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Abstract The masses and radii of non-rotating and rotat-
ing configurations of pure hadronic stars mixed with self-
interacting fermionic asymmetric dark matter are calculated
within the two-fluid formalism of stellar structure equations
in general relativity. The Equation of State (EoS) of nuclear
matter is obtained from the density dependent M3Y effec-
tive nucleon–nucleon interaction. We consider the dark mat-
ter particle mass of 1 GeV. The EoS of self-interacting dark
matter is taken from two-body repulsive interactions of the
scale of strong interactions. We explore the conditions of
equal and different rotational frequencies of nuclear matter
and dark matter and find that the maximum mass of differ-
entially rotating stars with self-interacting dark matter to be
∼1.94 M� with radius ∼10.4 km.

1 Introduction

In the universe there are large empty regions and dense
regions where the galaxies are distributed. This distribution
is called the cosmic web that is speculated to be governed
by the action of gravity on the invisible mysterious “dark
matter”. Recently, a research group led by Hiroshima Uni-
versity has suggested that the Cancer Constellation has nine
such large concentrations of dark matter, each the mass of a
galaxy cluster [1].
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Various theoretical models of dark matter are widespread,
ranging from cold dark matter to warm dark matter to hot
dark matter and from symmetric to asymmetric dark matter
[2–6]. Recent advances in cosmological precision tests fur-
ther consolidate the minimal cosmological standard model,
indicating that the universe contains 4.9% ordinary matter,
26.8% dark matter and 68.3% dark energy. Although being
five times more abundant than ordinary matter, the basic
properties of dark matter, such as particle mass and inter-
actions are unsolved.

A dark star composed mostly of normal matter and dark
matter may have existed early in the universe before con-
ventional stars were able to form. Those stars generate heat
via annihilation reactions between the dark-matter particles.
This heat prevents such stars from collapsing into the rela-
tively compact sizes of modern stars and therefore prevent
nuclear fusion among the normal matter atoms from being
initiated [7].

One theory is that dark matter could be made of particles
called axions. Unlike protons, neutrons and electrons that
make up ordinary matter, axions can share the same quan-
tum energy state. They also attract each other gravitationally,
so they clump together. Dark matter is hard to study because
it does not interact much with ordinary matter but axion dark
matter could theoretically be observed in the form of Bose
stars [8]. The Bose–Einstein condensation may come from
the bosonic features of dark matter models. A phase transi-
tion to condensation can occur either when the temperature
decreases to below the critical value or when the density
exceeds the critical value [9].

The neutron stars could capture weakly interacting dark
matter particles (WIMPs) because of their strong gravita-
tional field, high density and finite, but very small, WIMP-
to-nucleon cross section. In fact, if there is no baryon-dark
matter interaction, a purely baryonic neutron star would not
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capture dark matter at all. A dark star of comparable mass
may as well accrete neutron star matter to form a dark matter
dominated neutron star. In 1978, Steigman et al. [10] sug-
gested that capture of WIMPs by individual stellar objects
could affect the stellar structure and evolution. The effects of
self-annihilating dark matter on first-generation stars and on
the evolution path of main sequence stars have been studied
extensively [11,12]. For non self-annihilating dark matter, its
impact on main sequence stars [13] and neutron stars [14,15]
has been studied in different dark matter models. Gravita-
tional effects of non self-annihilating condensate dark mat-
ter on compact stellar objects has been studied [16] assuming
dark matter as ideal Fermi gas and considering the accretion
process through dark matter self-interaction from the sur-
rounding halo. Non-annihilating heavy dark matter of mass
greater than 1 GeV is predicted to accumulate at the center of
a neutron star leading it to a possible collapse [17]. The effect
of this accumulation is observable only in cases where the
annihilation cross section is extremely small [18,19]. The
capture is fully efficient even for WIMP-to-nucleon cross
sections (elastic or inelastic) as low as 10−18 mb. Moreover,
a dark star of comparable mass may as well accrete neutron
star matter to form a dark matter dominated neutron star. In
addition to axions and WIMPs, a general class of dark matter
candidates, called Macros, have been suggested that would
have macroscopic size and mass [20].

