
Eur. Phys. J. C (2017) 77:69
DOI 10.1140/epjc/s10052-017-4643-x

Regular Article - Theoretical Physics

Split degenerate states and stable p+ip phases from holography

Zhang-Yu Nie1,2,a, Qiyuan Pan3,b, Hua-Bi Zeng4,5,c, Hui Zeng1,2,d

1 Kunming University of Science and Technology, Kunming 650500, China
2 Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
3 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for

Quantum Effects and Applications, Department of Physics, Hunan Normal University, Changsha 410081, Hunan, China
4 College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
5 Department of Physics, National Central University, Chungli 32001, Taiwan

Received: 8 December 2016 / Accepted: 23 January 2017 / Published online: 4 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper, we investigate the p+ip super-
fluid phases in the complex vector field holographic p-wave
model. We find that in the probe limit, the p+ip phase and the
p-wave phase are equally stable, hence the p and ip orders can
be mixed with an arbitrary ratio to form more general p+λip
phases, which are also equally stable with the p-wave and
p+ip phases. As a result, the system possesses a degenerate
thermal state in the superfluid region. We further study the
case on considering the back-reaction on the metric, and we
find that the degenerate ground states will be separated into p-
wave and p+ip phases, and the p-wave phase is more stable.
Finally, due to the different critical temperature of the zeroth
order phase transitions from p-wave and p+ip phases to the
normal phase, there is a temperature region where the p+ip
phase exists but the p-wave phase does not. In this region we
find the stable holographic p+ip phase for the first time.

1 Introduction

The AdS/CFT correspondence [1–4] has been widely studied
over the past years. As a strong–weak duality, it is believed
to be a useful tool to study the strongly coupled systems in
QCD [5,6] as well as condensed matter physics [7]. One of
the most successful model of applying the AdS/CFT is the
holographic superconductor model [8–10], which opened an
era for applying the gauge/ gravity correspondence to solving
the strongly coupled condensed matter problems. One can
find more details in various AdS/CMT problems in Ref. [7].
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Since many high temperature superconductors are believed
to be strongly coupled, the holographic tool has also been
used to mimic the phase diagram of high Tc superconduc-
tors [11,12]. In these studies, an important issue is to deal
with systems with multiple order parameters. One should
study the competition and coexistence effect between the
different orders to determine the final phase diagram of
the system. Some previous studies already focused on this
kind of holographic systems and produced many interesting
results [13–26]. A nice review on this topic can be found in
Ref. [27].

Compared with their s-wave cousin, the superconductors
and superfluids with triplet pairing are more complicated. For
example, in the superfluid phases of helium-3 [28], the energy
gap can either be isotropic in the B-phase, or be anisotropic
in the A-phase. The stabilization of the anisotropic A-phase
is caused by some strong coupling effects. In order to theo-
retically study the laws of competition between the different
orders with triplet pairing, we can consider realizing more
triplet pairing phases holographically to begin with. From
another point of view, the realization of novel stable holo-
graphic phases is also important progress in the study of
holographic duality.

One of the triplet pairing phases of great interest is the
p+ip phase. In Ref. [29], the author studied the p+ip phase
in the SU(2) holographic p-wave model. But the calculation
of quasi-normal modes tells us that the p+ip phase in that
model is unstable, therefore, less people continued study-
ing the p+ip holographic phases, which always turn out to
be unstable [30]. Since recently a new holographic p-wave
model was proposed in Ref. [31], it is possible to set up the
p+ip phase holographically in a new way, and in this way,
the p+ip phase could be stable.

In this paper, we study the p+ip phase in the new holo-
graphic p-wave model, both in the probe limit and in the case

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4643-x&domain=pdf
mailto:niezy@kmust.edu.cn
mailto:panqiyuan@126.com
mailto:zenghbi@gmail.com
mailto:zenghui@kmust.edu.cn


69 Page 2 of 9 Eur. Phys. J. C (2017) 77 :69

considering the full back-reaction. The rest of the paper is
organized as follows. In Sect. 2 we give the set-up of the
new p-wave model [31–38] and introduce the ansatz for the
p-wave and p+ip phases. In Sect. 3 we show the behavior
of p-wave and p+ip condensates in the probe limit, and we
show the existence of more general p+λip phases. We fur-
ther study the case with considering the full back-reaction on
the metric in Sect. 4. Finally, we conclude the main results
in this paper and give some discussions in Sect. 5.

