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Abstract We derive an exact solution belonging to the
Kundt class of spacetimes both with and without a cosmolog-
ical constant that are minimally coupled to a free massless
scalar field. We show the algebraic type of these solutions
and give interpretation of the results. Subsequently, we look
for solutions additionally containing an electromagnetic field
satisfying nonlinear field equations.

1 Introduction

The Kundt class of spacetimes is among the most important
families of exact solutions of the Einstein equations. It was
derived more than half a century ago [1,2] and it is defined
by the presence of a nonexpanding, nonshearing and non-
twisting null geodesic congruence [3,4]. This class contains
solutions of various algebraic types and admits, apart from
vacuum solutions, a cosmological constant, an electromag-
netic field, a gyraton source or solutions with supersymme-
try. All type D vacuum solutions were classified in the classic
paper [5]. This family also contains the famous pp-wave solu-
tion [3,4] and so-called VSI (vanishing scalar invariants) [6]
or CSI (constant scalar invariants) [7] spacetimes. The Kundt
class of spacetimes was also recently generalized to arbitrary
dimension [8]. Subclasses of the Kundt family of spacetimes
provide the most important examples of so-called univer-
sal spacetimes—solutions of vacuum field equations of arbi-
trary gravitational theory whose Lagrangian is a polynomial
invariant constructed from the metric, the Riemann tensor
and its derivatives of arbitrary order [9]. Universal metrics
also represent classical solutions to string theory because
associated quantum corrections vanish in this case [10].

Solutions to Einstein equations containing a scalar field
serve as a useful tool for understanding general relativity
due to the simplicity of the source. Recently, it has become
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evident that fields of this type really do exist (LHC) and play
a fundamental role in the standard model of particle physics.
In classical general relativity they were used to study coun-
terexamples to black hole no-hair theorems or the cosmic
censorship hypothesis and in many other areas. The study
of scalar fields in Kundt spacetimes complements the one
performed in the closely related Robinson–Trautman family
[11,12].

Kundt spacetimes with Maxwell electrodynamics were
extensively analyzed soon after the appearance of vacuum
solutions. One of the most important examples is the confor-
mally flat Bertotti–Robinson solution [13,14], which con-
tains a uniform non-null electromagnetic field. More gen-
eral solutions possibly containing additional pure radiation
and (exact) gravitational waves were found as well (for a
review see, e.g., [15]). The pure radiation solutions can
be used to support perturbative gravitational waves as well
[16].

Nonlinear electrodynamics (NE) was originally used
mainly as a solution to the problem of divergent field of a
point charge in the vicinity of its position (see e.g. [17])
also giving a satisfactory self-energy of a charged particle.
The best-known and frequently used form of the theory was
introduced already in 1934 by Born and Infeld [18]. A nice
overview with a lot of useful information was given in a
book by Plebański [19]. Apart from solving the point charge
singularity the NE was later used to resolve the spacetime
singularity as well.

In this work, we first give explicit solutions of Kundt type
with minimally coupled free scalar field. So far the interest
was mainly directed towards analyzing pp-waves coupled
with a scalar field and possibly additional sources (e.g. Yang–
Mills fields [20]) which stemmed from the extensive use of
pp-waves in string theory. In the next part, we concentrate
on solutions containing nonlinear electromagnetic field as
an additional source, complementing a similar study done in
the Robinson–Trautman family [21].
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2 Field equations with scalar field

We consider the following action, describing a free massless
scalar field minimally coupled to a gravity described by the
Einstein–Hilbert action:

S = 1

2

∫
d4x

√−g[R + ∇μϕ∇μϕ − 2�], (1)

where R is the Ricci scalar for the metric gμν , and we have
included the cosmological constant �. The massless scalar
field (SF) ϕ is considered to be real and we use units in which
c = h̄ = 8πG = 1.

By applying variation with respect to the metric we get
the following field equations for the action (1):

Gμ
ν = SFTμ

ν − �δμ
ν, (2)

where the energy-momentum tensor of the scalar field is
given by

SFTμν = ∇μϕ ∇νϕ − 1

2
gμν g

αβ∇αϕ∇βϕ. (3)

One can easily check that the full energy-momentum ten-
sor on the r.h.s. of Eq. (2) (as well as its scalar field and
cosmological constant parts individually) satisfies the null
energy condition (Tμνlμlν ≥ 0 for any lμlμ = 0). Then the
Kundt class of spacetimes defined in [3] as nonexpanding
and nontwisting is necessarily also nonshearing for such a
matter content and we can assume the following form of the
general line element for the Kundt spacetime (derived from
properties of the geometrically preferred null congruence;
see [3,4]), which is suitable for analyzing all the explicit
solutions presented below:

ds2 = −H du2 − 2 dudv − 2 W1 dudx − 2 W2 dudy

+ dx2 + dy2

P(u, x, y)2 , (4)

with H,W1,W2 being functions of all coordinates. The coor-
dinate v is an affine parameter along the principal null con-
gruence ∂v , hypersurfaces u = const are null and coordinates
x, y span the transversal spatial 2-space.

