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Abstract We carry out a study of the exterior of an axially
and reflection symmetric source of gravitational radiation.
The exterior of such a source is filled with a null fluid pro-
duced by the dissipative processes inherent to the emission
of gravitational radiation, thereby representing a generaliza-
tion of the Vaidya metric for axially and reflection symmet-
ric space-times. The role of the vorticity, and its relationship
with the presence of gravitational radiation is put in evidence.
The spherically symmetric case (Vaidya) is, asymptotically,
recovered within the context of the 1 + 3 formalism.

1 Introduction

It is well known that in the hydrodynamic description of a
physically meaningful source (i.e. bounded and regular) of
gravitational radiation, there should be present a dissipative
term, which accounts for the increasing of entropy associated
to such an emission [1,2]. Accordingly, we should expect
that any exterior of such a source should entail the presence
of incoherent radiation (null fluid), associated to those irre-
versible processes.

It is our purpose in this manuscript to provide a full
description of the space-time surrounding a bounded source
of gravitational radiation. For simplicity we shall impose the
highest degree of symmetry compatible with the presence of
gravitational radiation, i.e. axially and reflection symmetry.
Thus, the exterior of such a source is filled with a null fluid,
and it represents a generalization of the Vaydia metric for
axially and reflection symmetric space-times.

a e-mail: lherrera@usal.es
b e-mail: alicia.diprisco@ciens.ucv.ve
c e-mail: j.ospino@usal.es

In this work we shall heavily rely on the formalism devel-
oped in [3], which is based on the 1+3 formalism [4–7]; thus,
even though we shall try to make this manuscript, as self-
contained as possible, we shall frequently refer the reader to
[3], in order to avoid the rewriting of some of the equations.

In the next section we shall provide a summary of the
main equations and concepts used in this study. Next we
describe the null fluid outside the source. In order to stress the
role of the vorticity in the emission of gravitational radiation
we shall consider the vorticity-free case, which is shown to
lead to either the static case or to the spherically symmetric
case (Vaidya). The latter case is analyzed in some detail. A
summary of the results is presented in the last section, and
some intermediate equations are deployed in an appendix.

2 Basic definitions and notation

In this section we shall deploy all the variables required for
our study, some details of the calculations are given in [3],
and therefore we shall omit them here.

2.1 The metric, the source, and the kinematical variables

We shall consider, axially (and reflection) symmetric space-
times. For such systems the line element may be written in
“Weyl spherical coordinates” as

ds2 = −A2dt2 + B2
(

dr2 + r2dθ2
)

+ C2dφ2 + 2Gdθdt,

(1)

where A, B,C,G are positive functions of t , r , and θ . We
number the coordinates x0 = t, x1 = r, x2 = θ, x3 = φ.

We shall assume that our source is filled with an
anisotropic and dissipative fluid, and is bounded by a time-
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like surface �, where junction (Darmois) conditions should
be imposed.

The energy momentum tensor of the source may be written
in the “canonical” form, as

Tαβ = (μ + P)VαVβ + Pgαβ + �αβ + qαVβ + qβVα.

(2)

In the above expression Vμ denotes the four-velocity
assigned by certain observer, μ is the energy density (the
eigenvalue of Tαβ for eigenvector V α), qα is the heat
flux, whereas P is the isotropic pressure, and �αβ is the
anisotropic tensor.

Since we choose the fluid to be comoving in our coordi-
nates,

V α =
(

1

A
, 0, 0, 0

)
; Vα =

(
−A, 0,

G

A
, 0

)
. (3)

Next, let us introduce the unit, spacelike vectorsK,L, S, with
components

Kα = (0, B, 0, 0); Lα =
(

0, 0,

√
A2B2r2 + G2

A
, 0

)
,

(4)

Lα =
(

G

A
√
A2B2r2 + G2

, 0,
A√

A2B2r2 + G2
, 0

)
, (5)

Sα = (0, 0, 0,C), (6)

satisfying the following relations:

VαV
α = −K αKα = −LαLα = −SαSα = −1, (7)

VαK
α = V αLα = V αSα = K αLα = K αSα = SαLα = 0.