2 The holographic set-up of p+ip phases in the new
p-wave model

We start with the complex vector field holographic p-wave
model [31–37] and work in 4 dimensional bulk spacetime.
The action of this model is

S = SG + SM ,

SG = 1

2κ2
g

∫
d4x

√−g
(
R − 2�

)
,

SM = 1

q2

∫
d4x

√−g

(
−1

4
FμνF

μν − 1

2
ρ†
μνρμν −m2

pρ
†
μρμ

)
.

(1)

We write the action of the holographic model in terms of
the gravity part SG and the matter part SM . In this action,
Fμν = ∇μAν −∇ν Aμ is the field strength for the U(1) gauge
field Aμ, ρμ is a complex vector field charged under the U(1)
gauge field with charge q, and the superscript “†” means
complex conjugate. The field strength ofρμ isρμν = Dμρν−
Dνρμ with covariant derivative Dμ = ∇μ − i Aμ. mp is the
mass for the complex vector field; it controls the conformal
dimension of the p-wave order.

The equations of motion for the full system can be given
by the equations for the matter fields,

∇νFνμ = i(ρνρ†
νμ − ρν†ρνμ), (2)

Dνρνμ − m2ρμ = 0, (3)

and the Einstein equations

Rμν − 1

2
(R − 2�) gμν = b2Tμν, (4)

where b = κg/q characterizes the strength of the back-
reaction of the matter fields on the background geometry.
Tμν is the stress-energy tensor of the matter sector,

Tμν =
(

−1

4
Fa
μνF

aμν − 1

2
ρ

†
μν|ρ

μν − m2
pρ

†
μ�μ

)
gμν + FμλF

λ
ν

+ ρ
†
μλρλ

ν + ρ
†
νλρλ

μ + m2
p

(
ρ†
μρν + ρ†

νρμ

)
. (5)

In order to realize the p-wave and p+ip solutions, we take
the ansatz for the matter fields as

At = φ(r), ρx = �x (r), ρy = i�y(r). (6)

In general, the �x (r) and �y(r) fields can be independent,
therefore the metric form will also be anisotropic in general.
A consistent metric form [37,39] can be given as

ds2 = −N (r)σ (r)2dt2 + 1

N (r)
dr2

+ r2

L2

(
1

f (r)2 dx2 + f (r)2dy2
)

, (7)

with

N (r) = r2

L2

(
1 − 2M(r)

r3

)
, (8)

where L is the AdS radius and is related to the cosmological
constant by � = −3/L2.

Under the above matter and metric ansatz, the equations
of motion can be written as

M ′(r) = b2L4φ(r)2

2N (r)σ (r)2

(
f (r)2�x (r)

2 + �y(r)2

f (r)2

)

+ 1

2
b2L4N (r)
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f (r)2� ′

x (r)
2 + � ′

y(r)
2
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)

+ 1

2
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p

(
f (r)2�x (r)
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)

+ b2L2r2φ′(r)2

4σ(r)2 + L2r2N (r) f ′(r)2

2 f (r)2 , (9)

σ ′(r) = b2L2φ(r)2

r N (r)2σ(r)

(
f (r)2�x (r)

2 + �y(r)2
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r
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2 + � ′
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2
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)

+ rσ(r) f ′(r)2

f (r)2 , (10)

f ′′(r) = −b2L2 f (r)φ(r)2
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f (r)2

)

+ b2L2 f (r)

r2

(
f (r)2� ′
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2

f (r)2

)

+ b2L2m2
p f (r)
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r
,

(11)
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φ′′(r) =
(

σ ′(r)
σ (r)