The following coordinate transformations together with
redefinitions of the metric functions H , W1, W2 and P are
preserving the form of the metric (4) [3]:

(i) v′ = v + g(u, x, y), P ′ = P, H ′ = H − g,u,

W ′
1 = W1 − g,x , W ′

2 = W2 − g,y, (5)

(ii) u′ = h(u), v′ = v

h,u
, H ′ = (H + v

h,uu

h,u
)/(h,u)

2,

P ′ = P, W ′
1 = W1

h,u
, W ′

2 = W2

h,u
; (6)

additionally it is possible to perform a u-dependent transfor-
mation in the transversal space spanned by coordinates x, y
followed by appropriate metric function changes (see [3] for
details).

The Ricci scalar for the metric (4) is

R = 2
( ln P) + 2P2 (W1,xv + W2,yv)

−3

2
P2 (W1,v

2 + W2,v
2)

−2P2 (W1W1,vv + W2W2,vv) − H,vv, (7)

where


 ≡ P(u, x, y)2(∂xx + ∂yy) .

By computing optical scalars of the congruence generated
by a null geodesic vector ∂v one indeed obtains vanishing
expansion, shear and twist.

Now we proceed to the simplification of metric functions
and scalar field arising from the Einstein equations. Initially,
we consider the scalar field being a function of all the coordi-
nates ϕ(u, v, x, y). The following equation provides straight-
forward restrictions on the dependence of the scalar field in
the v direction:

Gu
v = 0 = (ϕ,v)

2 = SFT u
v, (8)

so that from now on we can consider ϕ(u, x, y) as the most
general admissible form of the scalar field (see the appendix
for further discussion of the complex scalar field case). This
means that certain off-diagonal energy-momentum tensor
components are vanishing now, which provides restrictions
on the metric functions through the Einstein equations,

Gx
v = 1

2
P2 W1,vv = 0 = SFT x

v, (9)

Gy
v = 1

2
P2 W2,vv = 0 = SFT y

v, (10)

Gu
x = −1

2
W1,vv = 0 = SFT u

x , (11)

Gu
y = −1

2
W2,vv = 0 = SFT u

y . (12)

Evidently, the functions W1,W2 are only linear in v.
The scalar field must satisfy the corresponding field

equation,

�ϕ = P2(ϕ,xx + ϕ,yy − W1,v ϕ,x − W2,v ϕ,y) = 0, (13)
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where � is a standard d’Alembert operator for our metric (4).
Because of the linearity of W1,W2 the scalar field wave equa-
tion contains only terms independent of v. We will specifi-
cally consider

W1(u, v, x, y) = v V1(u, x, y),

W2(u, v, x, y) = v V2(u, x, y),

since the potential addition of a term independent of v does
not bring about any substantial change and follows the logic
of Theorem 31.1 from [3]. If this additional term creates a
new contribution to the energy-momentum tensor compo-
nents Tux , Tuv and generates a certain nonvanishing contour
integral in the transversal 2-space it is possible to interpret it
as a so-called gyraton [22] (gravitational field created by a
source with internal rotation).

Since the metric (4) is still quite general in the following
we will simplify its structure further using the remaining Ein-
stein equations. The form of the uu, xx and yy components
of the Einstein tensor for the metric (4) is (with Gu

u = Gv
v)

Gu
u = −
( ln P) + P2

4
{V1

2 + V2
2 − 2(V1,x + V2,y)},

Gx
x = P2

4
{V1

2 + 3V2
2} − (PV2),y P + PV1P,x + H,vv

2
,

Gy
y = P2

4
{3V1

2 + V2
2} − (PV1),x P + PV2P,y + H,vv

2
.

From the field equation (2) for the xx and yy components
we obtain

xx : P2

4
{V1

2 + 3V2
2} − P2

2
{ϕ,x

2 − ϕ,y
2} − (PV2),y P

+ PV1P,x + H,vv

2
+ � = 0, (14)

yy : P2

4
{3V1

2 + V2
2} + P2

2
{ϕ,x

2 − ϕ,y
2} − (PV1),x P

+ PV2P,y + H,vv

2
+ � = 0, (15)

and by adding these two equations we have

P2 (V1
2 + V2

2 − V1,x − V2,y) + H,vv + 2 � = 0 . (16)

Since all the terms in Eq. (16) except H,vv are independent
of v the function H is necessarily a quadratic function in v.
The standard form of the Kundt metric with vanishing spin
coefficient τ (which means that the privileged null congru-
ence is recurrent [23]) possesses a quadratic term of H which
is completely determined by the cosmological constant and
we will keep this for our H as well,

H(u, v, x, y) = −�v2 + M(u, x, y)v + K (u, x, y), (17)

with M and K arbitrary functions. So now Eq. (16) simplifies
into

V1
2 + V2

2 = V1,x + V2,y . (18)

Another important equation comes from the uu component
of the field equations

uu : P2

4

{
V1

2 + V2
2 − 2(V1,x + V2,y) + 2(ϕ,x

2 + ϕ,y
2)

}

−
(ln P) + � = 0. (19)

Using (18) in the above equation we can simplify it into the
following form:

−
( ln P)+� = P2

4

{
V1

2 + V2
2 − 2(ϕ,x

2 + ϕ,y
2)

}
. (20)

The expression 
( ln P) is the Gaussian curvature of the two-
space of constant u, v equipped with an induced metric com-
ing from (4). In the geometrically simple case of two-surfaces
with constant Gaussian curvature which is completely deter-
mined by a cosmological constant, we have zero on the left-
hand side of (20). We will study this special case in detail in
Sect. 4. In the next section we consider the case of two-spaces
with non-constant Gaussian curvature determined by (20).

