluid in stationary state read
[37-39]:

m  dj .
E. = - 43.
7 nge? ot (@3.9)
m . ..
B. =— 3 V xj, (43.i1)
nge

where j = ng e vg is the supercurrent and ng is the superelec-
tron density. If we also consider Ampere’s law for a super-
conductor in stationary state (no displacement current)

V xBe = o], (44)

from (43.ii) and using vector calculus identities, we obtain

2
VXV xBe=V (L-B2)— V2Be = g V X j = — 10 25— B,
m
45)
that is,
VB, — LB 46
e—ﬁ € ( )

S

where we have introduced the penetration depth

m
Ae =/ 5 47
Mnong e

Using the vector potential A¢, the two London equations (43)
can be summarized in the (not gauge-invariant) form

1
== A
o A2 ¢

(B. = V x A,). (48)

Generalized London equations. If we now take into
account gravitational corrections, we should consider for the

fields and the vector potential the generalized form of defi-
nition (40):

B=B.+_-B,, A=A.+—A, B=VxA (49
e e
If A is minimally coupled to the wave function

v =voe?, yi=IyI* =n,, (50)

the second London equation can be derived from a quantum
mechanical current density

. i (e -
=5 (Vv -y Tyr). (51)
m
where V is the covariant derivative for the minimal coupling:
V=V-iZA, (52)
so that one has for the current
. i g
=g (VY = VYT - AP
m m
1 ~
= — [y (Vo —gA).
m

If we now take the curl of the previous equation, we find

m . 1 .

which is the generalized form of the second London Equation
(43.11).

To find an explicit expression for ¢, we consider the case
B, = 0 obtaining

m 1 .
B=Be+;%=—EVXJ, (54)
and, using (43.ii), (47) and (50), we find
~ ) 2
g =e, E=uoke. (55)
Then we consider the case B = 0, so that we have

m . m .
B=B+ By = —puodi VX j = —podi —V xjg,
(56)

together with gravito-Ampere’s law (34) in the stationary
state,

V x Bg = [ig jo. (57)

@ Springer
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so that, taking the curl of the above equation, we find

1

VXxVxBy=—-V’By = oV Xjo =— g ——
g g g g gMO)‘«g

Be

1

=% B, (58)

where we have introduced the penetration depth

Y L ¢ (59)
& pe  \4nGymng

Finally, using the stationary generalized Ampere’s law from
(41) and using Eq. (59) we find

. AP
VxB=(Mo+Mg)J=uo<l+r§>J, (60)
g

and taking the curl we obtain the general form

v’B 1+K‘3 V X j ! 1+)\g B
= —lo vl =10 ——> v
22 Lo A2 A2

(&

_(Lil)e="Ls (61)
S\

where we have defined a generalized penetration depth A:
Ag Ae

/A2 + 22

The general form of Eq. (48) is

A
A= ~ Ae (-g ~ 1021). (62)
Ae

i=-¢A (B=VxA), (63)

and, since charge-conservation requires the condition
V - j = 0, we obtain for the vector potential

V-A=0,

that is, the so-called Coulomb gauge (or London gauge).

3 Isotropic superconductor

In Sect. 1 we have shown how Modanese was able to theo-
retically describe the gravitational shielding effect due to the
presence of a superfluid. Now we are going to study the same
problem with a different approach.

Modanese has solved gravitational field equation where
the contribution of the superfluid was encoded in the energy-
momentum tensor. In the following, we are going to solve the

@ Springer

Ginzburg-Landau equation for the superfluid order parame-
ter in an external gravitational field.

Let us restrict ourselves to the case of an isotropic super-
conductor in the gravitational field of the earth and in absence
of an electromagnetic field, we can take E. = 0 and B, = 0.
Moreover, By in the solar system is very small [40,41], there-
fore E = % E; and B = 0. Finally, we also have the relations
¢ == ¢y and A = 7 Ag, so we can write down our set of
conditions:

E.=0, B.=0, By=0=E="K, B=0;
e
(65.0)
together with
¢ = z ¢g, A= ﬁAg. (65.ii)
e e

The situation is not the same as the Meissner effect but, rather,
as the case of a superconductor in an electric field.

3.1 Time-dependent Ginzburg—Landau equations

Since the gravitoelectric field is formally analogous to an
electric field we can use the time-dependent Ginzburg—
Landau equations (TDGL) which, in the Coulomb gauge
V - A = 0 are written in the form [42-48]

LA (AL VA (66.1)
o Y - .1
omD\ar " h “
1 2 2
+—<ihV+—eA) v =0,
2m c
47 (o 0A ihe
VXVXA-VxH=—-—— _¥+UV¢+_
C

* * 482 2
X (Y*VY —yVyr) + — |y A>,
mc

where D is the diffusion coefficient, o is the conductivity in
the normal phase, H is the applied field and the vector field
A is minimally coupled to ¥. The above TDGL equations
for the variables v/, A are derived minimizing the total Gibbs
free energy of the system [37-39].