− 2

r

)
φ′(r)

+ 2L2

r2N (r)

(
f (r)2�x (r)

2 + �y(r)2

f (r)2

)
φ(r),

(12)

� ′′
x (r) = −

(
N ′(r)
N (r)

+ σ ′(r)
σ (r)

+ 2 f ′(r)
f (r)

)
� ′

x (r)

−
(

φ(r)2

N (r)2σ(r)2 − m2
p

N (r)

)
�x (r), (13)

� ′′
y (r) = −

(
N ′(r)
N (r)

+ σ ′(r)
σ (r)

− 2 f ′(r)
f (r)

)
� ′

y(r)

−
(

φ(r)2

N (r)2σ(r)2 − m2
p

N (r)

)
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Note that the above equations admits the following four
sets of scaling symmetries:

1. φ→λ2φ, �x →λ2�x , �y → λ2�y, mp → λmp,

N → λ2N , L → λ−1L , b → λ−1b; (15)

2. φ → λφ, �x → λ�x , �y → λ�y, N → λ2N ,

M → λ3M, r → λr; (16)

3. φ → λφ, σ → λσ ; (17)

4. �x → λ�x , �y → λ−1�y, f → λ−1 f. (18)

These scaling symmetries will be used to simplify the numer-
ical work. We will use the first scaling symmetry to set
L = 1 and the second one to set rh = 1. After we get
the numerical solutions, we can use these scaling symme-
tries again to recover L and rh to any value. The last two
scaling symmetries will be used to rescale any solution to be
asymptotically AdS, which means limr→∞ σ(r) → 1 and
limr→∞ f (r) → 1.

In order to solve the equations of motion numerically, we
need to specify the boundary conditions both on the horizon
r = rh and on the boundary r = ∞. Without loss of gen-
erality, we set L = 1 in the rest of the paper. Then near the
horizon the functions can be expanded as

M(r) = r3
h

2
+ Mh1(r − rh) + · · · , (19)

σ(r) = σh0 + σh1(r − rh) + · · · , (20)

f (r) = fh0 + fh1(r − rh) + · · · , (21)

φ(r) = φh1(r − rh) + φh2(r − rh)
2 + · · · , (22)

�x (r) = �xh0 + �xh1(r − rh) + · · · , (23)

�y(r) = �yh0 + �yh1(r − rh) + · · · . (24)

One can check that only the coefficients {σh0, fh0, φh1,

�xh0, �yh0} are independent. We also need to expand the
functions near the AdS boundary,

M(r) = Mb0 + Mb1

r
+ · · · , σ (r) = σb0 + σb3

r3 + · · · ,

f (r) = fb0 + fb3

r3 + · · · , φ(r) = μ − ρ

r
+ · · · ,

�x (r) = �x−
r1−


+ �x+
r


+ · · · , �y(r)= �y−
r1−


+ �y+
r


+ · · · ,

(25)

where


 = (1 +
√

1 + 4m2
pL

2)/2 (26)

is the scaling dimension of the vector order.
In order to make the boundary geometry to be asymptoti-

cally AdS, we should have σb0 = fb0 = 1. These two condi-
tions could be easily satisfied by a scale transformation from
any known solution by using the last two scaling symmetries,
Eqs. (17) and (18). In the asymptotically AdS spacetime, we
can use the AdS/CFT correspondence to get information of
the dual field theory. The AdS/CFT dictionary tells us that μ

and ρ are related to the chemical potential and charge den-
sity, respectively, while �xb0, �yb0 are related to the sources
and �xb1, �yb1 are related to the expectation values of the
dual vector operators. Since we focus on the solutions with
no source term, we further set �x− = �y− = 0 as additional
constraints.

With these four constraints on the boundary, we only have
one free parameter left for the solutions. In other words, we
can get one parameter solutions that mimic the p-wave or
p+ip phase transition holographically.