Further simplification of our problem arises by consider-
ing the following components of the Einstein equations:

xu :
[
P2

(
V2 V2,x − V2 V1,y + V1,yy − V2,xy

2

)

+ P Py (V1,y − V2,x ) + V1�

]
v +

(
P,u

P

)
,x

+ M,x

2

+ V1
P,u

P
− V1,u

2
− ϕ,u ϕ,x = 0, (21)

yu :
[
P2

(
V1 V1,y − V1 V2,x − V2,xx − V1,xy

2

)

+ P Px (V2,x − V1,y) + V2�

]
v −

(
P,u

P

)
,y

+ M,y

2

− V2
P,u

P
+ V2,u

2
+ ϕ,u ϕ,y = 0. (22)

Here again the terms with different powers of coordinate
v need to vanish separately. Before proceeding further we
impose certain assumptions regarding the form of metric
functions and the scalar field. Specifically, we will use the
following separation of variables for the scalar field ϕ and
functions M and P:

M(u, x, y) = h(u) M̃(x, y) + μ(u),

ϕ(u, x, y) = φ(u) + ψ(x, y),

P(u, x, y) = P̃(x, y)

U (u)
. (23)

123



384 Page 4 of 11 Eur. Phys. J. C (2017) 77 :384

By substituting these assumptions into (13) we obtain the
factorization of the dependence on coordinate u for func-
tions V1 = f (u)Ṽ1(x, y) + V̄1(x, y), V2 = f (u)Ṽ2(x, y) +
V̄2(x, y) with Ṽ1

Ṽ2
= −ψ,y

ψ,x
. Further using Eq. (18) one con-

cludes that necessarily f = const. So from now on V1, V2

are functions of x, y only. After substituting the above defini-
tions (23) into (21) and (22) we obtain the following relations
when considering the zeroth-order terms in v:

− h

2
M̃,x + V1 (lnU ),u + ψ,xφ,u = 0,

−h

2
M̃,y + V2 (lnU ),u + ψ,yφ,u = 0. (24)

If we take a derivative of the first equation of (24) with
respect to y and of the second with respect to x , we arrive at
the following condition:

V1,y = V2,x . (25)

If we plug this expression back into (21, 22) and consider the
first-order terms in v we immediately conclude that � has
to vanish unless V1 = 0 = V2. In the following we split the
investigation accordingly.

3 Singular model

Here we consider solutions which have V1, V2 generally non-
vanishing and � = 0. Then the Gaussian curvature of the
two-surfaces spanned by coordinates x, y is not a constant in
general [see (20)].

We consider Eqs. (24) again. Since all the terms of these
equations are of the separated form there are only two pos-
sibilities how to satisfy them. Either one factorizes the x, y
dependence completely and is left with a simple equation for
functions of u. Or one proceeds inversely—factorizing the
u dependence out and obtaining an equation for functions
of x, y. We will follow the less restrictive first option which
leads (up to trivial multiplicative constants) to the following
conditions:

V1(x, y) = −1

2

∂ M̃(x, y)

∂x
= ∂ψ(x, y)

∂x
,

V2(x, y) = −1

2

∂ M̃(x, y)

∂y
= ∂ψ(x, y)

∂y
, (26)

and the equation

h + (lnU ),u + φ,u = 0. (27)

Note that by combining (26) and the previously derived
� = 0 with (20) we conclude that 
 ln P ≥ 0. This means
that the transversal surfaces have necessarily a non-negative
Gaussian curvature.

From (13), one can already find the scalar field explicitly
now

ϕ(u, x, y) = φ(u) − ln(a + ln(x2 + y2)), (28)

where a is an arbitrary constant. Equation (20) simplifies into


( ln P̃) = 1

4

ψ, (29)

which can be now solved for P̃ (including homogeneous
solution contribution),

P̃(x, y) =
√
x2 + y2

[
a + ln(x2 + y2)

]1/4 . (30)

The final nontrivial equation which was not mentioned yet
is the vu component of the Einstein equation (2), which now
simplifies into the following two equations representing the
zeroth- and the first-order terms in v:


K + K
ψ + P̃2 [
K,x ψ,x + K,y ψ,y

] − 2 M̃h U,u U

− 2 μU,u U − 4U U,uu − 2U 2 φ,u
2 = 0, (31)

h + (lnU ),u + φ,u = 0. (32)

We can see that the second equation is consistent with the
previously derived condition (27). We will use the separation
of variables once more for the function K ,

K (u, x, y) = k(u) K̃ (x, y).

Considering the coordinate dependence for the terms of Eq.
(31) we get a necessary condition for its solvability,

k = h U U,u,

and Eq. (31) splits into a condition for the function k(u),

k(u) = C0

(
2 μU,u U + 4U U,uu + 2U 2 φ,u

2
)

, (33)

where C0 is an arbitrary constant, and we have a linear
second-order elliptic PDE with known coefficients whose
solution always exists.

