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Abstract We obtain a new static model of the TOV equa-
tion for an anisotropic fluid distribution by imposing the Kar-
markar condition. In order to close the system of equations
we postulate an interesting form for the grr gravitational
potential, which allows us to solve for gtt metric compo-
nent via the Karmarkar condition. We demonstrate that the
new interior solution has well-behaved physical attributes
and can be utilized to model relativistic static fluid spheres.
By using observational data sets for the radii and masses
for compact stars such as 4U 1538-52, LMC X-4, and PSR
J1614-2230 we show that our solution describes these objects
to a very good degree of accuracy. The physical plausibil-
ity of the solution depends on a parameter c for a particu-
lar star. For 4U 1538-52, LMC X-4, and PSR J1614-2230
the solutions are well behaved for 0.1574 ≤ c ≤ 0.46,
0.1235 ≤ c ≤ 0.35 and 0.05 ≤ c ≤ 0.13, respec-
tively. The behavior of the thermodynamical and physi-
cal variables of these compact objects leads us to con-
clude that the parameter c plays an important role in deter-
mining the equation of state of the stellar material and
observed that smaller values of c lead to stiffer equation of
states.

1 Introduction

The final outcome of gravitational collapse has been the focus
of attention since Laplace and Michell first conceived of the
idea of a black or invisible star. One of the early attempts to
determine the result of continued gravitational collapse of a
homogeneous dust sphere was carried out by Oppenheimer
and Snyder in 1939 [1]. The resulting singularity remains hid-
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den behind the trapping horizon allowing us to conclude that
the final fate of collapsing homogeneous dust cloud leads
to a Schwarzschild black hole. Although highly simplified
the Oppenheimer–Snyder collapse model sparked an interest
in seeking more general collapse scenarios [2–5]. The Cos-
mic Censorship Conjecture hypothesizes that any reasonable
matter distribution undergoing gravitational collapse leads to
the formation of a black hole i.e., singularity remains hid-
den behind the horizon at all times [6]. There have been a
number of counterexamples to the Cosmic Censorship Con-
jecture with the discovery of naked singularities as possible
end-states of gravitational collapse [7–9]. A natural question
that arises from these investigations is how the initial static
configuration (the state of the stellar fluid just before the onset
of collapse) affects the outcome of gravitational collapse. To
this end there have been various approaches in modeling dis-
sipative collapse starting from an initial static configuration
[10–12]. It has been shown that pressure anisotropy, shear,
inclusion of charge, dimensionality of spacetime and equa-
tion of state of the initially static core affects the subsequent
collapse. In a recent investigation, Naidu and Govender [13]
showed that two initially static stellar models with the same
masses and radii but different pressure profiles undergoing
collapse lead to very different temperature profiles, particu-
larly during the latter stages of their evolution. Finding exact
solutions of the Einstein field equations describing bounded
matter distributions are important in understanding the sub-
sequent gravitational collapse of these objects.

The Einstein field equations describing localized bodies
is a system of highly nonlinear partial differential equations
which are difficult in general. In seeking solutions to these
equations various novel ideas ranging from an ad-hoc speci-
fication of the gravitational potentials, imposing an equation
of state, prescribing the behavior of the density, pressure or
anisotropy profiles ab initio and specifying the spacetime
symmetry have been utilized. It is the very nature of the Ein-
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stein field equations which connects the curvature of space-
time to the matter content which allows one to either spec-
ify the geometry or the matter distribution to determine the
behavior of the other. The first successful attempt at modeling
the interior of a spherically symmetric star was carried out by
Schwarzschild in 1916, in which he considered a matter dis-
tribution with uniform density. The Schwarzschild solution
is conformally flat and is characterized by isotropic pres-
sure. Conformal flatness implies vanishing of the Weyl ten-
sor which equates to the vanishing of tidal forces. The study
of matter at ultra-high densities of the order of 1015g cm−3