Since dark matter interacts with normal baryonic matter
through gravity, it is quite possible for white dwarfs and neu-
tron stars to accrete dark matter and evolve to a dark matter
admixed compact star [12,15,17,21–26]. The large baryonic
density in compact stars increases the probability of dark
matter capture within the star and eventually results in grav-
itational trapping. It may also be possible for dark matter
alone to form gravitationally bound compact objects and thus
mimic stellar mass black holes [27].

The hydrostatic equilibrium configuration of an admixture
of degenerate dark matter and normal nuclear matter was
studied by using a general relativistic two-fluid formalism
taking non self-annihilating dark matter particles of a mass
of 1 GeV. A new class of compact stars was predicted that
consisted of a small normal matter core with radius of a few
kilometers embedded in a 10 km-sized dark matter halo [15].

Compact objects formed by non self-annihilating dark
matter admixed with ordinary matter has been predicted with
Earth-like masses and radii from few km to few hundred km
for weakly interacting dark matter. For the strongly inter-
acting dark matter case, dark compact planets are suggested
to form with Jupiter-like masses and radii of few hundred
km [28]. Possible implications of asymmetric fermionic dark
matter for neutron stars have been studied that apply to vari-
ous dark fermion models such as mirror matter models and to
other models where the dark fermions have self-interactions
[29].

Although dark matter particles can have only very weak
interactions with standard model states, it is an intriguing pos-
sibility that they experience much stronger self-interactions
and thereby alter the behavior of dark matter on astrophysi-
cal and cosmological scales in striking ways. Recent stud-
ies [30–35] have provided constraints on the dark matter
self-interaction cross section. The constraints are based on
the cusp-core problem and the “Too big to fail” problem of
galaxies. According to them the dark matter self-interaction
cross section per unit mass is about 0.1–100 cm2/g ∼0.1–1
barn/GeV, typical of the scale of strong interactions.

In this work we consider fermionic asymmetric dark mat-
ter (ADM) particles of a mass of 1 GeV and the self-
interaction mediator mass of 100 MeV (low mass imply-
ing strong interaction), mixed with rotating and non-rotating
neutron stars. ADM, like ordinary baryonic matter, is charge
asymmetric with only the dark baryon (or generally only
the particle) excess remaining after the annihilation of most
antiparticles after the Big Bang. Hence these ADM particles
are non self-annihilating and behave like ordinary free parti-
cles. The gravitational stability and mass–radius relations of
static, rigid and differentially rotating neutron stars mixed
with fermionic ADM are calculated using the LORENE
code [36]. It is important to note that we do not allow any
phase transition of the nuclear matter and that the interac-
tion between nuclear matter and dark matter is only through
gravity.

2 Equation of state of β-equilibrated nuclear matter

The nuclear matter EoS is calculated using the isoscalar and
the isovector [37,38] components of M3Y interaction along
with density dependence. The density dependence of this
DDM3Y effective interaction is completely determined from
nuclear matter calculations. The equilibrium density of the
nuclear matter is determined by minimizing the energy per
nucleon. The energy variation of the zero range potential is
treated accurately by allowing it to vary freely with the kinetic
energy part εkin of the energy per nucleon ε over the entire
range of ε. This is not only more plausible but also yields
excellent results for the incompressibility K∞ of the SNM
which does not suffer from the superluminosity problem [39].