Now, let us determine the algebraic type of important ten-
sors characterizing our solution. We would like our solution
to be of a reasonable generality which can be checked based
on the Petrov or Segre classification. We will use the follow-
ing tetrad (i is the imaginary unit):
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l = ∂u −
[
H

2
+ v2 P̃2

2U 2 (V 2
1 + V 2

2 )

]
∂v

+v P̃2

U 2 (V1∂x + V2∂y),

n = ∂v,

m = P̃√
2U

(∂x − i∂y). (34)

There are three nonvanishing Weyl scalars in this frame,

�0 = P̃2

4U 2

{
K,yy − K,xx + 2 i K,xy

}

+
(

2ζ − 3

4U 2 ζ
3
2

)
(K,y + i K,x )(y + i x) (35)

+
(

3K − 10v h

2U 2 ζ
5
2

+ 2v2

U 4 ζ 5

)
(y + i x)2

y2 + x2 ,

�1 =
(
v − h U 2 ζ

5
2

)
√

2U 3ζ
15
4

(x − i y)√
y2 + x2

, (36)

�2 = − 1

6 ζ
5
2 U 2

, (37)

where

ζ = a + ln (x2 + y2). (38)

We use the classification process described in [24] which is
based on [25] and can be used for an arbitrary tetrad. Com-
puting the invariants

I = �0�4 − 4�1�3 + 3�2
2 , J = det

⎛
⎝�4 �3 �2

�3 �2 �1

�2 �1 �0

⎞
⎠

one can immediately confirm that I 3 = 27J 2 is satisfied
so that we are dealing with type II or more special. At the
same time we have generally I J �= 0 so it cannot be just
type III. Additionally, the spinor covariant RABCDEF [24]
has nonzero components,

R000000 = �1(3�0�2 − 2�2
1 ), (39)

R000001 = 1

2
�2(3�0�2 − 2�2

1 ), (40)

which means that generally the spacetime cannot be just of
type D. So indeed our scalar field solution is of the algebraic
type II, which is the most general one in the case of the
vacuum Kundt subclass.

Next, we will consider the Ricci tensor whose nonzero
frame components are the following:

�11 = 1

2 ζ
5
2 U 2

, (41)

�00 = 32 v2 �2
11 − 8 v �11

[
h + (lnU ),u

] + φ,u
2

2
, (42)

�01 =
√

2�11(x − i y)√
x2 + y2

(
Uζ

5
4
[
h + (lnU ),u

] − 4v

Uζ
5
4

)
,

(43)

�02 = −2 �11
(y + i x)2

x2 + y2 , (44)

hence the Plebański spinor has three nonzero components
χ0, χ1, χ2 and so the Petrov–Plebański type is II according
to the classification process described in [26]. In this case the
Segre type is necessarily [2,11]. This means that the Ricci
tensor is non-degenerate and there is no invariance group
associated with it.

From the Weyl scalars and the metric functions one can
observe that the point ζ = 0 [see (38)] looks like a curvature
singularity of our solution. We can confirm this by computing
the Ricci and the Kretschman scalars,

R = 4

ζ 5/2U 2
, K = 7

4
R2. (45)

The singularity is located on the coordinate cylinder with
nonzero radius ρ = √

x2 + y2 = exp(− a
2 ) which lies along

the direction of propagation of the possible gravitational
waves. This singularity is evidently sourced by the scalar
field, namely its spatial part ψ which influences the geomet-
rically important function P̃ through (29). Considering the
metric (4) and the function P̃ (30) the physical circumfer-
ence of the cylinder is zero, while it is in the finite spatial
distance from any point outside of this cylinder. Naturally,
one considers only the range of coordinates x, y covering the
exterior of this singular cylinder, which, however, (thanks to
the vanishing circumference) physically resembles a linear
singularity which extends in the ∂v direction.

4 Scalar waves

Now we will study the case of a potentially nonvanishing
cosmological constant � �= 0. As we have seen in Sect. 2,
considering the separation of variables (23) leads to vanish-
ing of the cosmological constant unless V1 = 0 = V2 [see
the argumentation culminating after Eq. (25)]. So from now
on we are considering V1 = 0 = V2 which means that the
scalar field is independent of x, y (ψ = 0 ⇒ ϕ = ϕ(u))
due to Eq. (26). Equipped with this information one imme-
diately concludes from (20) that the Gaussian curvature of
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transversal two-spaces is given by the cosmological constant


( ln P) = �, (46)

corresponding to the geometrically simple case of constant
curvature transversal two-spaces.

The line element (4) now reduces to the following form:

ds2 = −H(u, v, x, y) du2 − 2 dudv + U (u)2

P̃(x, y)2
(dx2 + dy2).

