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Abstract A non-diagonal vielbein ansatz is applied to the
N -dimension field equations of f (T ) gravity. An analyti-
cal vacuum solution is derived for the quadratic polynomial
f (T ) = T + εT 2 and an inverse relation between the cou-
pling constant ε and the cosmological constant �. Since the
induced metric has off-diagonal components, it cannot be
removed by a mere coordinate transformation, the solution
has a rotating parameter. The curvature and torsion scalars
invariants are calculated to study the singularities and hori-
zons of the solution. In contrast to general relativity, the
Cauchy horizon differs from the horizon which shows the
effect of the higher order torsion. The general expression of
the energy-momentum vector of f (T ) gravity is used to cal-
culate the energy of the system. Finally, we have shown that
this kind of solution satisfies the first law of thermodynamics
in the framework of f (T ) gravitational theories.

1 Introduction

General relativity is constructed in Riemann geometry, which
reduces to Minkowski spacetime in the absence of a gravita-
tional field. In the Riemannian geometry, the differentiable
manifold is described by a metric tensor which measures the
distances between different space points. However, gravita-
tion in this theory is a manifestation of the curvature of the
spacetime, where the Riemann Christoffel tensor is respon-
sible for this curvature. All quantities in this manifold can
be defined in terms of the metric tensor [1]. At present time,
to extend GR to include torsion is considered as an urgent
issue because many questions depend on whether the space-
time connection is symmetric or not. General relativity is an
orthodox theory that does not allow quantum effects. How-
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ever, these effects should be taken into account in any theory
that accompanies gravity. Changing geometry from V4 (4-
dimensional Riemannian manifolds) to U4 (4-dimensional
Weitzenböck manifolds) is considered as a first direct exten-
sion that attempts to incorporate the spin fields of matter
into the same geometrical scheme of GR. As an example
of this, we have the mass-energy in which curvature is the
source of gravity, while the spin of torsion. Einstein–Cartan–
Sciama–Kibble theory is considered as one of the most sig-
nificant trails in this direction. Nevertheless, the task of spin-
matter fields does not explain the function of the torsion ten-
sor that seems to play important tasks in any fundamental
theory.

The accelerated expansion of our Universe is confirmed
by many separated cosmological experiments [3–21]. This
expansion can be explained in GR by taking into account the
dark energy component in the total energy of our Universe.
It is widely accepted, without real justifications, to interpret
these components by inserting a cosmological constant �

into Einstein’s field equation which is called �CDM model
[2]. Also, this model can be extended by adding a speculated
dynamical fluid with a negative pressure, e.g. quintessence
fluid. Therefore, we can consider the accelerated expansion
of our Universe as an indicator of the failure of our informa-
tion to the principles of gravitational field, and thus a modifi-
cation of GR is necessary. This modification can be done by
making the action a function of the curvature scalar R, i.e.,
f (R) [22–24].

Using a different processor we can set up another method
and use the Weitzenböck connection, which includes torsion
as an alternative to curvature. This process was suggested by
Einstein who called it a “teleparallel equivalent of general
relativity” (TEGR) [1,25–30]. This theory, TEGR, is closely
related to GR and differs only by a total derivative term in
the action. The dynamical objects in such geometry are the
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four linearly independent vierbeins1 baμ. The advantage of
this framework is that the torsion tensor is formed solely
from the products of first derivatives of the vielbein. In the
TEGR formalism, the features of a gravitational field are
described in the torsion scalar [25,26]. Therefore, guided by
the construction of f (R) gravitational theory we are allowed
to postulate the Lagrangian of the amended Einstein–Hilbert
action as a function of the torsion scalar to extend TEGR in
a natural way. This extension is called f (T ), where T is the
teleparallelism scalar torsion, gravitational theory [31–48].
It is necessary to note that in f (T ) theory the field equations
are of second order while the field equations of f (R) are of
fourth order. Different aspects of cosmology in f (T ) theory
have been discussed in the literature [49–67].