In a Fermi gas model of interacting neutrons and protons
with isospin asymmetry X = ρn−ρp

ρn+ρp
, ρ = ρn + ρp, where

ρn , ρp and ρ are the neutron, proton and nucleonic densities,
respectively, the energy per nucleon for isospin asymmetric
nuclear matter can be derived as [39]

ε(ρ, X) =
[

3h̄2k2
F

10m

]
F(X) +

(
ρ JvC

2

)
(1 − βρn) (1)
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where m is the nucleonic mass, kF = (1.5π2ρ)
1
3 which

equals the Fermi momentum in the case of SNM, the kinetic

energy per nucleon εkin = [ 3h̄2k2
F

10m ]F(X) with F(X) =
[ (1+X)5/3+(1−X)5/3

2 ] and Jv = Jv00 + X2 Jv01, Jv00 and Jv01

represent the volume integrals of the isoscalar and the isovec-
tor parts of the M3Y interaction. The isoscalar t M3Y

00 and the
isovector t M3Y

01 components of M3Y interaction potential are
given by

t M3Y
00 (s, ε) = +7999

exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+J00(1 − αε)δ(s)

t M3Y
01 (s, ε) = −4886

exp(−4s)

4s
+ 1176

exp(−2.5s)

2.5s
+J01(1 − αε)δ(s) (2)

where s represents the relative distance between two interact-
ing nucleons, J00 = −276 MeV.fm3, J01 = +228 MeV fm3

and the energy dependence parameter α = 0.005 MeV−1.
The Yukawa strengths were extracted by fitting the matrix
elements in an oscillator basis to those elements of a G-matrix
obtained with the Reid–Elliott soft core NN interaction. The
ranges were selected to ensure OPEP tails in the relevant
channels as well as a short-range part which simulates the σ -
exchange process [40]. The density dependence is employed
to account for the Pauli blocking effects and the higher order
exchange effects [41]. Thus the DDM3Y effective NN inter-
action is given by v0i (s, ρ, ε) = t M3Y

0i (s, ε)g(ρ) where the
density dependence g(ρ) = C(1 − βρn) [39] with C and β

being the constants of the density dependence.
Equation (1) can be differentiated with respect to ρ to

yield an equation for X = 0:

∂ε

∂ρ
=

[
h̄2k2

F

5mρ

]
+ Jv00C

2

[
1 − (n + 1)βρn]

−α J00C
[
1 − βρn] [

h̄2k2
F

10m

]
. (3)

The equilibrium density of the cold SNM is determined from
the saturation condition. Then Eqs. (1) and (3) with the sat-
uration condition ∂ε

∂ρ
= 0 at ρ = ρ0, ε = ε0 can be solved

simultaneously for fixed values of the saturation energy per
nucleon ε0 and the saturation density ρ0 of the cold SNM to
obtain the values of β and C . The constants of the density
dependence β and C , thus obtained, are given by

β =
[
(1 − p) +

(
q − 3q

p

)]
ρ−n

0[
(3n + 1) − (n + 1)p +

(
q − 3q

p

)] (4)

where p = [10mε0]
[h̄2k2

F0
] , q = 2αε0 J00

J 0
v00

, J 0
v00 = Jv00(ε

kin
0 ) implying

Jv00 at εkin = εkin0 , the kinetic energy part of the saturation
energy per nucleon of SNM, kF0 = [1.5π2ρ0]1/3 and

C = −
[
2h̄2k2

F0

]
5mJ 0

v00ρ0

[
1 − (n + 1)βρn

0 − qh̄2k2
F0

(1−βρn
0 )

10mε0

] , (5)

respectively. It is quite obvious that the constants of the den-
sity dependence C and β obtained by this method depend
on the saturation energy per nucleon ε0, the saturation den-
sity ρ0, the index n of the density dependent part and on
the strengths of the M3Y interactions through the volume
integral J 0