(8)

For the energy density and the isotropic pressure, we have

μ = TαβV
αV β, P = 1

3
hαβTαβ, (9)

where

hα
β = δα

β + V αVβ, (10)

whereas the anisotropic tensor may be expressed through
three scalar functions defined by (see [3])

�K L = K αLβTαβ, (11)

�I = (2K αK β − LαLβ − SαSβ)Tαβ, (12)
�I I = (2LαLβ − SαSβ − K αK β)Tαβ. (13)

Finally, we may write the heat flux vector in terms of two
scalar functions:

qμ = qI Kμ + qI I Lμ, (14)

or, in coordinate components (see [3])

qμ =
(

qI I G

A
√
A2B2r2 + G2

,
qI
B

,
AqI I√

A2B2r2 + G2
, 0

)
,

(15)

qμ =
(

0, BqI ,

√
A2B2r2 + G2qI I

A
, 0

)
. (16)

Of course, all the above quantities depend, in general, on
t, r, θ .

For the kinematical variables we obtain (see [3])
For the four acceleration

aα = V βVα;β = aI Kα + aI I Lα, (17)

with

aI = A′

AB
;

aI I = A√
A2B2r2 + G2

[
A,θ

A
+ G

A2

(
Ġ

G
− Ȧ

A

)]
, (18)

where the dot and the prime denote derivatives with respect
to t and r , respectively.

For the expansion scalar

	 = V α
;α = 1

A

(
2Ḃ

B
+ Ċ

C

)

+ G2

A
(
A2B2r2 + G2

)
(

− Ȧ

A
− Ḃ

B
+ Ġ

G

)
. (19)

Next, the shear tensor

σαβ = V(α;β) + a(αVβ) − 1

3
	hαβ (20)

may be defined through two scalar functions by

σαβ = 1

3
(2σI + σI I )

(
KαKβ − 1

3
hαβ

)

+ 1

3
(2σI I + σI )

(
LαLβ − 1

3
hαβ

)
. (21)

The above scalars may be written in terms of the metric func-
tions and their derivatives as (see [3])
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σI = 1

A

(
Ḃ

B
− Ċ

C

)

+ G2

A
(
A2B2r2 + G2

)
(
Ȧ

A
+ Ḃ

B
− Ġ

G

)
, (22)

σI I = 1

A

(
Ḃ

B
− Ċ

C

)

+ 2G2

A
(
A2B2r2 + G2

)
(

− Ȧ

A
− Ḃ

B
+ Ġ

G

)
. (23)

Finally, the vorticity may be described, either by the vor-
ticity vector ωα , or the vorticity tensor �βμ, defined by

ωα = 1

2
ηαβμν V

β;μ V ν = 1

2
ηαβμν �βμ V ν, (24)

where �αβ = V[α;β] + a[αVβ], and ηαβμν denote the Levi-
Civita tensor; we find a single component different from zero,
producing

�αβ = �(LαKβ − LβKα), (25)

and

ωα = −�Sα, (26)

with the scalar function � given by

� = G(G
′

G − 2A′
A )

2B
√
A2B2r2 + G2

. (27)

2.2 The electric and magnetic part of the Weyl tensor and
the super-Poynting vector

Let us now introduce the electric (Eαβ ) and magnetic (Hαβ )
parts of the Weyl tensor (Cαβγ δ), defined as usual by

Eαβ = CανβδV
νV δ,

Hαβ = 1

2
ηανερC

ερ
βδ V νV δ . (28)

The electric part of the Weyl tensor has only three inde-
pendent non-vanishing components, whereas only two com-
ponents define the magnetic part. Thus we may write these
tensors, in terms of three (EI , EI I , EK L ) and two (H1, H2)
scalar functions, respectively, as

Eαβ = 1

3
(2EI + EI I )

(
KαKβ − 1

3
hαβ

)
+ 1

3
(2EI I + EI )

×
(
LαLβ − 1

3
hαβ

)
+ EK L(KαLβ + KβLα) (29)

and

Hαβ = H1(SαKβ + SβKα) + H2(SαLβ + SβLα). (30)

Also, from the Riemann tensor we may define the three
tensors Yαβ , Xαβ , and Zαβ as

Yαβ = RανβδV
νV δ, (31)

Xαβ = 1

2
η ερ

αν R�
ερβδV

νV δ, (32)

and

Zαβ = 1

2
εαερR

ερ
δβ V δ, (33)

where R�
αβνδ = 1

2ηερνδR
ερ

αβ and εαβρ = ηναβρV ν .
The above tensors in turn may be decomposed, so that each

of them is described through four scalar functions known as
structure scalars [8]. These are (see [3] for details)