indicate that the transverse and radial stresses within the stel-
lar fluid may not be equal. Local anisotropy may drastically
affect the stability of self–gravitating systems as was shown
by Chan et al. [14]. Various scenarios have been proposed to
incorporate local anisotropy in stellar models some of which
are pion condensation (Hartle et al. [15]), neutrino trapping
at high densities [16] and different types of phase transitions
[17]. The relaxation of the pressure isotropy condition has led
to an explosion of exact solutions of the Einstein field equa-
tions describing compact objects. Based on fundamental par-
ticle interactions the standard linear equation of state has been
extended to include the bag constant. This equation of state
has been used extensively to model compact objects with
anisotropic pressure profiles as well as a non-vanishing elec-
tromagnetic field in the stellar interior. These models are well
behaved and were shown to mimic neutron stars, pulsars, and
strange star candidates. The quadratic equation of state has
also been successfully used to model stellar interiors of com-
pact objects such as Her X-1, RXJ 1856-37, SAX J1808.4-
3658(SS1) and SAX J1808.4-3658(SS2). Utilizing curvature
coordinates Herrera and Barreto derived an algorithm to gen-
erate relativistic polytropes with anisotropic pressures [18].
Motivated by the existence of dark energy, Lobo et al. hypoth-
esized the existence of dark stars with an equation of state
of the form p = αρ where −1 < α < −1/3 [19]. A more
exotic form of matter distribution is the so-called Chaply-
gin gas and the generalized Chaplygin gas which reduce to
the linear equation of state in the appropriate limit. Stable
dark stars are remnants of gravitational collapse which are
formed as a result of the repulsive nature of dark energy. The
repulsion is sufficiently strong to halt collapse leading to the
formation of stable stars free of any singularity [20,21].

Higher order gravity theories have been fruitful in pro-
ducing models of compact stellar objects. Various authors
have shown that modifications to 4-D classical Einstein grav-
ity feature in the thermodynamical properties of the stellar
fluid [22–24]. The braneworld scenario provides a natural
mechanism for the existence of anisotropic pressure within
the stellar fluid [26]. In addition, it was shown that in the
Randall–Sundrum II type braneworld, the exterior space-
time of spherical star is filled with radiative-type stresses
induced by five-dimensional graviton effects and is not nec-

essarily the vacuum Schwarzschild solution as in the 4-D
case [27]. Recently, Dadhich et al. [28] have shown that
within the framework of pure Lovelock gravity there can-
not exist self-gravitating bounded distributions d = 2N + 1
dimensions. This is to say that there is no finite radius for
which the pressure vanishes [28]. The transition from clas-
sical 4-D gravity to higher-dimensional gravity theories has
sparked immense interest in studying phenomenological pro-
cesses which reside in extra dimensions. One of the main
proponents of these investigations is Dadhich and his col-
laborators who proved the universality of the Schwarzschild
constant density sphere, i.e., it was shown that this solution
carries over to Einstein–Gauss–Bonnet gravity and Lovelock
gravity [25,29].

It is widely believed that the four fundamental interac-
tions in Nature were once a manifestation of a single, uni-
fied force. Furthermore, the dimensionality of spacetime
could have evolved in such a manner so as to reveal four
dimensions which we observe today. Kaluzua–Klein theo-
ries have shown that the electromagnetic interaction mani-
fests naturally in five-dimensional spacetime. These obser-
vations of physical phenomena transcending the dimension-
ality of spacetime have generated widespread interest in
embedding our standard four-dimensional spacetime into
higher-dimensional spacetimes [30]. It is well known that
any pseudo-Riemannian manifold, (Vn)

− with dimension-
ality n may be locally embedded into a pseudo-Euclidean
space, (Vm)+ of dimension m = n(n+1)

2 . It follows that the

embedding class of (Vn)
− ≤ m − n = n(n−1)

2 . For the rel-
ativistic 4-D spacetime (V4)

−, the embedding class is 6. A
recent and popular approach in deriving exact solutions of the
Einstein field equations describing compact stars is to make
use of the Karmarkar condition [31–39]. The necessary and
sufficient condition for a spherically symmetric spacetime
to be of embedding class I was first derived by Karmarkar
[41]. It is a mathematical simplification which reduces the
problem of obtaining exact solutions to a single-generating
function. The approach is to choose one of the gravitational
potentials on physical grounds and to then integrate the Kar-
markar condition to fully specify the gravitational behavior
of the model. In this paper we utilize the Karmarkar condition
to derive solutions which describe compact objects in gen-
eral relativity. We subject our solutions to rigorous physical
tests which ensure that they do describe physically observ-
able objects in the universe.