v00.
The calculations are performed using the values of the

saturation density ρ0 = 0.1533 fm−3 [42] and the satura-
tion energy per nucleon ε0 = −15.26 MeV [43] for the
SNM obtained from the coefficient of the volume term of
the Bethe–Weizsäcker mass formula which is evaluated by
fitting the recent experimental and estimated atomic mass
excesses from the Audi–Wapstra–Thibault atomic mass table
[44] by minimizing the mean square deviation incorporating
correction for the electronic binding energy [45]. In a similar
recent work, addressing the surface symmetry energy term,
the Wigner term, the shell correction and the proton form
factor correction to the Coulomb energy, the av turns out to
be 15.4496 MeV and when the A0 and A1/3 terms are also
included it becomes 14.8497 MeV [46]. Using the usual val-
ues of α = 0.005 MeV−1 for the parameter of the energy
dependence of the zero range potential and n = 2/3, the val-
ues obtained for the constants of density dependence C and
β and the SNM incompressibility K∞ are 2.2497, 1.5934
fm2 and 274.7 MeV, respectively. The saturation energy per
nucleon is the volume energy coefficient and the value of
−15.26 ± 0.52 MeV covers, more or less, the entire range
of values obtained for av for which now we have the values
of C = 2.2497 ± 0.0420, β = 1.5934 ± 0.0085 fm2 and the
SNM incompressibility K∞ = 274.7 ± 7.4 MeV.

The symmetric nuclear matter incompressibility K∞, the
nuclear symmetry energy at saturation density Esym(ρ0), the
slope L and the isospin dependent part Kτ of the isobaric
incompressibility are also tabulated in Table 1, since these
are all in excellent agreement with the recently extracted
constraints from the measured isotopic dependence of the
giant monopole resonances in even-A Sn isotopes [47], from
the neutron skin thickness of nuclei and from analyses of
experimental data on isospin diffusion and isotopic scaling
in intermediate energy heavy-ion collisions.

The calculations for masses and radii are performed using
the EoS covering the crustal region of a compact star which
are the Feynman–Metropolis–Teller (FMT) [48], Baym–
Pethick–Sutherland (BPS) [49] and Baym–Bethe–Pethick
(BBP) [50] cases up to number density of 0.0582 fm−3 and
β-equilibrated neutron star matter beyond this value. Figures
1 and 2 represent the mass–central density and mass–radius
plots, respectively, for slowly rotating pure neutron stars with
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Table 1 Results of present calculations for n= 2
3 of symmetric nuclear

matter incompressibility K∞, nuclear symmetry energy at saturation
density Esym(ρ0), the slope L and the isospin dependent part Kτ of the
isobaric incompressibility (all in MeV) [54,55] are tabulated

K∞ Esym(ρ0) L Kτ

274.7 ± 7.4 30.71 ± 0.26 45.11 ± 0.02 −408.97 ± 3.01

Fig. 1 Mass vs. central baryonic density plot of slowly rotating neutron
stars for the DDM3Y EoS

DDM3Y EoS. The maximum mass goes to 1.9227 M� with
a radius of 9.7559 km [51–53].

3 Equation of state of non-interacting fermionic
asymmetric dark matter

We consider the non-interacting fermionic ADM to be a com-
pletely degenerate free Fermi gas of particle mass mχ at zero
temperature. By the Pauli exclusion principle no quantum
state can be occupied by more than one fermion with an iden-
tical set of quantum numbers. Thus a non-interacting Fermi
gas, unlike a Bose gas, is prohibited from condensing into a
Bose–Einstein condensate. The total energy of the Fermi gas
at absolute zero is larger than the sum of the single-particle
ground states because the Pauli principle implies a degener-
acy pressure that keeps fermions separated and moving.