YT = 4π(μ + 3P), XT = 8πμ, (34)

YI = EI − 4π�I , XI = −EI − 4π�I , (35)

YI I = EI I − 4π�I I , XI I = −EI I − 4π�I I , (36)

YK L = EK L − 4π�K L , XKL = −EK L − 4π�K L , (37)

ZI = (H1 − 4πqI I ); ZI I = (H1 + 4πqI I );
ZI I I = (H2 − 4πqI ); ZIV = (H2 + 4πqI ). (38)

From the above tensors, we may define the super-Poynting
vector by

Pα = εαβγ

(
Y γ

δ Zβδ − Xγ
δ Z

δβ
)
, (39)

in our case, we may write

Pα = PI Kα + PI I Lα, (40)

with

PI = 2H2

3
(2EI I + EI ) + 2H1EK L

+ 32π2qI
3

[3(μ + P) + �I ] + 32π2qI I�K L ,

PI I = −2H1

3
(2EI + EI I ) − 2H2EK L

+ 32π2qI I
3

[3(μ + P) + �I I ] + 32π2qI�K L .

(41)

In the theory of the super-Poynting vector, a state of gravi-
tational radiation is associated to a non-vanishing component
of the latter (see [9–12]). This is in agreement with the estab-
lished link between the super-Poynting vector and the news
functions [13], in the context of the Bondi–Sachs approach
[1,14].

We can identify two different contributions in (41). On
the one hand we have contributions from the heat transport
process. These are in principle independent of the magnetic
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part of the Weyl tensor, which explains why they remain in
the spherically symmetric limit. Next we have contributions
related to the gravitational radiation. These require, both the
electric and the magnetic part of the Weyl tensor to be dif-
ferent from zero.

3 The null fluid outside the source

As mentioned in the Introduction, if the source produces
gravitational radiation, then an entropy production factor
should be present in its hydrodynamic description. This is so,
because it has been discussed before in [1,2], gravitational
radiation is an irreversible process (once causality condition
is imposed), and therefore this fact should show up in the
equation of state of the source. The obvious consequence of
the presence of these dissipative processes within the source
is the existence of incoherent radiation outside the source.

Thus, we assume that outside the source there is a null
fluid, which due to the symmetry constraints has to be
described by the energy momentum tensor of the form

Tαβ = λlαlβ + εnαnβ, (42)

where λ and ε are two functions of t, r, θ related with the
energy density of the null radiation in either direction l and
n, and these two null vectors are given by

lα =
(

1

A
,

1

B
, 0, 0

)

nα =
(

1

A
, 0,−G + √

A2B2r2 + G2

AB2r2 , 0

)
, (43)

or

lα =
(

−A, B,
G

A
, 0

)
, (44)

nα =
[

− A − G

AB2r2 (G +
√
A2B2r2 + G2), 0,

−
√
A2B2r2 + G2

A
, 0

]
. (45)

We can now express the vectors l and n in terms of the
tetrad vectors V, K, L, S.

Thus we find

lα = Vα + Kα, (46)

and

nα = αVα + γ Lα, (47)

where

α ≡ 1 + G

A2B2r2

(
G +

√
A2B2r2 + G2

)
(48)

and

γ ≡ −1 − αG√
A2B2r2 + G2

, (49)

implying α = −γ .
Now comparing (2) with (42), we find the following equiv-

alence between different physical variables:

qI = λ; qI I = −α2ε; P = 1

3
(λ + εα2); �K L = 0;

�I = 2λ − εα2; �I I = 2εα2 − λ; μ = λ + εα2.

(50)

Observe that we have the equation of state P = μ
3 corre-

sponding to a pure radiation gas, as we should for a null fluid
distribution.

Now, the interest of (50) resides in the fact that we can
apply all the formalism developed in [3], to the study of
our null fluid, just changing the variables according to the
relationships indicated above. However, three important dif-
ferences with the interior (source) case, must be pointed out,
namely:

• Since we are now considering the outside of the source,
the center of the fluid distribution is excluded from the
space-time under study, accordingly no regular condi-
tions at the center have to be imposed.

• Since our source is assumed to be bounded, we have to
impose asymptotic conditions at spatial infinity. In par-
ticular we shall assume that our line element approaches
asymptotically the Minkowski metric.