2 Einstein field equations for anisotropic fluid
distributions

The interior of the super-dense star is assumed to be described
by the line element
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ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

where the gravitational potentials ν(r) and λ(r) are yet
to be specified. The Einstein field equations describing an
anisotropic fluid distribution are given as (in the unit G =
c = 1)

−8πTμ
ξ = Rμ

ξ − 1

2
R gμ

ξ (2)

where

Tμ
ξ = ρvμvξ + prχξχ

μ + pt (v
μvξ − χξχ

μ − gμ
ξ ) (3)

is the energy-momentum tensor, Rμ
ξ is the Ricci tensor, R

represents the scalar curvature, pr and pt denote radial and
transverse pressures, respectively, ρ is the density of the fluid
distribution, vμ the four velocity, and χμ is the unit space-
like vector in the radial direction.

The Einstein field equations (2) for the line element (1)
are

8πρ(r) = 1 − e−λ

r2 + λ′e−λ

r
(4)

8πpr (r) = ν′e−λ

r
− 1 − e−λ

r2 , (5)

8πpt (r) = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
, (6)

where primes denote differentiation with respect to the radial
coordinate r . In generating the above field equations we have
utilized geometrized units where the coupling constant and
the speed of light are taken to be unity. Using Eqs. (5) and
(6) we obtain the anisotropic parameter

�(r) = 8π(pt − pr )

= e−λ

[
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r
+ eλ − 1

r2

]
, (7)

which vanishes in the case of an isotropic pressure.
Eisenhart [40] has mentioned that, for any Riemannian

space to be class I, a necessary and sufficient condition is that
there exists a second-order symmetric tensor bμα satisfying
the following equations:

Rμναβ = ε(bμαbνβ − bμβbνα) (8)

0 = bμν;α − bμα;ν (9)

where ε = ±1 (+ when the normal to the manifold is space-
like or − when the normal to the manifold is time-like) and
‘(;)’ represents covariant differentiation.

For the line element (1), the non-zero components of the
Riemann curvature tensor are given by

R1414 = −eν

(
ν′′

2
+ ν′2

4
− λ′ν′

4

)
(10)

R2323 = −eλr2 sin2 θ (eλ − 1) (11)

R1334 = R1224 sin2 θ = 0 (12)

R1212 = 1

2
rλ′ (13)

R3434 = −1

2
r sin2 θ ν′eν−λ (14)

The non-zero components of the tensor bμα corresponding
to (1) are b11, b22, b33, b44 and b14 with b33 = b22 sin2 θ .
With these components, (8) reduces to

R1414 = R1212R3434 + R1224R1334

R2323
, (15)

which is known as the Karmarkar condition [41] in the liter-
ature.

Using (10)–(14) in (15) leads to the following differential
equation:

λ′eλ

eλ − 1
= 2ν′′

ν′ + ν′, (16)

which can easily be integrated to give a relationship between
ν(r) and λ(r):

eλ = 1 + Kν′2eν

4
(17)

where K is a constant of integration.
By using (17) we can rewrite (7) as

�(r) = ν′

4eλ

[
2

r
− λ′

eλ − 1

] [
ν′eν

2r B2 − 1

]
, B = 1√

K
.

(18)

However, Pandey and Sharma [42] argued that satisfying the
Karmarkar condition alone is insufficient for a spherically
symmetric spacetime to be class I. As an example, they pre-
sented the following spacetime:

ds2 = −eνdt2 + dr2 + r2(dθ2 + sin2 θdφ2), (19)

which does satisfy (15). This spacetime (19) has eλ = 1
implying R2323 = 0 from (11). eλ = 1 or R2323 = 0 also
implies (19) is spatially flat.

Now the non-zero components of curvature tensor for (19)
are R1414, R2424 and R3434 only. Using these components,
(8) implies inconsistent equations:

b22b33 = 0, b24b33 = 0, b22b44 − b2
24 �= 0, b33b44 �= 0.