The non-interacting assembly of fermions at zero temper-
ature exerts pressure because of kinetic energy from different
states filled up to Fermi level. Since the pressure is the force
per unit area, which means the rate of momentum transfer
per unit area, it is given by

Fig. 2 Mass–equatorial radius plot of slowly rotating neutron stars for
the DDM3Y EoS

Pχ = 1

3

∫
pvn pd

3 p = 1

3

∫
p2c2√

(p2c2 + m2
χc

4)
n pd

3 p (6)

where mχ is the rest mass of dark particles, v is the velocity
of the particles with momentum �p and n pd3 p is the num-
ber of particles per unit volume having momenta between
�p and �p + d �p. The factor 1

3 accounts for the fact that, on
average, only 1

3 of total particles n pd3 p are moving in a par-
ticular direction. For fermions having spin 1

2 , degeneracy = 2,

n pd3 p = 8πp2dp
h3 and hence the number density nχ is given

by

nχ =
∫ pF

0
n pd

3 p = 8πp3
F

3h3 = x3
F

3π2λ3
χ

(7)

where pF is the Fermi momentum, which is the maximum
momentum possible at zero temperature, xF = pF

mχ c
is a

dimensionless quantity and λχ = h̄
mχ c

is the Compton wave-
length. The energy density εχ is given by

εχ =
∫ pF

0
Enpd

3 p =
∫ pF

0

√
(p2c2 + m2

χc
4)

8πp2dp

h3 ,

(8)

which, along with Eq. (7), turns out upon integration to be

εχ = mχc2

λ3
χ

χ(xF ); Pχ = mχc2

λ3
χ

φ(xF ), (9)
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where

χ(x) = 1

8π2

[
x
√

1 + x2(1 + 2x2) − ln(x +
√

1 + x2)
]
(10)

and

φ(x) = 1

8π2

[
x
√

1 + x2

(
2x2

3
− 1) + ln(x +

√
1 + x2

)]
.

(11)

4 Equation of state of strongly self-interacting
fermionic asymmetric dark matter

In order to calculate the EoS of a strongly interacting
fermionic ADM we turn to massive vector field theory sim-
ilar to the meson exchange of the nuclear interaction. The
Lagrangian density (in natural units) of a massive vector field
is given by

L = −1

4
FμνF

μν + 1

2
m2

I AμA
μ − jμA

μ (12)

where Fμν = ∂μAν − ∂ν Aμ , Aμ is the four-vector field, jμ

is the four-current and mI is the mass of the field quanta. The
equation of motion is given by

(∂ν∂
ν + m2

I )A
μ = jμ. (13)

Now considering a charge of magnitude g at rest at the origin
we have

j0 = gδ3(�x) �j = 0. (14)

Substituting the above in the right side of Eq. (14) and also
noting that A0 = V and �A = 0 we finally get

(∇2 − m2
I )V = −gδ3(�x) (15)

whose solution is the Yukawa potential:

V (r) = g
e−mI r

4πr
. (16)

Hence the potential energy of two like charges of magnitude
g is

V12(r) = g2 e−mI r

4πr
(17)

and is repulsive in nature.

To proceed to the EoS, we calculate the total energy of a
system of particles classically by summing over the inter-
actions of all pairs of particles. To facilitate the calcula-
tion, we assume that the macroscopic assembly is uniformly
distributed, thereby neglecting the influence of the interac-
tion on the mean interparticle separation. In other words,
we ignore any correlations between particle positions due to
their mutual interaction. Finally, we assume that the number
of particles is sufficiently large so that we can replace sums
by integrals and the characteristic size of the assembly R
satisfies R � 1/mI [56].

The total Yukawa potential energy of a system of N par-
ticles in volume � is

E� = 1

2

∑
i �= j

Vi j = 1

2
n2g2

∫ ∫
e−mI ri j

4πri j
d�id� j , (18)

where n is the number density.
Choosing one particle at the origin and integrating to infin-

ity (ignoring surface terms) we find

E� = 1

2m2
I

n2g2�, (19)

so that the interaction energy density can be written as

εint = E�

�
= 1

2m2
I

n2g2. (20)

Now putting g2/2 = 1 for convenience, x f = k f /mχ , where
mχ is the rest mass of the dark matter particle and using the
relation k f = (3π2n)1/3 we get putting back h̄ and c