• At the boundary of the source, appropriate junction con-
ditions (Darmois) must be imposed to avoid the presence
of shells. Even though, for the study presented here, such
conditions will not be used explicitly, they have to be
taken into account for any specific global model, describ-
ing the space-time outside and inside the fluid distribu-
tion.

As should be obvious, there is not a unique space-time cor-
responding to our null fluid distribution (as is the case for the
spherically symmetric situation), we have instead an infinite
number of possible solutions. Thus our main purpose here
is not to provide specific solutions to this case, but rather to
reveal some specific aspects of the problem. More precisely,
we would like to exhibit the role played by the vorticity in
the properties of the null fluid. Thus we shall consider the
vorticity-free case.
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3.1 The case without vorticity G = 0

Thus, let us assume the vanishing of the vorticity (G = 0)
then α = −γ = 1, which implies because of (50)

qI = λ; qI I = −ε; P = 1

3
(λ + ε); �K L = 0;

�I = 2λ − ε; �I I = 2ε − λ; μ = λ + ε. (51)

Also in this case

σI = σI I = σ̄ = 1

A

(
Ḃ

B
− Ċ

C

)
,

	 = 1

A

(
2Ḃ

B
+ Ċ

C

)
. (52)

First, let us recall that as r → ∞ we must recover the
Minkowski space-time, implying that we can write, at least
sufficiently far from the source,

A(t, r, θ) =
∑
n≥0

A(n)(t, θ)

rn
; B(t, r, θ) =

∑
n≥0

B(n)(t, θ)

rn
;

C(t, r, θ) =
∑
n≥−1

C (n)(t, θ)

rn
, (53)

where A(0) = B(0) = 1, C (−1) = sin θ , C (0) = 0.
Also we can write

λ(t, r, θ) =
∑
n≥1

λ(n)(t, θ)

rn
; ε(t, r, θ) =

∑
n≥1

ε(n)(t, θ)

rn
.

(54)

We shall first prove that in the case G = 0, either λ = ε = 0
or we have the spherically symmetric situation.

Indeed, using (53) and (54) in (A8), (A9), and (A15), we
obtain at order O(r−1) and O(r−3)

ε(1) = ε(2) = 0. (55)

Next, combining (A14) with (A15) we may write

− ε̇

A
+ ε,θ

Br
+ ε

B

(
A′

A
− (Br)′

Br

)

+ ε

Br

(
2A,θ

A
+ B,θ

B
+ Cθ

C

)
− ε

A

(
3Ḃ

B
+ Ċ

C

)
= 0.

(56)

Feeding back (53) and (54) into (56) and using (80), we
find at order O(r−3) and O(r−4) that

ε̇(3) = 0, ε̇(4) = ε
(3)
,θ + ε(3)(cot θ − 1 − 3Ḃ(1)). (57)

Now, for any physically meaningful radiating process, we
must demand ε to vanish out of a finite time interval, implying

that ε̇(3) = 0 ⇒ ε(3) = 0, which in turn, using (57), implies
ε̇(4) = 0 ⇒ ε(4) = 0.

Following this line of arguments at all possible orders, it is
found (the Mathematica package was used for this purpose)
that

ε̇(n) = 0,∀n ⇒ ε(n) = 0 ⇒ ε = 0. (58)

Then from (A15) we see that either λ = 0, or we have a
spherically symmetric system with A,θ = B,θ = 0.

Let us first consider the case λ = ε = 0. Then we obtain
from (A8) and (A9)

σ̄ ′C,θ − σ̄,θC
′ = 0 (59)

and

	′C,θ − 	,θC
′ = 0, (60)

whose combination produces, using (52),

(
Ċ

AC

)′
C,θ −

(
Ċ

AC

)

,θ

C ′ = 0. (61)

Feeding back (53) into the above equation, it is easy to
prove that for any n ≥ 1

Ċ (n) = f (t)

sinn θ
, (62)

where f is an arbitrary function of its argument.
Then from the regularity conditions on the symmetry axis

we must put f = 0, which implies

Ċ = 0. (63)

The above result implies, because of (52),

	 = 2σ̄ . (64)

Then integration of (A8), using the above equation and
(59), produces

σ̄ = g(t)C, (65)

where g is an arbitrary function of its argument.
Finally, feeding back the above expression into (A10) and

(A11) we obtain

H1 = −g(t)C,θ

Br
; H2 = g(t)C ′

B
. (66)

However, since we must impose the asymptotic condition
H1, H2 ⇒ 0 as r → ∞, we must put g(t) = 0, implying
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that the metric is static. We shall further discuss this issue in
the last section.