The coefficients a and b in (66.1) have the following form:

a=a(T)=ay(T —T),
b=0b(T) = b(To), (67)
ap , b being positive constants and 7, the critical temperature

of the superconductor. The boundary and initial conditions
are
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2
<ihV1[/+—eA1p)-n=O
C
VxA-n=H-n
A-n=0

¥ (x.0) = Yox)
A(x,0) =A0(x)} on £

on 02 x (0, 1);

(68)

where 92 is the boundary of a smooth and simply connected
domain in RN,

Dimensionless TDGL. In order to write Egs. (66) in a
dimensionless form, the following quantities can be intro-
duced:

UX(T) =

_|“(bT)| , - (69.9)

T) = e,
() V2Zma(D)]

MT) = bm c?
"\ 4 |a(T)| 2’
|47 o la(T)[? h ..
Ho(T) = = ., (69.
@ b 4e 21t M(T)E(T) (69.11)

AMT)
K= —,
§(T)

D) _4roD
- D ’ 7]— 80C2 ’

©(T)

(69.1i1)

where A(T), &(T) and Hc(T) are the penetration depth,
coherence length and thermodynamic field, respectively. The
dimensionless quantities are then defined as

=2 v=L y= (70.)
o v '
and the dimensionless fields are written
Ak bk Hk
/ i / ..
= = —, = ——. (70.i1)
\/EHC A \/iHc D ﬁHc

Inserting Egs. (70) in Egs. (66) and dropping the prime gives
the dimensionless TDGL equations in a bounded, smooth
and simply connected domain in RN [42,43]:

%p +igy + (WP —1) v + (V+A) ¥ =0,
(71.0)

0A .
VxVxA—VxH:—n<§+V¢) (71.i1)

=5 (VY V) - [y PA,

and the boundary and initial conditions (68) become, in the
dimensionless form

(iVy+Ay)-n=0,

VxA-n=H-n} ondQx(0,1);
A-n=0
Ilf(x’o) = wO(x)7
A(x, 0) =A0(x),} on . (72)

3.2 Solving dimensionless TDGL

If the superconductor is on the Earth’s surface, the gravita-
tional field is very weak and approximately constant. This
means that one can write

¢ =—8.x, (73)
with

MT)kmg

= 1, 74
8= J2eH(T) D 7

g being the acceleration of gravity. The corrections to ¢ in
the superconductor are of second order in g, and therefore
they are not considered here.

Now we search for a solution of the form

K[f()ﬁt) = I/IO(X:t)‘i‘g* y(xst)v
A(X,t) :g*IB(xvt)s
P(x) = —guX. (75)

At order zero in g., Eq. (71.1) gives

ol
WD 1 (o 0P = 1) v, 0

Yo, 1)
ax2

with the conditions

Yo(x,0) =0,
Yo(0,1) =0,
Yo(L,1) =0, (77)
where L is the length of the superconductor, here in units of
A, and ¢t = 0 is the instant in which the material undergoes

the transition to the superconducting state.
The static classical solution of Eq. (76) is

Yolr.1) = Yo(x) = tanh (%) (anh <%> |
(78)

0, (76)

and, from (71.1), one obtains

@ Springer
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Jy, ) Py,

+ 2 (31w 1)

ot dx2
y(x, 1) =ix Yo(x) (79)
at first order in g,, with the conditions
y(x,0)=0,
y(0,1) =0,
y(L,t) =0. (80)

The first-order equation for the vector potential is written

B (x, 1)

o T Wo)? Bx, 1) + J(x, 1) — =0, (81)

with the constraint
B(x,0)=0. (82)
The second-order spatial derivative of g does not appear in

Eq. (81): this is due to the fact that, in one dimension, one
has

P)
VZA=— VA, (83)
0x

and therefore, in the Coulomb gauge
VXxVxA=V(V-A)—V?A=0. (84)

The quantity J(x, t) that appears in Eq. (81) is given by

J(x, 1)
- ®tm [y (x.0] ~ Im [y (x. )] —
- 5 <1/f0(x) a m|y(x, ) m V(-xv a‘ﬁo) B
(85)
and the solution of Eq. (81) is
_ 1 P
Bl = 5o (1 e )
e—?’(x)t t
- / dt J(x, 1) Pt (86)
n 0
with
2
Px) = —WO;X” . (87)

Now, we have the form (78) for ¥y(x,?) and also the
above (86) for B(x, t) as a function of y (x, t) through the
definition of J(x, t): the latter can be used in (75) to obtain
both ¥ (x, t) and A(x, t) as functions of y (x, t).