(20)

Therefore, the spacetime given in (19) does satisfy the Kar-
markar condition but fails to satisfy (8) i.e. (19) is not a
class I spacetime due to R2323 = 0. Hence, any symmetric
spacetimes are called class I if they satisfy the Karmarkar
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condition and the Pandey–Sharma condition (R2323 �= 0)
simultaneously. The condition R2323 = 0 or equivalently
eλ = 1 gives the spacetime (19), which in fact describes a
perfect fluid sphere with zero density [42]. Hence, in order to
describe a perfect fluid with non-vanishing density we require
R2323 �= 0. It is also important to note that all the spherically
symmetric spacetimes are in general of class II unless they
simultaneously satisfy the Karmarkar and Pandey–Sharma
conditions.

3 Isotropic Class I solutions

For isotropy in pressure, the anisotropy factor� = 0. Assum-
ing that ν′(r) �= 0, we will get from (18) either[

2

r
− λ′

eλ − 1

]
= 0 or (21)

[
ν′eν

2r B2 − 1

]
= 0 (22)

or both. The first condition (21) leads to Schwarzschild’s
constant density model [43] and the second condition (22)
leads to Kohler–Chao solution [44].

3.1 Schwarzschild interior solution

Integration of (21) yields

e−λ = 1 − cr2. (23)

Using (23) in (17), we obtain

eν =
(
A − B√

c

√
1 − cr2

)2
. (24)

The above solution is the well-known interior Schwarzschild
model, which describes an incompressible, static sphere with
uniform density. For completeness we present the physical
quantities of this solution as determined from (4) and (5),

ρ(r) = 3c

8π
, (25)

P(r) = c

8π

(
2B

√
1 − cr2

A
√
c − B

√
1 − cr2

− 1

)
, (26)

P(r)

ρ(r)
= 1

3

(
2B

√
1 − cr2

A
√
c − B

√
1 − cr2

− 1

)
. (27)

The interior Schwarzschild solution has been extensively
studied by various authors including Schwarzschild himself
[43]. This solution serves as a toy model for self-gravitating
bounded configurations. One of its main shortcomings is the
fact that it leads to an infinite speed of sound within the inte-
rior of the sphere.

3.2 Kohler–Chao solution: a cosmological solution

Integrating (22) we obtain

eν = A + Br2 (28)

and using (28) in (17) yields

eλ = A + 2Br2

A + Br2 , (29)

which is the Kohler–Chao–Tikekar solution [44,46].
The corresponding expressions for density, pressure, and

equation of state parameter can be written as

8πρ(r) = B(3A + 2Br2)

(A + 2Br2)2 , (30)

8π P(r) = B

A + 2Br2 , (31)

P(r)

ρ(r)
= A + 2Br2

3A + 2Br2 , (32)

with B > 0. However, we can see clearly from (31) that the
pressure at the surface of any configuration cannot be zero for
a finite boundary unless the boundary itself is infinite. This
property of an infinite boundary does have the property of a
cosmological solution. The same discussion is also given in
Maurya et al. [45].

Maurya et al. [45] comment on the charged isotropic solu-
tions of embedding class I, i.e., the Schwarzschild interior
and Kohler–Chao solutions. If the charge vanishes in these
two solutions, then the remaining neutral counterpart will
only be either the Schwarzschild interior solution or the
Kohler–Chao solution, otherwise either the charge cannot
be zero or the surviving spacetime metric will become flat.

It is well known that an isotropic spherically symmetric
conformally flat metric is necessarily to be a class I solution.
However, does the converse hold good, i.e., is a spherically
symmetric class I solution representing an isotropic fluid
sphere necessarily conformally flat? This was resolved by
Tikekar [46] concluding that “it is not necessary a spherically
symmetric class I solution representing isotropic fluid sphere
to be conformally flat” and he gave an example by rediscov-
ering the Kohler–Chao solution. Here what we want to stress
is that the conformally flat solution, i.e., the Schwarzschild
interior solution is the only isotropic class I solution that can
represent a bounded stellar configuration. However, the con-
formally non-flat solution, i.e., the Kohler–Chao solution,
cannot describe a finite bounded configuration, although it
can qualify as a cosmological solution.

It is well known that all the non-vanishing components of
the Weyl tensor are proportional to
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W = r3e−λ

6

[
eλ

r2 − 1

r2 + ν′λ′

4
− ν′2

4
− ν′′

2
+ ν′ − λ′

2r

]
.