Next we shall consider the spherically symmetric case.

3.2 The spherically symmetric limit

It is instructive to reproduce the spherically symmetric case
(Vaidya), in the context of the formalism considered here.

In the spherically symmetric case the following conditions
apply:

H1 = H2 = σ̄ = aI I = qI I = ε = �K L = A,θ = B,θ = 0

(67)

and

C = Br sin θ; qI = λ; aI = A′

AB
, (68)

implying

	 = 3Ḃ

AB
; �I = 2λ; �I I = −λ; μ = λ,

P = λ

3
; 2�I I + �I = EK L = YK L = XKL = 0. (69)

Using the conditions above in (A8) we obtain

(
1

A

Ḃ

B

)′
= 4πBλ, (70)

whereas (A2) and (A4) produce, respectively,

2a′
I + aI

(
2A′

A
− 2(Br)′

Br

)
− BEI + 8πBλ = 0, (71)

a′
I + aI

(
A′

A
− (Br)′

Br

)
+ BEI I + 4πBλ = 0. (72)

From the two equations above, it follows at once that

2EI I + EI = 0 ⇒ 2XI I + XI = 2YI I + YI = 0. (73)

Next, (A1) reads

1

A
	̇ + 1

3
	2 − 1

B

[
a′
I + aI

(
A′

A
+ 2(Br)′

Br

)]
+ 8πλ = 0,

(74)

whereas Eqs. (A3), (A6), (A9), (A10), and (A11) become
identities.

Let us now turn to the conservation laws. We obtain from
(A12)

λ̇

A
+ 4λḂ

AB
+ 1

B

[
λ′ + 2λ

(
A′

A
+ (Br)′

Br

)]
= 0, (75)

whereas (A13) produces the same result as (75), and (A14)
and (A15) become identities.

Next, we obtain from (A16), (A18), (A19), and (A20),
respectively,

ĖI
3A

+ 4πλ̇

A
+ EI	

3
= −8π

3
λ	 − 4π

B

(
λ′ + 2A′λ

A

)
,

(76)

ĖI I
3A

+ EI I	
3

= −4π

3
λ	 − 4πλ(Br)′

B2r
, (77)

− ĖI + ĖI I
3A

− (E I + EI I )	
3

= −4π

3
λ	 − 4πλ

B

(Br)′

Br
,

(78)
1

3B

[
E ′
I + 3EI (Br)′

Br

]
+ 8πλ

(Br)′

B2r
= −8πλ

3
	, (79)

whereas (A17), (A21), (A22), and (A23) become identities.
Also, it is a simple matter to check that (A24) becomes

identical to (79), and that (77) and (78) are equivalent.
We can now determine, asymptotically, the space-time

(Vaidya) by the iterative procedure sketched below.
First, let us notice that Eqs. (70), (74), and (75) may be

written, respectively, as

Ḃ ′

AB
− A′ Ḃ

A2B
− Ḃ B ′

AB2 = 4πBλ, (80)

3B̈

A2B
− 3 Ȧ Ḃ

A3B
− A′′

AB2 − A′B ′

AB3 − 2A′

AB2r
= −8πλ, (81)

λ̇

A
+ 4λḂ

AB
+ λ′

B
+ 2A′λ

AB
+ 2λB ′

B2 + 2λ

Br
= 0. (82)

Using (53), and evaluating (80) at the order O(r−1),
O(r−2), and O(r−3), and (82) at order O(r−3), we find that
(obviously in the spherically symmetric case the coefficients
A(n), B(n), and λ(n), do not depend on θ )

λ(1) = 0; λ(2) = − Ḃ(1)

4π
; λ̇(3) = −4λ(2) Ḃ(1). (83)

Next, evaluating (82) at order O(r−2), it follows that

λ̇(2) = 0 ⇒ λ(2) = constant. (84)

This last result together with (83) produces

B(1) = −4πλ(2)t + constant (85)

and

λ(3) = 16π(λ(2))2t + constant. (86)

Next, the order O(r−3) in (80) produces

− 2Ḃ(2) = 12πB(1)λ(2) + 8π A(1)λ(2) + 4πλ(3). (87)
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From the above equation we cannot obtain the time depen-
dence of B(2) since we do not know A(1).