(47)

The Ricci scalar is given by

R = 2
( ln P̃(x, y))

U (u)2 − ∂2H(u, v, x, y)

∂v2 . (48)

As derived above, the scalar field is necessarily only a func-
tion of u and the only nonzero component of the energy-
momentum tensor for such a scalar field is

SFT v
u = −

(
∂ϕ(u)

∂u

)2

. (49)

Note that the gradient of the scalar field is now aligned
with the null congruence defining the properties of space-
time (∇μϕ ∝ ∂v), which is not possible in the case of the
Robinson–Trautman family [11] where the nonzero expan-
sion of the congruence disallows a completely aligned scalar
field. Such an alignment means that scalar field propagates
along this null direction and can be interpreted as a scalar
wave.

From the Einstein tensor components (21), (22) for the
metric (47) and the form of the scalar field we obtain M,x =
0 = M,y . This leads to a simplified form of H [see (17)]

H(u, v, x, y) = −�v2 + h(u)v + K (u, x, y). (50)

Notice that for V1 = 0 = V2 the quadratic term is auto-
matically fixed from Eq. (16). With this form of the metric
function H (50), we obtain two independent Einstein equa-
tions with a nontrivial right-hand side (all other equations are
already satisfied). The first one corresponds to the general Eq.
(19) and the second one is Gv

u = SFT v
u ,


( ln P̃(x, y))

U (u)2 = �, (51)

1

2


K

U (u)2 − H,vU ′(u) + 2U ′′(u)

U (u)
= ϕ2

,u, (52)

from Eq. (52) we necessarily have


K (u, x, y) = C0 k(u), (53)

with some unknown function k(u) and a constant C0. Equa-
tion (51) can only be satisfied if either the nominator and

the denominator on its left-hand side are constants or the
cosmological constant is vanishing. Thus we will split the
investigation into two cases: in the first one we assume
� = 0 and in the second one we demand U (u) = const.
and 
( ln P̃) = const.

4.1 Case � = 0

In this case it is obvious from (51) that


( ln P̃(x, y)) = 0,

so the transversal two-spaces spanned by x, y are flat since
the above expression is their Gaussian curvature. The func-
tion H(u, v, x, y) reduces to

H(u, v, x, y) = h(u)v + K (u, x, y). (54)

Equation (52) is the only remaining equation that needs to
be solved. Using Eq. (53) the vu component of the Einstein
equation (52) now reduces into

k(u)C0

2U (u)2 − h(u)U ′(u) + 2U ′′(u)

U (u)
−

(
∂ϕ(u)

∂u

)2

= 0, (55)

and one can generate explicit solutions forU (u) by arbitrarily
specifying functions k(u), h(u) and ϕ(u), and a constant C0.
We can make the problem even more explicit by assuming
the following form of the arbitrary functions:

h(u) = D(u)

U ′(u)
, (56)

k(u) = q(u)U (u), (57)
(

∂ϕ(u)

∂u

)2

= �(u)2

U (u)
, (58)

and we reduce the problem of solving (55) to a straightfor-
ward double integration with given functions D, q and �

U (u) = 1

2

∫ ∫ (
1

2
C0q − �2 − D

)
dudu + C1u + C2. (59)

Note that using (58) and (49) we conclude that �2 is propor-
tional to the energy of the scalar field.

Now we would like to see how general this family of solu-
tions is. Therefore we will determine its algebraic type. The
only nonzero Weyl scalar is

�0 = P

4

{
2i(P K,xy + P,x K,y + P,y K,x ) + P K,yy

−P K,xx + 2P,y K,y − 2P,x K,x
}
. (60)

Now, we can again determine the type irrespective of pos-
sible non-optimal choice of tetrad by using explicit meth-
ods in [24]. We immediately see that I J = 0 so it is a
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geometry of the algebraic type III or more special. Addition-
ally, the spinor covariant QABCD [25] whose components
are quadratic expressions in Weyl scalars is identically zero
which means that the algebraic type is N. This is usually
interpreted as a geometry representing an exact gravitational
wave. The scalar field produces an energy-momentum ten-
sor which can be classified according to its Petrov–Plebański
and Segre types (for a review of classification strategies see
[26]). In our subclass we have the only nonzero component of
the tracefree Ricci spinor φ00 = 1/2ϕ2

,u hence the Plebański
tensor vanishes and we have Petrov–Plebański type O. Since
φ2

11 − φ01φ21 = 0 the Segre type is [(2, 11)]. This Segre
type corresponds to radiative sources (a pure radiation field
or a null Maxwell field [3]). The complete solution can then
be interpreted as an aligned gravitational wave and a scalar
wave.

From Eq. (55) one can see that even when the scalar field
is vanishing the function k can be nonzero due to the second
term of the equation. That means the function K is nontrivial
as well [see (54), (53)] and generally the Weyl scalar �0 (60)
is nonvanishing. Thus even in the absence of any scalar field
the gravitational wave can be present. On the other hand, we
can as well have a solution with only a scalar wave which
is not accompanied by a gravitational one [�0 = 0 ⇒ K
independent of x, y ⇒ k = 0 from (53)] as can be observed
from (59) where viable solutions with ϕ,u �= 0 exist for
k = 0 ⇒ q = 0.

Note that all type N Kundt spacetimes with null radiation
source are known [3]. However, the above explicit solution
represents the source in the form of scalar field which obeys
the corresponding field equations.

We give several explicit solutions based on Eq. (55) for
specific choices of k(u), h(u) and ϕ(u) in Table 1.