(33)

Here the Schwarzschild interior solution yields a vanishing
Weyl tensor (W = 0) postulating that it is a conformally
flat space. However, the Kohler–Chao solution yields a non-
vanishing Weyl tensor where

W = 2B2r5

3(A + 2Br2)2 , (34)

implying that the Kohler–Chao solution is not conformally
flat. In general, the Karmarkar condition and the pressure
isotropy do not imply conformal flatness. However, the con-
verse is true: conformally flat, perfect fluid spheres obey the
Karmarkar condition.

4 Generating a new family of embedding class I models

We now seek relativistic stellar models which satisfy the Kar-
markar condition. In the light of our findings in the previ-
ous section we relax the condition of pressure isotropy. This
implies that the radial and tangential stresses are unequal
throughout the fluid distribution. It is well known that pres-
sure anisotropy plays an important role during dissipative
collapse. In a recent study by Govender et al. [47] it has
been shown that the dynamics of a collapsing core is closely
related to the radial pressure and energy density of the stel-
lar fluid. By assuming a linear equation of state for the initial
static configuration, of the form pr = αρ−β, where α and β

are constants, they demonstrated that the subsequent collapse
is sensitive to the interplay between the radial pressure and
energy density. They also demonstrated that the equation of
state parameter, α, influences the behavior of the temperature
profile of the collapsing body.

We now proceed to obtain a family of solutions which
describe anisotropic matter configurations obeying the Kar-
markar condition. In order to completely specify the gravi-
tational behavior of our model we assume

eλ = ar2 sin2
(
br2 + c

)
+ 1 (35)

where a, b, and c are constants which are determined from the
boundary conditions. The sinusoidal behavior of the gravita-
tional potential has been widely used in various contexts in
both cosmology and astrophysics. Dadhich and Raychaud-
huri demonstrated that it was possible to obtain an oscillating
cosmological model without Big Bang singularity [48]. An
interesting feature of this model is that it allows for the pre-
diction of blue-shifts without violating the basic postulates
of general relativity. In modeling a dissipative gravitational

collapse of a spherically symmetric star in which the Weyl
stresses vanish, Maharaj and Govender [49] showed that the
solution of the boundary condition admits oscillatory solu-
tions. The extension from 4-D to 5-D gravity of the Finch
and Skea stellar model leads to sinusoidal behavior of the
gravitational potentials [22].

Using the metric potential (35) in (17), we get

eν =
[
A −

√
aB

2b
cos

(
br2 + c

)]2

. (36)

Using (35) and (36), we can rewrite the expression of density,
pr , �, and pt as

8πρ(r) = a[
ar2 sin2

(
br2 + c

) + 1
]2

[
ar2 sin4

(
br2 + c

)

+3 sin2
(
br2 + c

)
+ 2br2 sin

{
2

(
br2 + c

)} ]
,

(37)

8πpr (r) =
√
a sin

(
br2 + c

)
2

[
ar2 sin2

(
br2 + c

) + 1
] (38)

×4
√
aAb sin

(
br2 + c

) − aB sin
{
2

(
br2 + c

)} − 8bB√
aB cos

(
br2 + c

) − 2Ab
,

(39)

�(r) = r csc4
(
br2 + c

)
4

[
ar2 + csc2

(
br2 + c

)]2

×a cos
{
2

(
br2 + c

)} − a + 4b cot
(
br2 + c

)
2Ab − √

aB cos
(
br2 + c

)

×
[

2aAbr cos
{

2
(
br2 + c

)}

− 2aAbr + 4
√
abBr

× sin
(
br2 + c

)
+ a3/2Br sin

(
br2 + c

)

× sin
{

2
(
br2 + c

)} ]
, (40)

8πpt (r) = 8πpr (r) + �(r). (41)

5 Properties of the new model

The central values of pressure and density are given by

8πprc = 8πptc

=
√
a sin c

(
4
√
aAb sin c − aB sin(2c) − 8bB

)
2
(√

aB cos c − 2Ab
) ,

(42)

8πρc = 3a sin2 c. (43)

To satisfy Zeldovich’s condition at the interior, prc/ρc at the
center must be ≤ 1. Therefore,
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4
√
aAb sin c − aB sin(2c) − 8bB

3
√
a sin c

[
2
√
aB cos c − 4Ab

] ≤ 1. (44)