A black-hole solution [45] has been investigated in the
quadratic polynomial f (T ) gravity using a diagonal viel-
bein as a first approach to the study of the features of the
theory. As is well known, the diagonal relation between viel-
bein and the metric is always allowed in the linear teleparallel
gravity. However, the non-diagonal relation in the general-
ized theories, e.g. f (T ) gravity is essential. The aim of the
present study to derive a rotating N -dimensional black-hole
solution for a quadratic polynomial f (T ) gravitational the-
ory using a non-diagonal vielbein and discuss its relevant
physics. This study is arranged as follows: in Sect. 2, the
installation of teleparallel space and the f (T ) gravitational
theory is provided. In Sect. 3, a vielbein field2 is applied to
the N -dimension field equations of f (T ) = T + εT 2 and an
exact rotating solution is obtained. This solution is asymp-
totically de Sitter or anti de Sitter (dS/AdS). The main merit
of this solution is that its scalar torsion is constant. In Sect.
4, some relevant physics, singularities, energy, and the first
law of thermodynamics, are discussed. The final section is
reserved for the discussion.

2 Installing f (T ) gravitational theories

We are going, in this section, to briefly review f (T ) gravita-
tional theory. Then we apply the field equations of a quadratic
polynomial f (T ) = T +εT 2 to a non-diagonal vielbein field
with a spherical symmetry aiming to find a new black-hole
solution.

2.1 Teleparallel space

In this subsection, we give a brief survey of the teleparal-
lel space. In the literature, this space has many names, e.g.

1 In this study Greek indices and Latin ones refer to the coordinate and
tangent spaces, respectively.
2 In the 4-dimensional spacetime case, we call the vielbein a vierbein
or tetrad.

distant parallelism, Weitzenböck, absolute parallelism (AP),
vielbein, parallelizable etc. For more details, we refer the
reader to [68–71]. A teleparallel space is a pair (M, ba),
where M is an N -dimensional manifold and ba (a =
1, . . . , N ) are N independent vector fields defined globally
on M . The vector fields ba are known as the parallelization
vector fields or vielbein fields.

Let baμ (μ = 1, . . . , N ) be the coordinate components of
the ath vector field ba . The Einstein summation convention
is applied on both Greek (world) and Latin (mesh) indices.
The covariant components baμ of the vector ba and its con-
travariant ones satisfy the following orthogonal condition:

ba
μbaν = δμ

ν and ba
μbbμ = δba , (1)

with δ being the Kronecker tensor. Due to the linear indepen-
dence of the vector ba , the determinant b := det(baμ) must
be nonzero.

On a teleparallel spacetime, (M, ba), there uniquely exists
a non-symmetric linear (Weitzenböck) connection, which is
constructed from the vielbein fields as

�α
μν := baμ∂νba

α = −ba
α∂νb

a
μ. (2)

This connection identifies the important property

∇(�)
ν ba

μ := ∂νba
μ + �μ

λνba
λ ≡ 0, (3)

which is known as the AP condition. So the connection (2)
sometimes can be called the canonical connection. Associ-
ated to it, the covariant differential operator ∇(�)

ν is given as
(3).

The curvature tensor Rα
εμν and the torsion tensor T ε

νμ

of the canonical connection can be calculated using the non-
commutation relation of an arbitrary vector fields Va given
by

∇(�)
ν ∇(�)

μ Va
α − ∇(�)

μ ∇(�)
ν Va

α

= Rα
εμνVa

ε + T ε
νμ∇(�)

ε Va
α.

Combining the above non-commutation relation and the AP
condition (3), the curvature tensor Rα

μνσ of the canonical
connection �α

μν must be null identically [68]. Moreover, we
can induce the metric tensor corresponding to a given vielbein
field as

gμν := ηabb
a
μb

b
ν, (4)

and the contravariant one

gμν = ηabba
μbb

ν . (5)
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Also, we can construct the symmetric linear (Levi-Civita)
connection from the metric tensor gμν as

�̊α
μν = 1

2
gασ (∂νgμσ + ∂μgνσ − ∂σ gμν). (6)

Using Eqs. (3) and (6), it is easy to check that both the canon-
ical connection �α

μν (2) and the Leivi-Civita connection are
metric ones, i.e.