4.2 Case U (u) = const and � �= 0

In this case we choose U (u) = 1 for simplicity. One can
immediately see from (51) that


( ln P̃(x, y)) = �, (61)

so the transversal two-spaces spanned by x, y have a constant
positive or negative curvature based on the value of a cos-
mological constant. Equation (61) can be solved explicitly to
give P̃ = 1 + 1

4�(x2 + y2).
Considering the function H in the form (50) we can sim-

plify (52) in the following way:

k(u)C0

2
−

(
∂ϕ(u)

∂u

)2

= 0, (62)

while the function h(u) is unconstrained. The solution is thus
specified by providing functions h, ϕ and constants �,C0.

We again compute Weyl scalars for a natural tetrad of this
solution and obtain the following nonzero components:

�0 = P̃

4

{
2i(P̃ K,xy + P̃,x K,y + P̃,y K,x ) + P̃ K,yy

−P̃ K,xx + 2 P̃,y K,y − 2 P̃,x K,x

}
, (63)

�2 = �

6
− 1

12
H,vv. (64)

Using [24,25] we can immediately confirm that I 3 = 27J 2

is satisfied so that we are dealing with type II or more special.
At the same time we have generally I J �= 0, so it cannot be
just type III. Additionally, the spinor covariant RABCDEF

has a nonzero component,

R000001 = 1

2
�2(3�0�2 − 2�2

1 ), (65)

which means that generally the spacetime cannot be just of
type D. So indeed our scalar field solution is of the alge-
braic type II, which is the most general one in the case of
vacuum Kundt subclass. We have one nonzero component of
the tracefree Ricci spinor φ00 = 1

4
H ; hence the Petrov–
Plebański type is O and the Segre type is [(2, 11)], indicating
again that the source corresponds to null radiation given by
the scalar wave.

The above described case is a generalization of a spe-
cific subcase of Kundt solutions with a cosmological constant
described in [27]. Namely, our solution additionally supports
the scalar field.

If one would want to restrict the algebraic type solely to
D (keeping �2 �= 0 but setting �0 = 0) one can derive
from (63) that necessarily K is independent of x, y, which
by using (53) means k = 0. But that leads [see (62)] to a
vanishing contribution of the scalar field energy-momentum
tensor. In accordance with [4] we might interpret our type II
(here we refer to algebraic type of the Weyl tensor) solution
for the metric as an exact gravitational wave on a type D
background. As we have just seen this (nonradiative) back-
ground cannot support a nonvanishing scalar field. So the
scalar wave is necessarily accompanied by the gravitational
wave in a kind of nontrivial interaction where the scalar wave
generates the gravitational one. This is unlike the previous
case of a vanishing cosmological constant Sect. 4.1 where
both waves could exist independently. This type D back-
ground is a direct product spacetime, specifically the Nariai
(dS2 × S2) or anti-Nariai (AdS2 ×H2) solution based on the
value of the cosmological constant.

Of particular interest might be the question whether our
subclasses admit pp-wave solutions that still retain the scalar
field. Due to the construction of the Kundt class the geometry
reduces to that of the pp-wave if the principal null direction
l = ∂v is covariantly constant,
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Table 1 Explicit solutions for
k(u) = U2(u), where we have
defined � =
1
2

√
−8γ 2 + h2

0 − 4h0 + 4, ω =√
h2

0 + 4C0, ε = √−2γ 2 + 1

ϕ(u) h(u) U (u)

γ ln ( α+u
β+u ) h0

(α+u)
1+ε

2

e
u
4 (h0+ω)

{
C1(u + β)

1+ε
2 HeunC

(
α−β

2 ω, ε, ε, 0, ε2

2 ,
β+u
β−α

)

+C2(u + β)
1−ε

2 HeunC
(

α−β
2 ω,−ε, ε, 0, ε2

2 ,
β+u
β−α

)}

γ ln (α + β
u ) h0

u
(αu+β)

1+ε
2

e

√
C0
2 u

{
C1u− h0

4 + 1+�
2 HeunC

(
β
√
C0

α
,�, ε, 0, ε2

2 ,− α
β
u
)

+C2u− h0
4 + 1−�

2 HeunC
(

β
√
C0

α
,−�, ε, 0, ε2

2 ,− α
β
u
)}

αu + β h0 e
−u
4

{
C1 exp

(
−√

ω2 − 8α2 + h0

)
+ C2 exp

(√
ω2 − 8α2 + h0

)}

e−αu+β h0 e− h0u
4

{
C1BesselJ

(
− ω

4α
, 1√

2
e−αu+β

)

+C2BesselY
(
− ω

4α
, 1√

2
e−αu+β

)}

sin αu h0 e− h0u
4

{
C1MathieuC

(
−ω2−4α2

16α2 ,− 1
8 , αu

)

+C2MathieuS
(
−ω2−4α2

16α2 ,− 1
8 , αu

)}

lα;β dxαdxβ = −1

2

∂H(u, v, x, y)

∂v
= 0 . (66)

For the case of the model described in Sect. 4.1 this translates
into h = 0 and D = 0. In the case of the model described
in Sect. 4.2 we have h = 0 and � = 0. In both cases the
scalar field is generally nonvanishing, so we have pp-wave
solutions with a scalar field.