Before we go to the general case, considering the full inter-
actions between matter fields and the metric, we show some
interesting results in the probe limit where we can ignore the
influence of the matter fields on the metric. This limit can be
taken consistently if we set b → 0 or equivalently q → ∞.
We show the results in the next section and come back to the
general case with finite b and q in Sect. 4.

3 Degenerate states in the probe limit

In this section, we take the probe limit with b → 0. In this
limit, the matter fields will not affect the metric fields, and
the background metric (7) becomes the analytical form of
black brane solution

N (r) = r2

L2

(
1 − r3

h

r3

)
, σ (r) = f (r) = 1. (27)

And the temperature of this solution is

T = 3

4πL2 rh . (28)
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We only need to solve the following equations of motion
for matter fields in the AdS black brane background:

φ′′ + 2

r
φ′ − 2L2 �2

x + �2
y

r2N
φ = 0, (29)

� ′′
x + N ′

N
� ′

x + φ2 − m2
p f

N 2 �x = 0, (30)

� ′′
y + N ′

N
� ′

y + φ2 − m2
p f

N 2 �y = 0. (31)

We can see that in these equations, �x and �y are not directly
coupled in their equations of motion, and they both are cou-
pled to the same U(1) electromagnetic field. Thus we can
consistently set �x = 0 or �y = 0, and, in either case, we
get a holographic p-wave superfluid phase. In order to get a
p+ip phase, we should solve the three equations of motion
to get a solution with �x = �y . The boundary conditions of
these three fields are the same as in the general case given in
the previous section.

3.1 The p-wave solutions in the probe limit

If we turn off �y , one can solve the remaining two equations
of motion numerically to get p-wave solutions which are
dual to the p-wave superfluid phases. These different p-wave
solutions can be labeled by the values of 
 and T . For later
convenience, we define these solutions as

�x = �
,T , �y = 0, φ = φ
,T . (32)

�
,T and φ
,T satisfy the equations of motion (29) and (30)
with �y = 0 at the giving value of {
, T }. From these solu-
tions, we can study the behavior of the p-wave condensate
to see the properties of p-wave phase transitions. It is easy
to check that the condensate behaviors of the p-wave super-
fluid phases in the probe limit at different values of 
 are
all similar to those in the SU(2) holographic p-wave model.
The main difference is that we can tune the dimension of the
p-wave order in this model, and different values of 
 will
make the critical temperature of the p-wave superfluid phase
transitions also different.

3.2 Constructing p+ip and the general p+λip solutions
from the p-wave solution

We can also solve the three equations of motion with �x =
�y to get a holographic dual of p+ip solutions on the bound-
ary field theory. Here we need not do the numerics again,
because these solutions can easily be constructed from the
p-wave solutions at hand as

�x = �y = 1√
2
�
,T , φ = φ
,T . (33)

One can check these solutions by substituting them into the
three equations of motion, and we get the following three
equations:

φ′′

,T + 2

r
φ′


,T − 2L2 �
,T

r2N
φ
,T = 0, (34)

� ′′

,T + N ′

N
� ′


,T + φ2

,T − m2

p f

N 2 �
,T = 0, (35)

� ′′

,T + N ′

N
� ′


,T + φ2

,T − m2

p f

N 2 �
,T = 0. (36)

These equations are always satisfied because they are just the
two equations of motion (29), (30) satisfied by the p-wave
solutions {�
,T , φ
,T }.

We can go further to get solutions with �x �= �y . In
these cases, from the boundary field theory point of view, the
expectation value of the p-wave order is different from that
of the ip order. We call these solutions p+λip solutions and
these solutions can be constructed as

�x = cos θ �
,T , �y = sin θ �
,T , φ = φ
,T , (37)

where θ is an arbitrary valued constant angle. We can again
check these solutions by substituting them into the equations
of motion and get Eqs. (34)–(36). From these solutions we
can see that the p-wave solutions and p+ip solutions are
special cases of the p+λi p solutions with θ = 0 and θ =
π/4, respectively.