On using (42) and (44) we generate a constraint on B/A
given by

8b + a sin(2c)

4
√
aAb sin c

<
A

B
≤ a sin(2c) + 2b

4
√
ab sin c

. (45)

6 Matching of physical boundary conditions

The exterior spacetime of our static model is the vacuum
Schwarzschild solution given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2). (46)

By matching the first and second fundamental forms the
interior solution (1) and exterior solution (46) at the boundary
r = R (Darmois–Israel junction conditions) we obtain

eνb = 1 − 2M

R
=

[
A −

√
aB

2b
cos

(
bR2 + c

)]2

, (47)

e−λb = 1 − 2M

R
=

[
aR2 sin2

(
bR2 + c

)
+ 1

]−1
, (48)

pr (R) = 0. (49)

Using the boundary condition (47)–(49), we get

B = 4
√
aAb sin

(
bR2 + c

)
a sin

{
2

(
bR2 + c

)} + 8b
, (50)

A =
√

1 − 2M/R
[
a sin

{
2

(
bR2 + c

)} + 8b
]

a sin
{
2

(
bR2 + c

)} − a sin
(
2bR2 + 2c

) + 8b
, (51)

a =
[

1

1 − 2M/R
− 1

]
1

R2 sin2
(
bR2 + c

) , (52)

and we have chosen b, c, M and R as free parameters and
the rest of the constants a, A and B are determined from
Eqs. (50)–(52).

The gravitational red-shift of the stellar system is given
by

Z(r) =
[
A −

√
aB

2b
cos

(
br2 + c

)]−1

− 1. (53)

The mass–radius relation and the compactness parameter of
the solution can be determined using the equation given by

m(r) = 4π

∫ r

0
ρr2dr = ar3 sin2

(
br2 + c

)
ar2 + 2 − ar2 cos

(
2br2 + 2c

) ,

(54)

u(r) = 2m(r)

r
= 2ar2 sin2

(
br2 + c

)
ar2 + 2 − ar2 cos

(
2br2 + 2c

) . (55)

7 Equilibrium and stability conditions

7.1 Condition for equilibrium

For a stellar system in equilibrium under different forces, the
generalized Tolman–Oppenheimer–Volkoff (TOV) equation
must be satisfied [50], i.e.,

2�

r
= dpr

dr
+ Mg(ρ + pr )

r2 e(λ−ν)/2 (56)

where Mg(r) is the effective gravitational mass contained
within a sphere of radius r and is defined by the Tolman–
Whittaker formula viz.,

Mg(r) = 4π

∫ r

0

(
T t
t − T r

r − T θ
θ − T φ

φ

)
r2 e(ν+λ)/2dr. (57)

For Eqs. (4)–(6), Eq. (67) reduces to

Mg(r) = 1

2
r2ν′ e(ν−λ)/2. (58)

Equation (56) can be written in terms of balanced force equa-
tion due to the anisotropy (Fa), gravity (Fg) and hydrostatic
force (Fh), i.e.,

Fg + Fh + Fa = 0. (59)

Here

Fg = −Mg(ρ + pr )

r2 e(λ−ν)/2, (60)

Fh = −dpr
dr

, (61)

Fa = 2�

r
. (62)

The TOV equation (59) can be represented graphically show-
ing the interplay amongst Fg , Fh , and Fa required to bring
about equilibrium as evidenced in Fig. 1.

7.2 Relativistic adiabatic index and stability

For a relativistic anisotropic sphere the stability is related to
the adiabatic index �, the ratio of two specific heats, defined
by [14]

� = ρ + pr
pr

dpr
dρ

. (63)

Now � > 4/3 gives the condition for the stability of a New-
tonian sphere and � = 4/3 is the condition for a neutral
equilibrium proposed by [51]. This condition changes for
a relativistic isotropic sphere due to the regenerative effect
of pressure, which renders the sphere more unstable. For an
anisotropic general relativistic sphere the situation becomes
more complicated, because the stability will depend on the
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Fig. 1 Balancing of different forces in TOV equation for static con-
figurations of 4U1538-52, LMC X-4, and PSR J1614-2230 are plotted
with radial coordinate r
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Fig. 2 Variation of v2
r and v2

t with radial coordinate r for 4U1538-52,
LMC X-4, and PSR J1614-2230 with their respective parameters given
in Table 1

type of anisotropy. For an anisotropic relativistic sphere the
stability condition is given by [14],

� >
4

3
+

[
4

3

(pt0 − pr0)

|p′
r0|r

+ 1

2
κ

ρ0 pr0

|p′
r0|

r

]
, (64)

where pr0, pt0, and ρ0 are the initial radial, tangential,
and energy density in static equilibrium satisfying (56). The
first and last terms inside the square brackets represent the
anisotropic and relativistic corrections, respectively, and both
quantities are positive, which increases the unstable range of
� [14,52].