So, let us turn to (81); at the highest order (O(r−1)) we
find

B̈(1) = 0, (88)

a well-known result, whereas from the order O(r−2) it fol-
lows

12πλ(2) Ȧ(1) + 3B̈(2) = −8πλ(2). (89)

Now, taking the t-derivative of (87), solving for B̈(2) and
feeding back into (89) we obtain

λ(2) = 1

3π
. (90)

In other words we still need a function of time in order to
determine the time dependence of A(1) and B(2).

So, let us look for the next orders in (80), (81), and (82).
Thus, from the order O(r−4) in (80), O(r−3) in (81) and
O(r−4) in (82) we obtain, respectively,

4πλ(4) = −Ḃ(1)
[
3(A(1))2 + 6(B(1))2 + 5A(1)B(1) − 3A(2)

− 4B(2)
]

+ Ḃ(2)
(

5B(1) + 3A(1)
)

− 3Ḃ(3), (91)

− 8πλ(3) = −3Ḃ(2) Ȧ(1) + Ḃ(1)
[
−3 Ȧ(2) + 3 Ȧ(1)B(1)

+ 9 Ȧ(1)A(1)
]

+ 3B̈(3)−3B̈(2)
(

2A(1)+B(1)
)

,

(92)

λ̇(4) − λ̇(3)A(1) = λ(2)
(

4Ḃ(1)A(1) + 4Ḃ(1)B(1) − 4Ḃ(2)

+ 2A(1) + 2B(1)
)

+ λ(3)(1 − 4Ḃ(1)).

(93)

Once B(2) or A(1) have been determined, we can find λ(4)

from (93).
Next, taking the time derivative of (91) and combining

with (92), we obtain

4πλ̇(4) − 8πλ(3) = −Ḃ(1)
(
−3A(1) Ȧ(1) + 12B(1) Ḃ(1)

+ 2B(1) Ȧ(1) + 5A(1) Ḃ(1) − 9Ḃ(2)
)

+ B̈(2)(2B(1) − 3A(1)). (94)

Thus we have no further information as regards the time
dependence of A(2) or B(3), which implies that we have to
provide the time dependence of either one of them. Follow-
ing this procedure ad nauseam we see, as expected, that the
metric is obtained up to an arbitrary function of t and r . Thus,
whereas the Vaidya metric has an extremely simple form in

null coordinates, in the present approach it is only possible
to construct it asymptotically, as a series expansion.

4 Conclusions

We have tackled the problem of describing the outer space-
time of axially symmetric sources of gravitational radiation,
based on the Bondi conjecture [1] (confirmed in [2]), accord-
ing to which the process of gravitational radiation is an irre-
versible one, and therefore must entail dissipative processes
within the source.

The ensuing consequence of this is that there should be
incoherent radiation (null fluid) at the outside of the source,
produced by those dissipative processes. Keeping this fact
in mind, we should remark that the Bondi–Sachs metric [1],
[14], should be regarded as an approximation to the space-
time outside the source, when the null fluid produced by the
dissipative processes is neglected.

Starting with the description of this null fluid, we apply the
formalism developed in [3] to study some of the properties
of such a null fluid.

As the main result of our study we find that the absence of
vorticity implies that the exterior space-time is either static
or spherically symmetric (Vaidya). Reinforcing thereby the
fundamental role of vorticity in any process involving pro-
duction of gravitational radiation, already stressed in [15],
[16].

There exists still the possibility of the non-radiative, non-
static solutions considered by Bondi in [1] (see also [17]),
which corresponds to the case G 
= 0, H1 = H2 = 0.
Indeed, in this case the Bondi news function vanishes [17],
and therefore the system does not radiate gravitational waves
(this is also evident from (41)), even though it may be time
dependent. In particular, it can be shown that the mass, the
“dipole” and the “quadrupole” moments (as defined in [1])
correspond to a static situation. However, the time depen-
dence might enter through coefficients of higher order in the
metric, giving rise to what Bondi calls “non-natural, non-
radiative moving systems”. In the latter case the three first
moments are time independent, but the system allows for a
time dependence of the higher moments (see also [18,19]).
As unlikely as this situation may be from the physical point
of view, it cannot be ruled out.

It must be kept in mind that throughout our discussion we
have restricted ourselves to physically meaningful situations,
where the source is bounded and the radiation process takes
place during a finite time interval. Obviously if we relax either
of these conditions, other cases might appear, even though
they would be devoid of physical relevance.