3.3 Free energy in probe limit and the stability of p+λip
phases

We have constructed the p+λip solutions in the previous
section, and with θ = π/4 we can get solutions dual to the
p+ip superfluid phases. It is important to check whether these
new solutions are stable or not. We can examine this stability
by calculating the free energy of the phases with different λ.

In this paper, we work in the grand canonical potential,
and the Gibbs free energy of the holographic system can be
evaluated by the on-shell Euclidean action of the bulk system.
Because we work in the probe limit, at a given temperature,
the difference of the Gibbs free energy of the different phases
only comes from the contribution of the matter part of the
Euclidean action SME. The matter contribution to the Gibbs
free energy of the holographic system is

m =T SME = V2

q2

(
−1

2
μρ +

∫ ∞

rh

�2
x + �2

y

N
φ2dr

)
. (38)

We can substitute the p+λip solutions (37) into the above
formula to calculate the free energy of the different phases
including the p-wave and p+ip one. It is easy to see that,
at fixed value of {
, T }, the matter contribution of the free
energy for the p+λip phases equals
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Fig. 1 
–Tc phase diagram in the probe limit. The bottom left region
is occupied by the degenerate p+λip phase and the top right region is
occupied by the normal phase


p+λi p
m = V2

q2

(
−1

2
μ
,T ρ
,T +

∫ ∞

rh

�
,T

N
φ2


,T dr

)
,

(39)

where μ
,T and ρ
,T are read from the boundary behavior
of the function φ
,T .

Note that there is an arbitrary valued parameter θ in the
p+λip phases and the result for the free energy does not
depend on it. Therefore at fixed values of {
, T }, there are
an infinite number of phases with different values of θ and
they are equally stable. Therefore, the phase diagram of this
system in the probe limit can be shown as in Fig. 1, where
we can see that below some critical temperature, the system
can be in a p+λip phase with arbitrary value of the angle θ .
This means that the superfluid phases are degenerate.

Recall that in Ref. [29] the p+ip phase is unstable. This
can be explained by the additional non-abelian coupling
between the p and ip orders in that model. That nonlinear term
will have a positive contribution to the free energy. Therefore
the p+ip phase in Ref. [29] becomes unstable compared to
the p-wave phase. In our set-up, the p and ip orders are not
coupled directly in the action; therefore, all the p+λip phases
are all equally stable in the probe limit.

4 Splitting the degenerate phases with back-reaction

While we have studied the p+λip phases in the probe limit
to find a degenerate behavior, it will be quite interesting to
go away from the probe limit and see what will happen to
the degenerate phases under the influence of the gravitational
interactions between the matter fields. It is easy to notice that
when we consider the full interactions between the matter and
gravitational fields, the metric will no longer be isotropic in
x–y plane in general p+λip phases, except the p+ip phase
with �x = �y .

When the back-reaction of the matter fields is consid-
ered, we can easily get the p-wave solution with �y = 0
according to the results in the previous study. In addition,
we can also find the p+ip solution because the condition
�x = �y further implies f (r) = 1, and therefore the remain-
ing equations of motion are similar to those of the s-wave
holographic model. By solving the equations of motion with
proper boundary conditions, we can find these two types of
solutions, and we draw the condensate behavior in some typ-
ical cases.

In the p-wave phase, the condensate value can be extracted
by the expectation value 〈O〉 = �x+. In order to compare the
condensate value of the p+ip phase with that of the p-wave
phase, we need to define the order parameter in the p+ip
phase in a consistent way. According to the experience in the
probe limit, we can define this value by

〈O〉 =
√

�2
x+ + �2

y+. (40)

By this definition, the condensate values for the p+λip phases
in the probe limit are all equal.

4.1 Different condensate behaviors

We can draw the curve of condensation value 〈O〉1/
 versus
the temperature T/μ for various cases. In this section, we
show some typical condensate behaviors of the p-wave and
p+ip phases and make comparison.