εint =
(

1

3π2

)2 x6
f m

6
χ

(h̄c)3m2
I

, (21)

where mχ and mI are expressed in MeV.
The pressure due to the interacting energy density can

be computed with the help of the thermodynamic relation

Pint = n2 d
dn

(
εint
n

)
, which yields

Pint =
(

1

3π2

)2 x6
f m

6
χ

(h̄c)3m2
I

. (22)

Hence the total energy density and pressure of self-
interacting dark matter particles are given by

εχ int = εχ + εint = mχ

λ3
χ

χ(xF ) +
(

1

3π2

)2 x6
f m

6
χ

(h̄c)3m2
I

, (23)

Pχ int = Pχ + Pint = mχ

λ3
χ

φ(xF ) +
(

1

3π2

)2 x6
f m

6
χ

(h̄c)3m2
I

. (24)
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Fig. 3 Plots of mass vs. central density for static and rotating fermionic
asymmetric dark matter stars

Fig. 4 Mass–equatorial radius plots for static and rotating fermionic
asymmetric dark matter stars

The mass of the exchange boson determines the strength
and the range of the interaction, implying that the lower the
mass is, the stronger the interaction. For non-interacting dark
matter mI is infinite and second terms in the above equations
are absent.

Figures 3 and 4 depict the plots of mass vs. central dark
matter density and mass vs. equatorial radius, respectively,
for static and rotating stars, using a self-interacting dark mat-
ter EoS. We see that the maximum mass for non-rotating stars
goes to 3.0279 M� with a radius of 16.2349 km and that the
maximum mass for rotating stars goes to 3.1460 M� with
equatorial radius of 19.2173 km. Now, if we take the dark
matter particle mass mχ to be 0.5 GeV the maximum mass
goes to ∼12.6 M� using the relation mass ∝ 1/m2

χ [24],
thus mimicking stellar mass black holes.

5 Two-fluid TOV equation

We consider two ideal fluids—the nuclear matter and
fermionic dark matter with the above two EoSs coupled grav-
itationally to form the structure of the mixed neutron star. The
energy-momentum tensor of the mixed fluid can be written
as [29,57]

Tμν = Tμν
nuc + Tμν

dark = (εnuc + Pnuc)u
μ
1 u

ν
1 − Pnucg

μν

+ (εdark + Pdark)u
μ
2 u

ν
2 − Pdarkg

μν (25)

where uμ
1 , εnuc and Pnuc are the 4-velocity, energy density

and pressure of nuclear matter, respectively, while the corre-
sponding quantities in the second term are for dark matter.

For a non-rotating case the metric is spherically symmetric
and the hydrostatic equations of the two fluids can be written
as coupled two-fluid Tolman–Oppenheimer–Volkoff (TOV)
equations,

dPnuc(r)

dr
= −GM(r)ρnuc(r)

r2

(
1 + Pnuc

εnuc

)

×
(

1 + 4πr3(Pnuc + Pdark)

M(r)c2

)(
1 − 2GM(r)

rc2

)−1

dPdark(r)

dr
= −GM(r)ρdark(r)

r2

(
1 + Pdark

εdark

)

×
(

1 + 4πr3(Pnuc + Pdark)

M(r)c2

)(
1 − 2GM(r)

rc2

)−1

dMnuc(r)

dr
= 4πr2ρnuc(r),

dMdark(r)

dr
= 4πr2ρdark(r),

M(r) = Mnuc(r) + Mdark(r), (26)

where ρnuc = εnuc/c2, Mnuc is the mass density and the total
mass of nuclear matter, while the corresponding quantities
in the second equation are for dark matter. M(r) is the total
mass of nuclear and dark matter.