7.3 Causality and stability condition

The radial and tangential speeds of sound of our compact star
model are given by

v2
r = dpr

dρ
= dpr/dr

dρ/dr
, v2

t = dpt
dρ

= dpt/dr

dρ/dr
. (65)
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Fig. 3 Variation of dρ/dr, dpr/dr and dpt/dr (km−1) with radial
coordinate r for 4U1538-52, LMC X-4 and PSR J1614-2230 with their
respective parameters given in Table 1
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Fig. 4 Variation of anisotropy (km−2) with radial coordinate r for
4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1
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Fig. 5 Variation of stability factor v2
t − v2

r with radial coordinate r
for 4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1

The profiles of v2
r and v2

t are given in Fig. 2, which indi-
cates that both the radial and transverse velocity satisfy the
causality conditions, i.e., both v2

r , v2
t are less than 1 and are

monotonic decreasing functions of r.
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Fig. 7 Variation of metric potentials with radial coordinate r for
4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1
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Fig. 8 Variation of interior pressures (km−2) with radial coordinate r
for 4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1

The stability of anisotropic stars under the radial perturba-
tions is studied by using the concept of [53] known as Her-
erra’s “cracking” method. Using the concept of cracking,
[54] showed that the region of the anisotropic fluid sphere
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Fig. 9 Variation of density (km−2) with radial coordinate r for
4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1
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Fig. 10 Variation of pressure to density ratios with radial coordinate r
for 4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1

where −1 ≤ v2
t − v2

r ≤ 0 is potentially stable but the
region where 0 < v2

t − v2
r ≤ 1 is potentially unstable. We

have

dpt
dρ

= dpr
dρ

+ d�

dρ
= dpr

dρ
+ d�/dr

dρ/dr

i.e., v2
t − v2

r = dpr
dρ

+ d�/dr

dρ/dr
. (66)

In order to maintain −1 ≤ v2
t − v2

r ≤ 0 throughout the
fluid distribution it is required that d�/dr > 0 (from (66))
as we have dρ/dr < 0 (see Fig. 3), i.e., it is required that
� is an increasing function of r , which is already satisfied
by our model (see Fig. 4). With the help of a graphical rep-
resentation we have also shown that v2

t − v2
r < 0 in Fig. 5

everywhere inside the fluid sphere, which renders our model
stable.
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Fig. 11 Variation of red-shift with radial coordinate r for 4U1538-52,
LMC X-4, and PSR J1614-2230 with their respective parameters given
in Table 1
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Fig. 12 Variation of relativistic adiabatic index with radial coordinate
r for 4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1
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Fig. 13 Variation of ρ − pr , ρ − pt and ρ − p− r −2pt (km−2) with
radial coordinate r for 4U1538-52, LMC X-4, and PSR J1614-2230
with their respective parameters given in Table 1

7.4 Harrison–Zeldovich–Novikov static stability criterion

The stability analysis adopted by [55], [56], among other
treatments, requires the determination of eigen-frequencies
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Fig. 14 Variation of interior mass with radial coordinate r for 4U1538-
52, LMC X-4, and PSR J1614-2230 with their respective parameters
given in Table 1
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Fig. 15 Variation of compactness parameter with radial coordinate r
for 4U1538-52, LMC X-4, and PSR J1614-2230 with their respective
parameters given in Table 1

of all the fundamental modes. However, [56] and [57] provide
a simpler formalism to study the stability of the stellar model.
They have assumed that the adiabatic index of a pulsating star
is the same as in slowly deformed matter. This leads to a stable
configuration only if the mass of the star is increasing with
central density, i.e., dM/dρc > 0 and unstable if dM/dρc ≤
0.