In Fig. 2, we draw the condensate of the p-wave and p+ip
solutions withmp = 0 and three different values of the back-
reaction strength, b = 0.5, 0.68, 0.8, respectively. The fig-
ure with b = 0.5 shows the typical behavior in the weakly
back-reacted case where both the p-wave and p+ip phase
transitions are second order. We can see that the conden-
sate values of the p-wave and p+ip phases are very close to
each other, and the condensate value of the p-wave phase is
always larger than that of the p+ip phase. In the case that the
back-reaction is weaker, the difference between the two con-
densate values is smaller. This is consistent with the results
in the probe limit, where the condensate values of the p-wave
and p+ip phases are equal.

From the previous study, we know that the p-wave phase
transition will become first order when b > 0.62. It is inter-
esting to study whether the p+ip phase transition will also
become first order. Our study shows that with mp = 0, the
p+ip phase transition becomes first order when b > 0.69.
Then in the cases 0.62 < b < 0.69, the p-wave phase tran-
sition becomes first order, while the p+ip phase transition is
still second order. We show the condensate behavior of such
a case with b = 0.68 in the second plot in Fig. 2. And in the
third plot, we show the case where both the p-wave and p+ip
phase transitions are first order with b = 0.8.
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Fig. 2 Condensate behavior with m2
p = 0. The dotted blue curves denote the condensate of the p-wave solution and the solid red curves denote

the condensate of the p+ip solution
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Fig. 3 Condensate behavior with m2
p = −3/16. The dotted blue curves denote the condensate of the p-wave solution and the solid red curves

denote the condensate of the p+ip solution

In Ref. [31], the authors showed that the p-wave phase
transition will show interesting behavior, such as a zeroth
order phase transition with m2

p = −3/16. It is also inter-
esting to see what will happen to the p+ip phase in these
cases. We show our results with m2

p = −3/16 in Fig. 3
with three different values of the back-reaction parameter,
b ≈ 0.354, 0.725, 0.744, respectively. We can see that sim-
ilar to the p-wave phase transition, the condensate behavior
for the p+ip phase also signals the zeroth order phase transi-
tion back to the normal phase at a lower temperature. But to
verify this zeroth order phase transition, we need to calculate
the free energy of the p+ip solution in these cases. We will
show these results in the next section.

From all these condensate behaviors of the two phases,
we can see a common feature, which is that the two different
solutions share the same temperature where the condensate
begins to emerge. This can be understood as follows. When
the condensate begins to emerge, the amplitude of the con-
densed field is sufficiently small, therefore we can take this
as another kind of probe limit where the fields �x and �y

are too small to change the metric of a RN-AdS black brane.
Then, similar to the discussion in the previous section, the
symmetry on the x-y plane makes the p+ip solution start to
emerge at the same temperature as that for the p-wave phase.
But when the condensate value becomes large, the metric
in the p-wave solution is deformed to become anisotropic,
while the metric in the p+ip solution is still isotropic, this
difference results in a difference in condensate as well as the
free energy, finally.

4.2 Free energy and the split phases

To further verify the zeroth order phase transition, and find
which one between the two condensed solutions is the most
stable, we need to calculate their free energy. To calculate the
free energy holographically, we again calculate the on-shell
Euclidean action of the system. But, in this section, we should
also calculate the contribution of gravity fields. We also need
to add some boundary terms such as the Gibbons–Hawking
term and boundary counter terms. Because we work in the
grand canonical ensemble, the final formula for the grand
potential can be expressed as

 = T SE = − 1

2κ2
g

∫
d4x

√−g (R − 2�)

− 1

κ2
g

∫
d3x

√−h

(
K − 2

L

)
, (41)

where h is the determinant of the induced metric hμν on
the boundary r → ∞, and K is the trace of the extrinsic
curvature Kμν .