∇(�)
σ gμν ≡ 0, ∇(�̊)

σ gμν ≡ 0,

where the operator ∇(�̊)
σ is the covariant derivative associated

with the Levi-Civita connection �̊. For the non-symmetric
connection (2), we define the torsion tensor

T α
μν := �α

νμ − �α
μν = ba

α(∂μb
a
ν − ∂νb

a
μ). (7)

Also, we define the contortion tensor K α
μν as the difference

between the Weitzenböck and Levi-Civita connections as

K α
μν := �α

μν − �̊α
μν = ba

α ∇νb
a
μ. (8)

Due to the symmetrization of the connection �̊α
μν , the tor-

sion and contortion tensors are related by

T α
μν = K α

μν − K α
νμ. (9)

Alternatively, one can write the torsion in terms of contortion
as

Kαμν = 1

2
(Tναμ + Tαμν − Tμαν), (10)

where Tσμν = gεσ T ε
μν and Kμνσ = gεμ K ε

νσ . The torsion
Tσμν (contortion Kμνσ ) tensor is skew-symmetric in the last
(first) pair of indices. Moreover, Eqs. (9) and (10) show that
the torsion tensor vanishes if and only if the contortion tensor
vanishes.

2.2 f (T ) gravitational theory

In f (T ) gravity, and similar to all torsional formulations,
we use the vierbein fields biμ which form an orthonormal
base. The Lagrangian of TEGR, i.e. the torsion scalar T , is
constructed by contractions of the torsion tensor as [72]

T = 1

4
TμνλTμνλ + 1

2
TμνλTλνμ − Tμν

μTλν
λ. (11)

Similar to the f (R) extensions of GR we can extend T to
a function f (T ), constructing the action of f (T ) gravity
[32,33]:

L = 1

2κ

∫
|b|( f (T ) − 2�) dN x + 1

2κ

∫
|b|LMatter dN x,

(12)

where κ is the N-dimensional gravitational constant given
by κ = 2(N − 3)
N−1GN , GN being Newton’s constant
in N dimensions and 
N−1 the volume of an (N − 1)-
dimensional unit sphere, which is given by the expression


N−1 = 2π(N−1)/2

�((N−1)/2)
(with the �-function of the argument

that depends on the dimension of spacetime).3 |b| = √−g =
det

(
baμ

)
and LMatter is the Lagrangian matter. The variation

of Eq. (12) with respect to the vielbein field biμ and its first
derivative gives the following field equations [33]:

Sμ
ρν∂ρT fT T + [b−1biμ∂ρ(bbi

αSα
ρν) − T α

λμSα
νλ] fT

+ f − 2�

4
δν
μ = 1

2
κT ν

μ, (13)

with f := f (T ), fT := ∂ f (T )
∂T , fT T := ∂2 f (T )

∂T 2 , and T ν
μ

is the energy–momentum tensor.
Equation (13) can rewritten as

∂ν[bSaρν f (T )T ] = κbbaμ[tρμ + T ρμ], (14)

where tνμ is defined as

tνμ := 1

κ
[4 f (T )T S

ανλTαλ
μ − gνμ f (T )]. (15)

Due to the anti- symmetrization of the tensor Saνλ we get

∂μ∂ν[bSaμν f (T )T ] = 0, that gives ∂μ[b(taμ + T aμ)] = 0.

(16)

Equation (16) yields the continuity equation in the form

d

dt

∫
V

d(N−1)x b baμ(t0μ + T 0μ)

+
∮

�

[b baμ (t jμ + T jμ)]d� j = 0, (17)

where the integration is on the (N−1) volume V bounded by
the surface �. This recommends one to represent the quantity
tλμ, the energy-momentum tensor of the gravitational field, in
the frame of f (T ) gravitational theories [73]. Therefore, the
total energy-momentum tensor of f (T ) gravitational theory
is defined as

Pa :=
∫
V

d(N−1)x b baμ(t0μ + T 0μ)

= 1

κ

∫
V

d(N−1)x ∂ν[bSa0ν f (T )T ]. (18)

3 When N = 4, one can show that 2(N − 3)
N−1 = 8π .
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Equation (18) is the generalization of the energy-momentum
tensor that can be used to calculate energy and spatial
momentum. It is clear that the TEGR case [74] is recovered
by setting f (T ) = T .

3 Rotating solution in f (T ) gravitational theories

For an N -dimensional spacetime having spherical symmetry
with a flat horizon, we write the following vielbein ansatz in
cylindrical coordinates (t , r , φ1, φ2 . . . φN−3, z) [45]:

(
biμ

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1(r) 0 0 0 · · · S2(r)
0 S3(r) 0 0 · · · 0
0 0 r

λ
0 · · · 0

0 0 0 r
λ

· · · 0
...

...
...