5 Nonlinear electrodynamics

So far we have considered only a scalar field, possibly with a
nonvanishing cosmological constant. It is interesting to inves-
tigate the possibility of having some form of nonlinear elec-
trodynamics (NE) as an additional source. We assume the
Lagrangian of the nonlinear electromagnetic field L(F) to
be an arbitrary function of the invariant F = FμνFμν con-
structed from a closed Maxwell 2-form Fμν with the follow-
ing energy-momentum tensor:

NETμ
ν = 1

2
{δμ

νL − (FνλF
μλ)LF }, (67)

which contributes to the right-hand side of the Einstein equa-
tions

Gμ
ν = SFTμ

ν + NETμ
ν − �δμ

ν, (68)

while the modified Maxwell (nonlinear electrodynamics)
field equations are given in the following form:

∂μ(
√−gLF F

μν) = 0, (69)

in which LF = dL(F)
dF . We are specifically interested in

adding the NE source to the solution derived in Sect. 4.2.

Then the Maxwell 2-form aligned with the principal null
direction has necessarily the following form [considering
(67) and (47)]:

F = E(u, v, x, y)du ∧ dv, (70)

then from (69) and the metric (47) one can find

LF Fuv = F0(x, y), (71)

where F0 is an arbitrary function. However, since the electro-
magnetic field invariant can be expressed as F = −2F2

uv one
immediately concludes [considering the functional depen-
dence in (71)] that actually F0 is necessarily a constant
and E(u, v, x, y) = E(u, v). The energy-momentum ten-
sor given in (67) can be expressed in the form

NETμ
ν = diag

{L
2

− FLF ,
L
2

− FLF ,
L
2

,
L
2

}
. (72)

As one can see from (71) with F0 = const, it is possible to
find the form of the nonlinear electrodynamics Lagrangian
explicitly,

L(F) = −α
√−F, (73)

where α = √
8F0. This result is consistent with the uu com-

ponent of (68) as well (when considering U (u) = const.);
we have

−
( ln P̃(x, y)) + � = L
2

− FLF . (74)

It is clear that L
2 − FLF should be a constant. For simplicity

one may choose this constant to be zero. Then the form of
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NE Lagrangian would be the same as (73) and we will satisfy
(61) as well.

This particular form of Lagrangian, namely a square root
of the invariant F , is not new and it has been investigated
previously (see e.g. [28,29]). Namely, it was shown that the
spherically symmetric purely electric solution is absent in
this model, or, in other words, the electric monopole is van-
ishing by definition. On the other hand, gauge theory with
such a Lagrangian contains interesting string-like solutions
[30] leading to possible confinement. Also, radiation modes
(or null electromagnetic field solutions satisfying F = 0)
do not appear naturally in this model but can be recovered
using magnetic condensation in effective four-dimensional
theory coming from 6D compactification. This square-root
Lagrangian is also a special case of the so-called power-
Maxwell model [31–35] ((−F)s) when s = 1

2 which was a
subject of intensive study. One problem in this type of mod-
els is usually connected with the energy conditions, however,
we can easily avoid this by properly selecting the constant
α.

The next equation is the xx component of (68),

1

2

∂2H(u, v, x, y)

∂v2 + � = L
2

. (75)

If we define

H(u, v, x, y) = χ(u, v)−�v2 + h(u)v + K (u, x, y), (76)

the above equation reduces to a simpler form,

L = ∂2χ(u, v)

∂v2 . (77)

Since in NE the (mixed component) energy-momentum ten-
sor does not have any non-diagonal terms the vu component
of (68) has the scalar field as the only source. So we can
retrieve the equation which is the same as (62).

The electromagnetic field considered above is evidently
non-null (FμνFμν �= 0) and since Fμν

∗Fμν = 0 it is purely
electric in a preferred frame. The Petrov type of the Weyl
tensor is easily determined since the nonzero Weyl scalars
are still given by (63) and so the type is II. The complete
energy-momentum tensor [containing both (72) and (49)] is
of Petrov–Plenański type D, since we have nonzero tracefree
Ricci spinor components φ00 = 1

4
H, φ11 = 1
8χ,vv and the

Segre type is then [2, (11)] according to the classification
scheme in [26].

One may be surprised that we have a non-null electromag-
netic field but there is no source in the nonlinear Maxwell
equation (69). However, using the Leibniz rule one can split
the left-hand side of this equation and rearrange it into the

following form:

∂μ(
√−gFμν) = −√−gFμν∂μ lnLF .

Now, the left-hand side represents the standard Maxwell
equation and the right-hand side represents a source gener-
ated by nontrivial ∂μ lnLF . So from the point of view of the
standard Maxwell theory a solution of the vacuum nonlinear
electrodynamics has an effective source. This interpretation
was already noted in the original paper [18].

Finally we give the explicit form of E(u, v). From (77)
and the relation F = −2E2 we immediately get

|E(u, v)| = − 1

4F0

∂2χ(u, v)

∂v2 . (78)

Here we can again search for a pp-wave geometry in our
results. In this case, from Eqs. (76) and (66) we see that the
Lagrangian (77) and the electric field (78) itself necessarily
vanish. However, if we do not impose the definition (76)
and analyze Eq. (75) directly we can see that the Lagrangian
and therefore the electric field is constant. So the pp-wave
spacetime in our class of solutions generally admits only a
constant electric field together with a scalar field.