Finally, we have indicated how to recover (at least asymp-
totically) the Vaidya metric. Unlike the null coordinates, our

123



603 Page 8 of 9 Eur. Phys. J. C (2016) 76 :603

coordinates do not allow for a simple expression for the cor-
responding line element.
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Appendix A: Some basic equations

In the following, we shall present the main equations of the
formalism, specialized for the case with G = 0 (which of
course includes as a particular case the spherically symmetric
situation).

Thus, from B1, B2, B3, and B4 in [3] we get, respectively,

1

A
	̇ + 1

3
	2 + 2

3
σ̄ 2 − 1

B

[
a′
I + aI

(
A′

A
+ (Br)′

Br
+ C ′

C

)]

− 1

Br

[
aI I,θ +aI I

(
A,θ

A
+ B,θ

B
+C,θ

C

)]
+8π(λ + ε)=0,

(A1)

1

A
˙̄σ + 1

A2

[(
Ḃ

B

)2

−
(
Ċ

C

)2]
− 1

B

[
2a′

I

+ aI

(
2A′

A
− (Br)′

Br
− C ′

C

)]
+ 1

Br

[
aI I,θ

+ aI I

(
A,θ

A
− 2B,θ

B
+ C,θ

C

)]

+ EI − 4π(2λ − ε) = 0, (A2)

1

B

[
a′
I I − aI I

(Br)′

Br

]
+ 1

Br

[
aI,θ + aI

(
2A,θ

A
− B,θ

B

)]

− 2EK L = 0, (A3)

1

A
˙̄σ + 1

A2

[(
Ḃ

B

)2

−
(
Ċ

C

)2]

+ 1

B

[
a′
I + aI

(
A′

A
− 2(Br)′

Br
+ C ′

C

)]

− 1

Br

[
2aI I,θ + aI I

(
2A,θ

A
− B,θ

B
− C,θ

C

)]

+ EI I − 4π(2ε − λ) = 0. (A4)

From (A2) and (A4) we obtain

1

B

[
−a′

I + aI

(
− A′

A
+ (Br)′

Br

)]

+ 1

Br

[
aI I,θ + aI I

(
A,θ

A
− B,θ

B

)]

= EI I − EI
3

− 4π(ε − λ). (A5)

Next, from B5 in [3], we obtain

− 1

B

[
a′
I I + aI I

(Br)′

Br

]
+ 1

Br

[
aI,θ + aI

B,θ

B

]
= 0,

(A6)

which combined with (A3) produces

EK L = 1

B2r

[
A′

,θ

A
− A′B,θ

AB
− A,θ (Br)′

ABr

]
. (A7)

Next, from B6, B7, B8, and B9 in [3] we get, respectively,

1

3
(2	 − σ̄ )′ − σ̄

C ′

C
= 8πBλ, (A8)

1

3
(2	 − σ̄ ),θ − σ̄

C,θ

C
= −8πBrε, (A9)

H1 = − 1

2Br

(
σ̄,θ + σ̄

C,θ

C

)
, (A10)

H2 = 1

2B

(
σ̄ ′ + σ̄

C ′

C

)
. (A11)

We have next the conservation laws (Eqs. A6, A7 in [3]),
which read

1

A
(λ̇ + ε̇) + (λ + ε)

A

(
3Ḃ

B
+ Ċ

C

)

+ 1

B

[
λ′ + λ

(
2A′

A
+ (Br)′

Br
+ C ′

C

)]

− 1

Br

[
ε,θ + ε

(
2A,θ

A
+ B,θ

B
+ C,θ

C

)]
= 0, (A12)

λ̇

A
+ λ′

B
+ λ

B

[
2A′

A
+ (Br)′

Br
+ C ′

C

]
+ ε

B

[
A′

A
− (Br)′

Br

]

+ λ

A

(
3Ḃ

B
+ Ċ

C

)
= 0, (A13)

and

− ε̇

A
+ ε,θ

Br
+ λ

Br

(
A,θ

A
− B,θ

B

)
+ ε

Br

(
2A,θ

A
+ B,θ

B
+Cθ

C

)

− ε

A

(
3Ḃ

B
+ Ċ

C

)
= 0; (A14)

the combination of the last three equations produces

λ

Br

(
A,θ

A
− B,θ

B

)
= ε

B

[
A′

A
− (Br)′

Br

]
. (A15)
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Finally, from B10, B11, B12, B13, B14, B15, B16, B17,
and B18 in [3], we obtain, respectively,