...
... · · · ...

c2r 0 0 0 · · · c1r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

where λ ≡
√

−(N−1)(N−2)
2�

, Si (r), i = 1 · · · 3, are three
unknown functions of the radial coordinate r , while c1 and
c2 are some constants.4 It is clear that, if the two constants

4 The vielbein (19) is not the most general non-diagonal one. However,
we use it to facilitate the calculations.

c1 = 1, c2 = 0, and the function S2(r) = 0, then the vielbein
(19) reduces to the previous diagonal vielbein case studied
in [45]. The line element of (19) takes the form

ds2 = (S1
2 − c2

2r2)dt2 − S3
2dr2 −

(
r2

λ2

) i=N−3∑
i=1

dφi
2

−(c1
2r2 − S2

2)dz2 − 2(c1c2r
2 − S1S2)dzdt . (20)

Equation (20) arises from the vielbein ansatz (19) using Eq.
(4). Substituting (19) into (11) we evaluate the torsion scalar
in the form5

T = 1

2r2S3
2(c1S1 − c2S2)2 (S2

2S′
1

2 − S′
1

×[2S1S2S
′
2 + 4(N − 2)c1r{c1S1 − c2S2}] + S1

2S′
2

2

−4(N − 2)rc2S
′
2(c1S1 − c2S2)

+2(N − 2)(N − 3)(c1S1 − c2S2)
2), (21)

where S′
i = dSi (r)

dr
. Inserting the vielbein (19) into the field

equations (13), and assuming the vacuum case, we get the
following non-vanishing components:

t t − comp.

= 1

4r3S3
3(c1S1 − c2S2)3 [ fT T T ′S3r(c2S2 − c1S1)({S2[S1

2 − 2r2c2
2] + r2c1c2S1}S′

2 + S2(c1c2r
2 − S1S2)S

′
1

+2(2N − 5)rc1c2S1S2 − 2(N − 3)rc2
2S2

2 − 2(N − 2)rc1
2S1

2) − fT {r S3(c1S1 − c2S2)([S2(S1
2 − 2r2c2

2)

+r2c1c2S1]S′′
2 + S2[r2c1c2 − S2S1]S′′

1 ) + r S1S3c1(S1
2 − r2c2

2)S′
2

2 + S′
2[r S3(c1S1 + c2S2)

×(r2c1c2 − S2S1)S
′
1 − (c1S1 − c2S2){r [S2(S1

2 − 2r2c2
2) + r2c1c2S1]S′

3 − S3[(3N − 8)r2c2c1S1

+(N − 4)S2S1
2 − 2(2N − 5)r2c2

2S2]}]S′
2 + rc2S2S3(S2

2 − r2c1
2)S′

1
2 − S′

1{r S2S
′
3(r

2c1c2 − S1S2)

+S3[2(N − 2)r2c1
2S1 − 3(N − 2)r2c1c2S2 + (N − 4)S1S2

2]}(c1S1 − c2S2) + 2(c1S1 − c2S2)
2([N − 2]c1S1

−[N − 3]c2S2)[r S′
3 − (N − 3)S3]} − f − 2�

4
,

t z − comp.

= 1

4r3S3
3(c1S1 − c2S2)3 [ fT T rT ′S3(c1S1 − c2S2)([2r2c1c2S1 − S2S1

2 − r2c2
2S2]S′

1 − S1[S′
2(c2

2r2 − S1
2)

+2rc2(c1S1 − c2S2)]) + fT [S3r(c1S1 − c2S2){[2r2c1c2S1 − S2S1
2 − r2c2

2S2]S′′
1 − S1(c2

2r2 − S1
2)S′′

2 }
+r S2S3(2c2S1S2 − c1S1

2 − r2c1c2
2)S′

1
2 + S′

1[r S3(r
2c2

3S2 + c1S1
3 + r2c1c2

2S1 − 3c2S2S1
2)S′

2

−(c1S1 − c2S2){r [2r2c1c2S1 − S2S1
2 − r2c2

2S2]S′
3 − [2(N − 3)r2c1c2S1S3 − (N − 4){r2c2

2S2 + S2S1
2}]}]

+S1{r S′
2

2c2(S3S1
2 − r2c2

2S3) + S′
2(c1S1 − c2S2)[r S′

3(r
2c2

2 − S1
2) − (N − 2)r2c2

2S3 + (N − 4)S3S1
2]

+2rc2(c1S1 − c2S2)
2[r S′

3 − (N − 3)S3]}],

5 For abbreviation we will write Si (r) ≡ Si , S′
i ≡ dSi

dr .
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r r − comp.