6 Conclusion and final remarks

We have investigated a free massless scalar field coupled to
the Kundt spacetime. The explicit solutions were given based
on the behavior of the Gaussian curvature of transversal two-
spaces. The first explicit solution corresponds to a spacetime
with singular coordinate cylinder with the singularity sourced
by the scalar field. Physically this singularity behaves just as
a linear singularity due to the vanishing circumference of the
cylinder. This singularity lies along the principal null direc-
tion which is at the same time the direction of propagation
of gravitational waves that are present for �0 �= 0 [see (35)].
This solution can be thought of as an analog of the scalar
field solution in the Robinson–Trautman class given in [11].

We have also given two explicit (up to simple integration)
subclasses of the Kundt family containing a scalar field wave.
Their respective algebraic types of the Weyl tensor are N and
II. The notable absence of a type D solution with a scalar
field confirms the results of [36] where it was shown that the
Kundt type D subclass does not admit a null massless scalar
field. One can easily see that our assumption as regards the
functional dependence of the scalar field necessarily means
that it is null. This scalar field is naturally radiative. Since
our type II Kundt geometry (corresponding to the case with
� �= 0) is interpreted as an exact gravitational wave on type
D background we can see that the presence of a scalar wave
necessarily generates an accompanying gravitational wave.
On the other hand, in the type N solution (corresponding to
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the case with � = 0) the gravitational and scalar waves can
exist independently. So on the level of our Kundt spacetime
with a scalar field the interdependence of the waves of both
fields is determined by the presence of a cosmological con-
stant. Both classes of spacetimes admit pp-wave solutions
with scalar field as a special case.

The scalar wave solution with vanishing cosmological
constant (Sect. 4.1) satisfies the conditions of being a VSI
spacetime as considered in [37]. Namely, it possesses a priv-
ileged null congruence (n = ∂v) which is geodesic and all
its optical scalars are vanishing, the Petrov type is N and
the Ricci tensor is aligned as well Rμν ∼ nμnν leading
to the Petrov–Plebański type O. Then, according to [37],
all higher-order corrections to this classical solution com-
ing from string theory (σ -model) perturbations necessar-
ily vanish and we have a solution valid in the string the-
ory as well (plus theories with higher-order modifications
to Einstein–Hilbert action). This result concerns a possible
modification of the metric coming from the string theory,
but we have a scalar field present as well. Our scalar field
is not of the dilatonic type considered in [37], which nat-
urally appears in string theory. However, one can similarly
argue that all potential higher-order corrections, which would
be given in terms of second-rank tensors and scalars con-
structed from the metric, ∇μϕ and their derivatives must
vanish. So this class of solutions solves a broad range of
theories that not only contain modifications to the equa-
tions governing the geometry but also the scalar field. A
special class of these solutions are generalized pp-waves
with a scalar field, which were considered in the realm of
string theory already in [38] using an argumentation similar
to [37].

In the final section we have considered a general elec-
trodynamic field with nonlinear Lagrangian as an additional
source and obtained solutions for the geometry, the elec-
tromagnetic field and the specific form of Lagrangian. The
physical significance of the derived Lagrangian was investi-
gated in several previous pieces of work. In this case the pp-
wave condition results in a trivial solution containing only a
constant electric field. The algebraic type of the Weyl tensor
was II in this case. The electromagnetic field is non-null and
sourceless. However, it has a source generated by the nonlin-
ear Lagrangian when interpreted in the scope of the Maxwell
theory.
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Appendix

Let us briefly consider the possibility of having a complex
scalar field � with the energy-momentum tensor given by

Tμν = 1

2
(∇μ�∗∇ν� + ∇μ�∇ν�

∗ − gμν g
αβ∇α�∇β�∗),

which evidently still satisfies the null energy condition. One
of the ways to avoid the problem of inheritance (the matter
fields inheriting the geometrical properties of the underlying
spacetime) is to prepare the scalar field in a specific form that
leads to certain subtractions due to complex conjugation. In
the case of our scalar field and the problem of retaining the
dependence on the coordinate v the setup would be

� = eiV (v) ϕ(u, x, y).

One can easily check that the off-diagonal components
Tvx , Tvy are vanishing now although they would be present
for a real scalar field dependent on all coordinates.

We can check now if this idea helps with retaining the
v-dependence in our case. The independence of the scalar
field on v was derived in Eq. (8), which translates into the
condition Tvv = 0. However, the complex scalar field � leads
to

Tvv =
(

∂V

∂v

)2

ϕ2,

again leading to v-independence.
The possible route to include the dependence on the coor-

dinate v might be a ghost scalar field (having negative kinetic
term in the Lagrangian) which violates the null energy condi-
tion. This means that the form of the metric (4) as described
in [3,4]) is no longer a general one for the nonexpanding and
nontwisting class of solutions. Namely, the potential pres-
ence of shear might provide an additional freedom needed
for the nontrivial v-dependence.
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