The gravitoelectric field can be found using the relation

0A
E; = —Vo— . (88)

@ Springer

and its explicit form reads

1
— Eo(x, 1)
8x £

—-1— e—’P(x)l _

P —Px)t t
—<e /dt](x,t)ep(x)' .
at n 0

(89)

The above formula shows that, for maximizing the effect of
the reduction of the gravitational field in a superconductor,
it is necessary to reduce n and have large spatial derivatives
of Yo(x) and y (x, t). The condition for a small value of n is
a large normal-state resistivity for the superconductor and a
small diffusion coefficient,

D~ 12 90
3 (90)

where vy, is the Fermi velocity (which is small in HTCS) and
£ is the mean free path: this means that the effect is enhanced
in “bad” samples with impurities, not in single crystals.

If we consider the case J (x, t) = 0, given by the condition

Yo(x) =Im[y(x,n] = Im[y)], oD
we obtain the simplified equation

B (x,
n% + o) B(x, 1) — n =0, (92)

which is solved, together with the constraint (82), by the
function

_lpwi

Bx, 1) = l—e 7 ) (93)

o (
1Yo (x)[?
Using Eqgs. (88) and (75) we find

E, _
8x

2
_lp@P

l—e 7 . (94)

The above equation shows that, unlike the general case, in the
absence of the contribution of J (x, ¢) the effect is bigger than
in the case of single crystal low-T; superconductor, where n
is large.

3.2.1 Approximate solution

From the experimental viewpoint, the greater are the length
and time scales over which there is a variation of E,, the
easier is the observation of this effect. Actually, we started
from dimensionless equations and therefore the length and
time scales are determined by A(7) and 7(7T) of Egs. (69),
which should therefore be as large as possible. In this sense,
materials having very large A(T') could be interesting for
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the study of this effect [49]. Moreover, Eq. (89) shows the
dependence of relaxation with respect to |1/o(x)|?> through
the definition of P(x): one can see that |o(x)| must be as
small as possible and this implies that also « must be small;
see Eq. (78). This also means that A(T") and &(7') must both
be large.

Up to now we have dealt with the expression of B(x, )
as a function of y(x,t). If we want to obtain an explicit
expression for E,, we have to solve Eq. (79) for y (x, t): this
is a difficult task which can be undertaken only in a numerical
way. Nevertheless, if one puts ¥o(x) ~ 1, which is a good
approximation in the case of YBayCuzO7 (YBCO) in which
k = 94.4, one can find the simple approximate solution:

YD =ip0) + 1y Qusin(@x) e G (95)

n=1

with

X o « o .
Yo(x) = 7.2 <1 — cosh (5 - Zx) sech (5) ) (96.1)
) I/Ld (x) sin(on) = S (96.ii)
= — 1mn = 11
=1 ) x Yo(x) sin(wpx 52
( 1 oy + Qﬁf)
X\ = On———— |
wp C;
and
Cl=w?+2k% w,=nn/L, a=~2«L,  (96.iii)
Q(l) =(—1)" —cosha + Zawﬁ sinh o (96.iv)
o LC? ’ '

2 —1)" — cosh
Qf)z(cosha—l) (1 + « (=D cos a).

L2C? sinh

(96.v)

Taking into account Eq. (78) and inserting Eq. (95) in Eq. (85)
and then in Eq. (86), we can find a new expression for the
gravitoelectric field Eg:

! J
- Eg(X, tH)y=1-— e_P(X)t (1 _ ()()C))
8x -

+ % 3 Q0 Ra) Sul, 1), 7

n=1

where
Jo(x) = : 1//()8 (x) — ()alﬂ()
0x_2/c2 oxax)/ox yox(‘)x 0L )
(98.1)
. ad
Rn(x) = wn Yo(x) cos(wpx) — Sln(wnX)a—xbo(X),
X
(98.1i)
c? e Cit — P(x)ePW1
Su(x,t) = P (98.iii)
By making the approximation
ix
y) = 2o (99)
K
one finds the result
1 J
— Eg(x,0) =1 — e P! <1 - M) (100)
* n
where
1 a
Joo(x) = 5— | Yo(x) —x —ox) ). (101)
2k ax

In spite of its crudeness, in the case of YBCO the above
approximate solution (100) gives the same results of the
solution (97). Moreover, nothing changes significantly if one
neglects the finite size of the superconductor and uses

Yo(x) = tanh (Kx /ﬁ) (102)

instead of Eq. (78).
3.3 YBCO vs. Pb

In the case of YBCO, the variation of the gravitoelectric field
E, in time and space is shown in Figs. 1 and 2. It is easily
seen that this effect is almost independent on the spatial coor-
dinate.