Using the equations of motion, we can reduce the bulk
integrand to a total derivative terms of r , therefore the final
formula only contains boundary terms. The Euclidean time
integral will contribute a factor of 1/T and we define the
transverse integral on the x and y directions to be the bound-
ary volume V2 = ∫

dxdy. Then the grand potential can be
written as
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κ2
g

V2
= − lim

r→∞
[
r N (r)σ (r) + r2N ′(r)σ (r)

2

+ r2N (r)σ ′(r) − 2r2
√
N (r)σ (r)

]
. (42)

We can further substitute the boundary expansion into the
formula to get

κ2
g

V2
= −Mb0. (43)

We draw the curves of the free energy in Figs. 4 and 5. In
Fig. 4, we show the free energy curves for the cases with
m2

p = 0. We can see that in these cases, irrespective of
whether the phase transitions are first order or second order,
the free energy for the p-wave phase is always lower than that
of the p+ip solution at the same temperature. This indicates
that withm2

p = 0, although we can find p+ip solutions, these
solutions are always unstable.

In Fig. 5, we show the free energy curves for the cases
with m2

p = −3/16. From these three plots, we can con-
firm that the free energy changes non-continuously at the left
side of the condensed phases, and the phase transition back
to the normal phase is zeroth order. We can also compare
the free energy of the two condensed phases. We can see
that in the temperature region where both the p-wave and
p+ip phases exist, the free energy of the p-wave phase is
still lower. However, in these cases, there is some temper-
ature region where only the p+ip phase exists, and in this
region, the p+ip phase has the lowest free energy. There-

fore, we can claim that we succeed on building a stable
holographic p+ip phase on considering the back-reaction
on metric.

We can also analyze more details of the cases with m2
p =

−3/16. From the plot with b ≈ 0.354 we can see that if
we lower the temperature of the system from a high value,
the system will undergo three phase transitions. The first one
is the second order phase transition from the normal phase
to the p-wave phase, and the second one is a zeroth order
phase transition from the p-wave phase to the p+ip phase.
The final one is a zeroth order phase transition from the p+ip
phase back to the normal phase. In the case with b ≈ 0.725
the situation is similar, except that the first phase transition
from normal phase to the p-wave phase becomes first order.
In the last plot, with b ≈ 0.744, the p-wave phase is always
unstable, to be compared to the normal phase, therefore the
system will undergo only two phase transitions. The first one
is from the normal phase to the p+ip phase and the second
is the zeroth order phase transition from the p+ip phase to
the normal phase.

5 Conclusions and discussions

In this paper, we set up the p+ip phase in the holographic p-
wave model with complex vector fields in the bulk. We found
that in the probe limit, due to the symmetry between the x
and y directions, we can construct a set of p+λip phases,

123



69 Page 8 of 9 Eur. Phys. J. C (2017) 77 :69

and the results of the free energy show that these phases with
different values of λ are equally stable.

We also extend the study to the cases away from the probe
limit, and found that on considering the back-reaction on the
metric fields, the p-wave and p+ip solutions get different
values of the free energy. In all the temperature region where
the two solutions both exist, the p-wave one gets a lower value
of the free energy. It seems that the effect of the back-reaction
is to split the degenerate p+λip phases to a p-wave solution
with lower free energy and a p+ip solution with higher free
energy.

It is also very interesting that because the zeroth order
phase transition from the p-wave phase has a higher critical
temperature than that from the p+ip solution, the p+ip solu-
tion exists in a temperature region where no p-wave phase
exists. In this region, the free energy of the p+ip phase is
still lower than that of the normal phase; thus the p+ip phase
can be stable. This is the first time that one builds a stable
p+ip superfluid phase holographically.

There are also many further extensions from our results
that are very interesting. For example, we are going to con-
sider this topic in Einstein–Gauss–Bonnet gravity, and see
whether the stable p+ip phase can be found where the p-
wave solution exists. We can also consider the competition
between the p+ip phase and the s-wave phase to compare the
two isotropic solutions. Although the p+ip phase is isotropic
in 2 + 1 dimensions, it becomes anisotropic in 3 + 1 dimen-
sions. It would be interesting to study the anisotropic behav-
iors such as conductivity of the p+ip phase and compare the
results with the p-wave case from a 4 + 1 dimensional bulk.
Finally, one can try to realize more complex p-wave orders
holographically, and engineer phase diagrams of a helium
like system. We are looking forward to more progress in
these directions.
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