= fT
4r2S3

2(c1S1 − c2S2)2 (S2
2S′

1
2 + 2S′

1[2(N − 2)rc1(c1S1 − c2S2) − S1S2S
′
2] + S1

2S′
2

2

−4(N − 2)rc2S
′
2(c1S1 − c2S2) + 2(N − 2)(N − 3)(c1S1 − c2S2)

2) − f − 2�

4
,

φ1 φ1 = φ2 φ2 = φ3 φ3 = · · · = φN−3 φN−3 − comp.

× 1

2r2S3
3(c1S1 − c2S2)

[ fT T T ′r S3(rc1S
′
1 − rc2S

′
2 + (n − 3)[c1S1 − c2S2]) + fT {r2c1S3S

′′
1 − r2c2S3S

′′
2

−r S′
3(rc1S

′
1 − rc2S

′
2 + (N − 3)[c1S1 − c2S2]) + S3[(2N − 5){rc1S

′
1 − rc2S

′
2} + (N − 3)2{c1S1 − c2S2}]}]

− f − 2�

4
,

z t − comp.

= 1

4r3S3
3(c1S1 − c2S2)3 [ fT T T ′r S3(c2S2 − c1S1)[S′

2{S1[r2c1
2 + S2

2] − 2r2c1c2S2} + S2([c1
2r2 − S2

2]S′
1

−2rc1[c1S1 − c2S2])] − fT {r S3(c1S1 − c2S2)([S1(r
2c1

2 + S2
2) − 2r2c1c2S2]S′′

2 + S2S
′′
1 [c1

2r2 − S2
2])

−r S1S3(r
2c1

2c2 − 2c1S1S2 + c2S2
2)S′

2
2 + S′

2{r S3(r
2c1

3S1 + r2c1
2c2S2 − 3c1S1S2

2 + c2S2
3)S′

1

−[c1S1 − c2S2]
(
r S′

3[r2c1
2S1 − 2r2c1c2S2 + S1S2

2] − 2(N − 3)r2c1c2S2S3 + S1S3(N − 4)[r2c1
2 + S2

2]
)
}

−S2(rc1S3(r
2c1

2 − S2
2)S′

1
2 + S′

1[r S′
3(r

2c1
2 − S2

2) − S3[(N − 2)r2c1
2 − (N − 4)S2

2]](c1S1 − c2S2)

+2rc1[r S′
3 − (N − 3)S3](c1S1 − c2S2)

2)}],
z z − comp.

= 1

4r3S3
3(c1S1 − c2S2)3 [ fT T rT ′S3(c2S2 − c1S1)[r2c1S

′
1{c2S2 − 2c1S1} + r2c1c2S1S

′
2 − 2(N − 2)rc2

2S2
2

+2(2N − 5)rc1c2S1S2 − 2(N − 3)rc1
2S1

2 + S1S2
2S′

1 − S2S1
2S′

2] + fT {r S3(c1S1 − c2S2)

×(S′′
1 [(2r2c1

2 − S2
2)S1 − r2c1c2S2] − S′′

2 S1[c1c2r
2 − S2S1]) − r S2S3c2(r

2c1
2 − S2

2)S′
1

2

+S′
1{r S3(c1S1 + c2S2)(r

2c1c2 − S1S2)S
′
2 − [c1S1 − c2S2][r S′

3{[2r2c1
2 − S2

2]S1 − r2c1c2S2}
−r2c1S3{2(2N − 5)c1S1 − (3N − 8)c2S2} − (N − 4)S1S2

2]} − r S1S3c1(r
2c2

2 − S1
2)S′

2
2

+(c1S1 − c2S2)[r S1(r
2c1c2 − S1S2)S

′
3 − {r2c2S3(N − 2)[3c1S1 − 2c2S2] − (N − 4)S2S1

2}]S′
2

−2r [(N − 3)c1S1 − (N − 2)c2S2](c1S1 − c2S2)
2[r S′

3 − (N − 3)S3] − f − 2�

4
. (22)

We constrain the system by the following:

f (T ) = T + εT 2, and � = 1

24ε
. (23)