ĖI
3A

+ 4πλ̇

A
+ EI	

3
+ EI I σ̄

3
− 1

Br

[
H1,θ +H1

(
2A,θ

A
+C,θ

C

)]

+ H2

B

[
(Br)′

Br
− C ′

C

]
= −4π

3
(2λ + ε)(σ̄ + θ)

− 4π

B

(
λ′ + 2A′λ

A

)
+ 4πεB,θ

B2r
, (A16)

ĖK L

A
+EK L(	−σ̄ )+ 1

2B

[
H ′

1+H1

(
2A′

A
− (Br)′

Br
+ 2C ′

C

)]

− 1

2Br

[
H2,θ + H2

(
2A,θ

A
− B,θ

B
+ 2C,θ

C

)]

= 2π

B

[
ε′ + ε

(
2A′

A
− (Br)′

Br

)]

− 2π

Br

[
λ,θ + λ

(
2A,θ

A
− B,θ

B

)]
, (A17)

ĖI I
3A

+ 4πε̇

A
+ EI I	

3
+ EI σ̄

3
+ 1

B

[
H ′

2+H2

(
2A′

A
+ C ′

C

)]

− H1

Br

(
B,θ

B
− C,θ

C

)
= −4π

3
(λ + 2ε)(σ̄ + θ)

+ 4π

Br

(
ε,θ + 2A,θ ε

A

)
− 4πλ(Br)′

B2r
, (A18)

− ĖI + ĖI I
3A

− (E I + EI I )(	 + σ̄ )

3
+ 1

Br

[
H1,θ

+ H1

(
2A,θ

A
+ B,θ

B

)]
− 1

B

[
H ′

2+H2

(
2A′

A
+ (Br)′

Br

)]

= 4π

3
(λ + ε)(2σ̄ − 	) − 4πλ

B

C ′

C
+ 4πεC,θ

BCr
, (A19)

1

3B

[
E ′
I + EI

(
(Br)′

Br
+ 2C ′

C

)]
− EI I

3B

[
(Br)′

Br
− C ′

C

]

+ 1

Br

[
EK L ,θ +EK L

(
2B,θ

B
+C,θ

C

)]
− 4π

B

[
ε′+ ε(Br)′

Br

]

+ 4πλ

B

[
(Br)′

Br
+ C ′

C

]
− H2σ̄ = −4πλ

3
(2	 − σ̄ ),

(A20)

1

3Br

[
EI I,θ + EI I

(
B,θ

B
+ 2C,θ

C

)]
− EI

3Br

(
B,θ

B
− C,θ

C

)

+ 1

B

[
E ′
K L+EK L

(
2(Br)′

Br
+C ′

C

)]
− 4π

Br

(
λ,θ + λB,θ

B

)

+ 4πε

Br

(
B,θ

B
+ C,θ

C

)
+ H1σ̄ = 4πε

3
(2	 − σ̄ ), (A21)

1

B

[
H ′

1 + H1

(
(Br)′

Br
+ 2C ′

C

)]
+ 1

Br

[
H2,θ

+ H2

(
B,θ

B
+ 2C,θ

C

)]
= 4π

B

[
ε′ + ε(Br)′

Br

]

+ 4π

Br

(
λ,θ + λB,θ

B

)
, (A22)

− 1

3Br

[
EI,θ + EI

(
2A,θ

A
+ C,θ

C

)]
− 1

3Br

[
EI I,θ

+ EI I
(
A,θ

A
+ 2C,θ

C

)]
+ EK L

B

(
A′

A
− C ′

C

)

+ 4π

Br

(
λ,θ + λB,θ

B

)

− 4πε

Br

B,θ

B
+ Ḣ1

A
+ H1	 + 4πε

3
(	 + σ̄ ) = 0, (A23)

1

3B

[
E ′
I + EI

(
A′

A
+ 2C ′

C

)]
+ 1

3B

[
E ′
I I

+ EI I
(

2A′

A
+ C ′

C

)]
− EK L

Br

(
A,θ

A
− C,θ

C

)

−4π

B

[
ε′ + ε(Br)′

Br

]
+ 4πλ

B

(Br)′

Br

+ Ḣ2

A
+ H2	 + 4πλ

3
(	 + σ̄ ) = 0. (A24)
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