6 Theoretical calculations

The mass–radius relationship of non-rotating, rigidly rotating
and differentially rotating neutron stars admixed with dark
matter is calculated using the LORENE code. The nuclear
matter and dark matter EoSs are fitted to a polytropic form
P = Kργ where P is the pressure, ρ is the mass density,
K the polytropic constant and γ the polytropic index for the
corresponding fluid. For interacting nuclear matter γ = 2.03
and K = 5.65283 × 1035 in C.G.S. units. For interacting
dark matter γ = 1.97562 and K = 1.33404 × 1036 in
C.G.S. units. We take the dark matter particle mass to be 1
GeV and the exchange boson mass mI = 100 MeV, typical
of the strong interaction. First, we assume the dark matter
central enthalpy to be 0.24c2 (fixed) and vary the nuclear
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matter central enthalpy for static, rigidly rotating and differ-
entially rotating configurations and next we reverse the roles
of nuclear and dark matter.

7 Results and discussions

In Fig. 5 the plots of total mass vs. equatorial radius of static,
rigidly and differentially rotating neutron stars mixed with
fermionic self-interacting dark matter are shown for fixed
dark matter central enthalpy (0.24c2) and varying nuclear
matter central enthalpies. In Fig. 6 the corresponding plots
of mass vs. central baryonic number density are shown. The
maximum mass of the neutron star mixed with strongly self-

Fig. 5 Plots of total mass vs. equatorial radius of static, rigidly
rotating and differentially rotating neutron stars mixed with interact-
ing fermionic asymmetric dark matter with fixed dark matter central
enthalpy (0.24c2) and varying nuclear matter central enthalpies

Fig. 6 Plots of total mass vs. central baryonic density of static, rigidly
rotating and differentially rotating neutron stars mixed with self-
interacting fermionic asymmetric dark matter with fixed dark matter
central enthalpy (0.24c2) and varying nuclear matter central enthalpies

interacting dark matter goes to 1.3640 M� with a corre-
sponding radius of 6.7523 km for differential rotation (fre-
quency of dark matter to be 300 Hz and that of nuclear mat-
ter to be 700 Hz) as shown in Fig. 5. From Fig. 6 we see
that the corresponding central baryonic number density is
2.1060 fm−3. In this case the maximum gravitational mass
is 1.3640 M�, the corresponding matter mass is 1.5024 M�,
which is constituted of nuclear matter 1.4719 M� and dark
matter 0.0305 M�.

In Fig. 7 the plots of total mass vs. equatorial radius of
static, rigidly and differentially rotating neutron stars mixed
with fermionic self-interacting dark matter are shown for
fixed nuclear matter central enthalpy (0.24c2) and varying
dark matter central enthalpies. In Fig. 8 the corresponding

Fig. 7 Plots of total mass vs. equatorial radius of static, rigidly rotat-
ing and differentially rotating neutron stars mixed with interacting
fermionic asymmetric dark matter with fixed nuclear matter central
enthalpy (0.24c2) and varying dark matter central enthalpies

Fig. 8 Plots of total mass vs. central dark matter density of static,
rigidly rotating and differentially rotating neutron stars mixed with self-
interacting fermionic asymmetric dark matter with fixed nuclear matter
central enthalpy (0.24c2) and varying dark matter central enthalpies
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plots of mass vs. central dark baryonic number density are
shown. In this case the maximum mass goes to 1.9355 M�
with a corresponding radius of 10.3717 km for differential
rotation (frequency of dark matter to be 700 Hz and that of
nuclear matter to be 300 Hz) as shown in Fig. 7. From Fig. 8
we see that the corresponding central dark baryonic number
density is 1.1605 fm−3. In this case the maximum gravita-
tional mass is 1.9355 M�, the corresponding matter mass is
2.1105 M�, which constitutes of nuclear matter 0.1179 M�
and dark matter 1.9926 M�.

It is seen that the polytropic indices γ for nuclear and self-
interacting dark matter EoSs are approximately equal. How-
ever, the polytropic coefficient K for dark matter is about 2.5
times larger than that of nuclear matter making dark matter
EoS stiffer. Consequently, configurations of stars with vary-
ing dark matter central enthalpy with fixed nuclear matter
central enthalpy are more massive than those obtained in the
reverse case.