Here the second constraint is to simplify the results. How-
ever, the vacuum solution can be found in general. For more
details as regards the second constraint, one may consult [45].
Substituting Eq. (23) into Eq. (22), the black-hole solution is
given as

S1(r) = c1

√
2(c3 − c4r N−1)

(N − 1)r N−3 ,

S2(r) = −c2

√
2(c3 − c4r N−1)

(N − 1)r N−3 ,

S3(r) =
√

6(N − 1)(N − 2)εc4r N−3

c3 − c4r N−1 , (24)
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where c3 and c4 are constants of integration. Equation (24)
shows that when the constants c1 = 1 and c2 = 0, the solu-
tion reproduces the static black-hole solution of [45]. We
note that the null value of the constant c2 implies the van-
ishing of the function S2(r). So we need not to impose the
vanishing of S2(r) as an extra condition to reduce to the static
black-hole solution. To understand the characteristics of the
above derived solution and its relevant physics, we are going
to study the singularities, horizon, energy, and the first law
of thermodynamics in the following section.

4 Relevant physics

In this section, we are going to study some physical quantities
of the analytical solution at hand.

4.1 Singularities

We start with studying one of the fundamental concepts in
any gravitational theory, that is, the singularity. Substituting
solution (24) into the metric (20), the spacetime configuration
takes the form

ds2 = 2c1
2[c3 − c4r N−1] − c2

2(N − 1)r N−1

(N − 1)r N−3 dt2

−6(N − 1)(N − 2)εc3r N−3

c3 − c4r N−1 dr2−
(
r2

λ2

) i=N−3∑
i=1

dφi
2

−2c2
2[c3 − c4r N−1] − c2

1(N − 1)r N−1

(N − 1)r N−3 dz2

−c2c2{2[c3 − c4r N−1] − (N − 1)r N−1}
(N − 1)r N−3 dtdzi . (25)

Equation (25) shows that the spacetime metric has a cross
term that cannot be removed by a coordinate transformation.
This cross term is responsible for the rotation similar to the
cross term that appears in GR which creates a Kerr black
hole. Equation (25) shows that when c1 = 1 and c2 = 0, we
get

ds2 = 2[c3 − c4r N−1]
(N − 1)r N−3 dt2 − 6(N − 1)(N − 2)εc3r N−3

c3 − c4r N−1 dr2

−
(
r2

λ2

) i=N−3∑
i=1

dφi
2 + c1

2(N − 1)r N−1

(N − 1)r N−3 dz2, (26)

which represents the gravitational field of a static black hole
[45].

To study spacetime singularities of the solution at hand,
first we find the radial distance r at which the functions S1,
S2, and S3 become null or infinitely large. Since these func-
tions are coordinate dependent quantities, we would like to
make sure that the singular points are real and not a reflection

of a bad choice of the coordinate system. In order to distin-
guish real singularities from coordinate ones, we study var-
ious invariants. These invariants do not change under coor-
dinate transformation. If they are not defined at a specific
spacetime point, they will be undefined at that point in any
other coordinate choice. Then the singular point will be a
physical singularity. In GR, we usually study some invari-
ants, e.g. the Ricci scalar, the Kretschmann scalar, etc, but all
invariants are constructed from the Riemann tensor and its
contractions. However, in TEGR, there are two ways to cal-
culate invariants. In the first, one uses the obtained solution
to calculate the torsion invariants, e.g. the torsion scalar T .
In the second, one employs the solution to obtain the induced
metric, then to calculate the curvature invariants. The com-
parison between these two ways is an interesting topic of this
study which may shed light on the differences between the
curvature-based gravity and the torsion one. More specifi-
cally, one can use the vielbeins, Weitzenböck’s connection,
to construct all torsion-based invariants, or to use the metric,
the Levi-Civita connection, and construct all the curvature-
based invariants. Since particles follow geodesics defined by
the Levi-Civita connection, some prefer to study the curva-
ture invariants instead of the torsion ones. However, we can
say that the two ways (invariants constructed from metric and
those constructed from vielbeins) are equivalent only when
a suitable choice of vielbeins and metric is selected. There-
fore, classically, the above two ways might be alternatives;
however, on the quantization level, it would be important to
discover which is more fundamental field: the metric or the
vielbein? We calculate some curvature and torsion invariants
corresponding to the solution (24) as given below, using the
symmetric connection of Eq. (6) for curvature invariants and
the non-symmetric one given by Eq. (3) for torsion invariants,
and we get