The results in the case of Pb are reported in Figs. 3 and
4, which clearly show that, due to the very small value of «,
the reduction is greater near the surface. Moreover, in this
particular case, some approximations made in the case of
YBCO are no longer allowed: for example, the simplified
relation (99) is not valid for small values of L. In fact, when
k is small, the length L plays an important role and, in par-
ticular, if L is small the effect is remarkably enhanced, as
shown in Fig. 5. In the same condition, a maximum of the
effect (and therefore a minimum of Ey) can occurat¢ # 0, as
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00 /A

Fig. 1 The gravitational field Eg/g, as a function of the normalized

time and space for YBCO at T = 77K
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Fig. 2 The gravitational field as a function of the normalized time for

increasing values of the x variable for YBCO

Fig. 3 The gravitational field Eg/g, as a function of the normalized

time and space for Pbat 7 = 6.3K
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Fig. 4 The gravitational field as a function of the normalized time for
increasing values of the x variable for Pb
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Fig. 5 The gravitational field Eg/g. as a function of the normalized
time in the case of Pb, for different values of L and x = 4 A. The
maximum of the shielding effect is evident

Table 1 YBCO vs. Pb

YBCO Pb

T, 89 K 72K

T, 77K 63K

£(T) 3.6-10°m 1.7-1077 m

AT, 33.107m 7.8-107%m

o1 4.1077 Qm 25-107°Qm
[T = 90K] [T = 15K]

H.(T,) 0.2 Tesla 0.018 Tesla

K 94.4 0.48

(T.) 3.4-107105 6.1-1071 g

n 1.27 1072 6.6-10°
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Table 1 continued

YBCO Pb

D 3.2-107* m2/s 1 m?/s

‘ 6-10°m 1.7-107%m
Vg 1.6 - 10° m/s 1.83-10° m/s

Table 2 YBCO and Pb

A T 8x
i. YBCO
T =0K 1.7-107"m 9.03-107 s 2.6-10712
T =70K 2.6-107"m 2.1-10710g 9.8-10712
T =77K 33-1077m 3.4-107105 2.10°1
T =87K 8-107"m 2107 2.8-1077
ii. Pb
T =0K 3.90-107% m 1.5-107 15 1-107"7
T =420K 43-10"%m 1.8-1075 s 1.4-10717
T =6.26K 7.8-10"%m 6.1-1071 5 8.2-10717
T =7.10K 23-1077m 53107145 221071

can be seen in the same figure. In the extreme case L = 6 A,
we found that the system returns to the unperturbed value
after a time 7y >~ 10° 7.

Table 1 reports the values of the parameters of YBCO
and Pb, calculated at a temperature 7, such that the quantity
% is the same in the two materials. The calculated values
of i, T and g, at different temperatures are shown in Table 2.

4 Conclusions

It is clearly seen that A and 7 grow with the temperature,
so that one could think that the effect is maximum when
the temperature is very close to the critical temperature T¢.
However, this is true only for low-7; superconductors (LTSC)
because in high-7; superconductors fluctuations are of pri-
mary importance for some Kelvin degree around 7¢.. The
presence of these opposite contributions makes it possible
that a temperature Trax < T, exists at which the effect is
maximum. In all cases, the time constant fy; is very small,
and this makes the experimental observation rather difficult.

Here we suggest to use pulsed magnetic fields to destroy
and restore the superconductivity within a time interval of
the order of f,¢. The main conclusion of this work is that the
reduction of the gravitational field in a superconductor, if it
exists, is a transient phenomenon and depends strongly on
the parameters that characterize the superconductor.
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Appendix: Sign convention
We work in the “mostly plus” convention, where
n =diag(—1, +1, +1, 4+1). (A.1)

We define the Riemann tensor as

R(TM)LV = akrguv - avrauk + Fapk vau - Fapv Fpku

=200 + 277,05 TP, (A.2)
where
FAVP = 8” Lyvps
Tuvp = 5 (9p8uw + 0u8pup — Dugup) - (A3)

The Ricci tensor is defined as a contraction of the Riemann
tensor

Ry = R%yov (A.4)
the Ricci scalar is given by

R =g""R,, , (AS)
and the so-called Einstein tensor Gi: has the form

G = Ruv — %gw R. (A.6)
The Einstein equations are written

Gy = Ryuw — %g,w R =87Gy Ty . (A7)

where T}, is the total energy-momentum tensor. The cosmo-
logical constant contribution can be pointed out splitting the
tensor T}, into the matter and A component:

o) o ™)
Tw=T,, +T,, =T,, — 87Gn Suvs (A.8)
so that the Einstein equation can be rewritten as
1 ™) )
Ruw = 5 8 R = 876y (TW + T ) , (A.9)
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or, equivalently,

Ry

1
v_zg,uvR+Agp,v=87TGN

™
T,, -

e (A.10)
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