In our model, the mass as a function of the central density
can be written as

M = 8πρc R3 sin2(c + bR2)/3 sin2 c

8πρc R2/3 sin2 c − 8πρc R2 cos(2c + 2bR2)/3 sin2 c + 2
,

which gives us (for a given radius)

dM

dρc
= 12πR3 sin2 c sin2(bR2 + c)[

8πR2ρc sin2 c sin2(bR2 + c) + 3
]2 > 0. (67)

Figure 6 shows that our models are stable according to the
static stability criterion. It is interesting to note that the sta-
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Table 1 Parameters of three well-known compact stars that give masses and radii compatible with observational data.

a (km−2) b (km−2) A B (km−1) c R (km) M/M� u = 2M/rb zs Object

0.1217 0.00025 21.343 0.0299 0.18 7.866 0.87 0.22 0.133 4U1608-52

0.1826 0.00020 32.650 0.0302 0.15 8.300 1.04 0.25 0.154 LMC X-4

0.6123 0.00010 128.73 0.0329 0.10 9.690 1.97 0.41 0.299 PSR J1614-2230

bility of our configurations is enhanced with increasing radii
and plateaus after attaining a maximum value for the respec-
tive central matter densities. Wherever the curve starts lev-
eling off, it implies that dM/dρc = 0, indicating that the
configuration is rendered unstable.

8 Discussion of results

Graphical analyses of the physical parameters
(
e−λ, pr ,

pt , ρ, pr/ρ, pt/ρ, v2
r , v2

t , Z
)

show that they are
finite at the center and monotonically decreasing outward
(Figs. 2, 7, 8, 9, 10, and 11). Figures 4, 7, and 12 show that
eν , the anisotropy parameter, �, and � are increasing radially
outward.

The null energy condition
(
ρ − pi ≥ 0

)
, dominant energy

condition
(
ρ − pi ≥ 0, ρ ≥ 0

)
and strong energy condi-

tion
(
ρ − pi ≥ 0, ρ − pr − 2pt ≥ 0

)
are simultaneously

satisfied by our solution (Fig. 13). The solution can also rep-
resent static and stable stellar configurations as the stability
factor v2

t −v2
r lies between the limits −1 and 0 (Fig. 5). For a

non-collapsing stellar configuration, the adiabatic index must
also be greater than 4/3 for positive values of anisotropy,
which can be seen from (Fig. 12). Furthermore, the gravita-
tional force Fg in the configuration is balanced by the com-
bined effect of hydrostatic force Fh and anisotropic force Fa
(Fig. 1) and thus the solution satisfies the TOV equation, Eq.
(56). The mass and the compactness parameter also mono-
tonically increase from the center to the surface of the star
and the compactness parameter is also within the Buchdahl
limit, i.e., u ≤ 8/9 (Figs. 14 and 15). The negative values of
the gradients of density and pressures signify that the density
and pressures are decreasing radially outward (Fig. 3).

The well-behaved nature of the solution depends on the
parameter c for a particular star. For 4U 1538-52 the solution
behaves well for 0.1574 ≤ c ≤ 0.46 and for the values of
a, b, A, B, M, R given in Table 1, which corresponds to
1 ≥ v2

r0 ≥ 0.13, 0.91 ≥ v2
t0 ≥ 0.04 and 17.8 ≥ �0 ≥ 3.8.

For LMC X-4 the solution behaves well for 0.1235 ≤ c ≤
0.35 and for the values of a, b, A, B, M, R given in Table
1, which yield 0.99 ≥ v2

r0 ≥ 0.15, 0.91 ≥ v2
t0 ≥ 0.06

and 15.35 ≥ �0 ≥ 3.35. Finally for PSR J1614-2230 the
solution behaves well for 0.05 ≤ c ≤ 0.13 along with the
values of a, b, A, B, M, R given in Table 1, corresponding
to 1 ≥ v2

r0 ≥ 0.21, 0.94 ≥ v2
t0 ≥ 0.13 and 8.34 ≥ �0 ≥

2.34. Hence, we can conclude that smaller values of c lead
to a stiffer equation of state and vice versa. The calculated
masses and radii of the present stars are well fitted with those
provided by Gangopadhyay et al. [58].
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