RμνλρRμνλρ = 6Nc4
2r2(N−1) + 3(N − 2)2(N − 3)c3

2

108(N − 1)(N − 2)2c4
2ε2r2(N−1)

,

RμνRμν = N

36(N − 2)2ε2 , R = − N

6(N − 2)ε
,

TμνλTμνλ = 4c4
2r2(N−1) − 4c3c4r N−1 + (N − 1)c3

2

12c4ε(N − 2)r N−1(c4r N−1 − c3)
,

TμTμ = (N − 1)(2c4r N−1 − c3)
2

24(N − 2)r N−1εc4(c4r N−1 − c3)
,

T (r) = − 1

6ε
, ∇αT

α = (N − 1)

6(N − 2)ε

⇒ R = −T − 2∇αT
α. (27)

From the above calculations, we have the following compar-
ison:

(i) The invariants RμνλρRμνλρ , TμνλTμνλ, and TμTμ have
a singularity at r = 0.
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(ii) The invariants TμνλTμνλ and TμTμ have one more sin-
gularity at c3 = c4r N−1.

(iii) The scalars RμνRμν , R, and T have no singularities
and the black-hole solution is regular even at r = 0. We
see that the limit ε = 0 is not valid to keep a regular
black-hole solution.

(iv) All the above invariants are not defined when ε → 0.
This means that solution (24) has no analogy in GR
and cannot reduce to GR (or TEGR). Indeed, this result
depends on the constraint � = 1

24ε
. This constraint

facilitates the calculations and makes the above differ-
ential equations solvable.

(v) Equation (27) shows that the Cauchy horizon of gtt =
0 and the horizons constructed from grr = 0 are the
same, which is familiar in GR (TEGR). However, this
condition is not satisfied for Eq. (27). We may say that
this is due to the contribution of the higher order torsion.
This contribution appears in a non-trivial black hole, like
a rotating one. This point still needs more study which
will be performed elsewhere.

4.2 Energy

We next study the energy of the system according to the
solution6 (24). Using Eq. (18) we calculate the necessary
components needed to study the evaluation of the energy:

S001 = c2
2c3 − 2(N−2)c4c2

2r (N−1) − 6(N−2)/2c1
2r (N−1)

(12)(N−2)r N εc4(c1
2 − c2

2)2
,

(28)

P0 = E = 2(N−2)(N − 2)
N−1

√
2(N−2)/2(c1

2 − c2
2)(c3 − c4r (N−1))

κ(27)N−3√εc4

= 2(N−3)(N − 2)
√

2(N−2)/2(c1
2 − c2

2)(c3 − c4r (N−1))

(N − 3)GN (27)N−3√εc4
, (29)

where the value of κ has been used in the second equation
of Eq. (29). The value of the energy of the above equation
is not a finite value; therefore, we must use the regularized
method to get a finite value of the energy. This regularized
expression takes the form

Pa := 1

κ

∫
V

dN−2x[bSa00 f (T )T ]

− 1

κ

∫
V

dN−2x[bSa00 f (T )T ]physical quantities equal zero.

(30)

6 In this study we take the Newtonian constant to be an effective con-
stant in which Geff. = GN

fT
[59].

Using (30) in solution (24) we get

E = 2N−2(N − 2)
N−1

√
2(N−2)/2(c1

2 − c2
2)c3

κ(27)(N−2)/2√εc4

= 2N−3(N − 2)
√

2(N−2)/2(c1
2 − c2

2)c3

(N − 3)GN (27)(N−2)/2√εc4
, (31)

which is a finite value.

4.3 First law of thermodynamics

There is a great deal of work in analyzing the behavior of
the horizon thermodynamics in modified theories of GR. In
a wide category of these theories, one gets solutions with
horizons and can connect the temperature and entropy with
horizons. Since the temperature T can be determined from
the periodicity of the Euclidean time, determining the right
form of the entropy is a most non-trivial issue. Here we shall
briefly describe how these results arise in a class of theories
which are natural modifications of TEGR. A fundamental law
in need to be studied in a modification of TEGR gravity is
the fulfillment of the first law of thermodynamics. Miao et al.
[75] have discussed whether the first law of thermodynamics
is satisfied within f (T ) gravitational theories or not. They
split the non-symmetric field equations (13) into symmetric
and skew symmetric parts to have the forms