From Fig. 7 we see that the dark matter dominated neu-
tron star behaves differently than the nuclear matter dom-
inated one as shown in Fig. 5. In Fig. 7, the plots of low
mass neutron stars admixed with dark matter typically show
the characteristics similar to low mass self-bound strange
stars. This is because of the very strong two-body repulsive
interactions of dark matter, which is dominant in the con-
figuration of Fig. 7, which counteract the gravity effectively
for the low mass region and make the radius much smaller
compared to the pure neutron star of a similar mass (vide Fig.
2). Thus, while the nuclear matter dominance induces grav-
itational binding, a dark matter dominant low mass neutron
star becomes gravitationally bound at a much smaller radius.

The maximum mass for non-rotating dark matter stars
goes to 3.0279 M� with a radius of 16.2349 km for par-
ticle mass mχ = 1 GeV. For rotating stars the maximum
mass goes to 3.1460 M� with a radius of 19.2173 km. How-
ever, if one takes mχ to be 0.5 GeV, then the maximum mass
goes to ∼12.6 M� using the relation mass ∝ 1/m2

χ [24],
thus mimicking stellar mass black holes.

8 Summary and conclusions

In this work we consider fermionic asymmetric dark mat-
ter (ADM) particles of mass 1 GeV and the self-interaction
mediator mass of 100 MeV (low mass implying strong inter-
action), mixed with rotating and non-rotating neutron stars.
These ADM particles are non self-annihilating and behave
like ordinary free particles. We have shown that a massive
exotic neutron star with a strong two-body self-interacting
fermionic dark matter is gravitationally stable with equal or
unequal rotational frequencies of the two fluids. This pro-
vides an alternative scenario for the existence of ∼2 M�
neutron stars with ‘stiff’ equations of state.

The mass–radius relations of pure hadronic stars mixed
with self-interacting fermionic asymmetric dark matter have
been obtained using the LORENE code. In the case of pure
dark matter stars consisting of less massive dark particles we
see that the maximum masses are comparable to those of stel-
lar mass black holes. In the case of hadronic stars mixed with
dark matter we considered three different configurations—
static, rigid rotation and differential rotation of nuclear mat-
ter and dark matter fluids. From the results we conclude that
for the dark matter dominated configurations the masses are
higher, viz. for the static case the maximum masses of these
hybrid stars can reach up to ∼1.88 M� with corresponding
radii ∼9.5 km, whereas in the rigid and differential rotational
cases the maximum masses of these hybrid stars can reach
up to ∼1.94 M� with corresponding equatorial radii ∼10.4
km.

We also find that the dark matter dominated neutron star
behaves differently from the nuclear matter dominated one,
which shows characteristics similar to low mass self-bound
strange stars. This is because of the very strong two-body
repulsive interactions of dark matter which is dominant in
the low mass region where it counteracts gravity effectively
to make radius much smaller. Thus, while the nuclear matter
dominance induces gravitational binding, dark matter dom-
inant low mass neutron star becomes more compact. How-
ever, if the dark matter particle mass is small compared to the
nucleon mass, the maximum mass may well be above 2 M�,
provided no phase transition from nuclear to quark matter
occurs.

In the past, phase transition and the possible existence of
a pion condensate or quark matter inside compact stars have
been studied extensively [58–62]. The phase transition from
baryonic matter to quark matter is determined by the tran-
sition density. It is observed that a deconfinement transition
inside a neutron star causes reduction in its mass. It would be
interesting to find the effect of dark matter on the compact
hybrid stars (baryonic matter with quark core), mixed with
self-interacting fermionic asymmetric dark matter. Such an
effect cannot be predicted a priori without full calculations
and we leave it for future investigation.
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