L(μν) := Sμνρ∂ρT fT T + fT

[
Gμν − 1

2
gμνT

]

+ f − 2�

2
gνμ = κTνμ,

L [μν] := S[μν]ρ∂ρT fT T = 0. (32)

Assuming an exact Killing vector they have shown that for a
heat flux δQ passing through the black-hole horizon and by
using the symmetric part of Eq. (32) they show

δQ = κ

2π

[
fT dA

4

]dλ

0
+ 1

κ

∫
H
kν fT T T,μ(ξρSρν

μ −∇νξ
μ),

(33)

where H stands for the black-hole horizon, which in this
study is equal to an (N − 2)-dimensional boundary of the
hypersurface at infinity. It is shown that the first term in Eq.
(33) can be rewritten asT δS [75]. Therefore, when the second
term in Eq. (33) is not vanishing there will be a violation of the
first law of thermodynamics. Miao et al. [75] have shown that
the second term cannot be equal to zero. Therefore, if we need
to satisfy the first law we must either have fT T = 0, which
gives the TEGR (GR) theory, or have T = constant. Indeed,
solution (24) enforces the torsion scalar to be a constant.
Therefore, the black-hole solution (24) satisfies the first law
of thermodynamics.
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5 Concluding remarks

We show that finding an exact solution in modified theories
of gravity, e.g. f (R) or f (T ), is not an easy task. In this
work we derived an exact rotating black-hole solution in the
f (T ) gravity framework. Indeed, the authors of [45], have
found a static black-hole solution using a diagonal vielbein.
However, studying non-diagonal vielbein in f (T ) theories
is necessary. In this work, we have employed a non-diagonal
vielbein field, with three unknown functions, to the quadratic
f (T ) = T + εT 2 field equations to study the non-charged
case. We obtained an exact solution by taking the useful con-
straint � = 1

24ε
into account. The derived analytical solu-

tion containing two constants of integration. This solution
coincides with what derived in [45] when the off-diagonal
components are set equal to zero, i.e., c2 = S2 = 0.

The solution of the non-diagonal vielbein is a new one and
has no analog in GR due to the appearance of the dimensional
parameter, ε, which is the coefficient of the higher order tor-
sion tensor. This coefficient is not allowed to be zero; other-
wise, the torsion scalar and the metric will be singular. The
torsion scalar of this solution is constant, i.e. T = −1

6ε
.

The issue of singularities is discussed by calculating the
scalars constructed from curvature and torsion. We have
shown that all the scalars will have a singularity at ε = 0,
which ensures that this parameter must not be equal to zero
and ensure that our derived solution is a novel one. More-
over, we have shown that there are more singularities for the
scalars constructed from torsion than those constructed from
curvature. This addition singularity may be due to the diver-
gence term, which makes the torsion scalar different from the
Ricci one. One more interesting property of solution (24) is
that its Cauchy horizon is not identical to the horizon. This
property shows the accumulation of the higher order torsion.

To investigate the physics of Eq. (24) in a deeper way we
have calculated the energy and shown that it depends on the
parameter ε. Equation (31) cannot give the known form of
energy due to the dimension parameter ε, which demonstrates
the effect of the higher torsion scalar. Furthermore, Eq. (31)

shows that, in the case of four dimensions,
√
c4 = 4

√
2

27 and

c1
2−c2

2 = 1, which gives c1 = √
1 + c2

2 and E = c3
ε

. From
this analysis we can assume c2 to be the rotation parameter.

Then we have discussed if solution (24) satisfies the first
law of thermodynamics. We have shown that solution (24),
which is an exact one to the non-trivial case f (T ) = T+εT 2,
satisfied the first law of thermodynamics. This satisfaction
comes from the fact that solution (24) gave a constant torsion.
In general Miao et al. [75] have shown that for non-constant
scalar torsion and when fT T �= 0 we get a violation of the
first law of thermodynamics.

Finally, we want to make a comparison between our solu-
tion in which the Cauchy horizon of gtt = 0 and the hori-

zons constructed from grr = 0 are not the same. However, in
orthodox GR the Cauchy horizon of gtt = 0 and the horizons
constructed from grr = 0 are the same [76]. This difference
between the horizons of g00 and grr in higher order torsion at
the present time is not clear and its needs more study, which
will be done elsewhere.
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