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Abstract In this paper, we have extended the previous
study of the thermodynamics and phase transition of the
Schwarzschild black hole in the rainbow gravity to the
Schwarzschild–AdS black hole where metric depends on
the energy of a probe. Making use of the Heisenberg uncer-
tainty principle and the modified dispersion relation, we have
obtained the modified local Hawking temperature and ther-
modynamic quantities in an isothermal cavity. Moreover, we
carry out the analysis of constant temperature slices of a
black hole. As a result, we have shown that there also exists
another Hawking–Page-like phase transition in which case a
locally stable small black hole tunnels into a globally stable
large black hole as well as the standard Hawking–Page phase
transition from a hot flat space to a black hole.

1 Introduction

The possibility that standard energy-momentum dispersion
relations are modified near the Planck scale is one of the
scenarios in quantum gravity phenomenology [1,2]. Such a
modified dispersion relation (MDR) was also advocated by
the study of nonlinear deformed or doubly special relativ-
ity (DSR) [3,4] in which the Planck length as well as the
speed of light is an observer invariant quantity. In particular,
Magueijo and Smolin [5,6] have extended the DSR to gen-
eral relativity by proposing that the spacetime background
felt by a test particle would depend on its energy ω. Such an
energy of the test particle deforms the background geometry
and consequently the MDR as

ω2 f (ω/ωp)
2 − p2g(ω/ωp)

2 = m2, (1.1)
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where p, m, ωp are the momentum, the mass of the test
particle, and the Planck energy, respectively. Thus, quanta of
different energies see different background geometry, which
is referred to as a rainbow gravity. Since then many efforts
have been made devoted to the rainbow gravity related to the
gravity and other stimulated work at the Planck scale [7–26].

In connection with black hole thermodynamics in the rain-
bow gravity, there have also been much work with the fol-
lowing rainbow functions [1,2,27–35]:

f (ω/ωp) = 1, g(ω/ωp) =
√

1 − η
(
ω/ωp

)n
, (1.2)

which belong to the most interesting MDRs related to quan-
tum gravity phenomenology among several other types [5,15,
22,36–52]. Here, n is a positive integer, η a constant of order
unity, and these functions satisfy with limω→0 f (ω/ωp) = 1
and limω→0 g(ω/ωp) = 1 at low energies. In particular, Li
et al. [44] have obtained the Schwarzschild–AdS black hole
solution in the framework of rainbow gravity with differ-
ent rainbow functions from Eq. (1.2), and investigated ther-
modynamic stability without the analysis of phase transi-
tion. Recently, Gim and Kim (GK) [53] have shown that the
Schwarzschild black hole in the rainbow gravity in an isother-
mal cavity has an additional Hawking–Page phase transition
near the event horizon apart from the standard one, which is
of relevance to the existence of a locally small black hole.

On the other hand, an approach of the higher dimensional
flat embedding is used to study a local temperature for a
freely falling observer outside black holes [54,55]. And very
recently, we have shown that a local temperature seen by
a freely falling observer depends only on g(ω/ωp) [56] so
that the choice of f (ω/ωp) = 1 makes not only the time-
like Killing vector in the rainbow Schwarzschild black hole
as usual, but also it makes the local thermodynamic energy
independent of the test particle’s energy.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4393-1&domain=pdf
mailto:ywkim65@gmail.com
mailto:skandjh@seonam.ac.kr
mailto:yjpark@sogang.ac.kr


557 Page 2 of 11 Eur. Phys. J. C (2016) 76 :557

In this paper, we would extend GK’s work of the
Schwarzschild black hole in the rainbow gravity to the
Schwarzschild–AdS spacetime. In order to study efficiently,
we shall describe thermodynamics by using an event hori-
zon r+ as a variable instead of the mass M as in GK’s work,
since in the Schwarzschild–AdS black hole it is difficult to
solve for the event horizon as a function of the mass. In Sect.
2, black hole temperature for the Schwarzschild–AdS black
hole in the rainbow gravity will be calculated from the defini-
tion of the standard surface gravity. Then, making use of the
MDR and the Heisenberg uncertainty principle, the energy
dependence of a test particle in black hole temperature will be
properly rephrased. And the entropy will be derived from the
first law of thermodynamics. In Sect. 3, we will study local
thermodynamic quantities including temperature, energy and
heat capacity in an isothermal cavity with their various limits
for each other’s comparison. Furthermore, in order to clearly
reconfirm thermodynamic stability, we also analyze constant
temperature slices of the Schwarzschild(–AdS) black hole in
the rainbow gravity. In Sect. 4, we will study phase transi-
tion between various black hole states and the hot flat space
through investigating free energies of the Schwarzschild–
AdS black hole in the rainbow gravity. Finally, conclusion
and discussion will be given in Sect. 5.

2 Temperature and entropy of Schwarzschild–AdS
black hole in rainbow gravity

Let us consider the modified Schwarzschild–AdS black hole
in rainbow gravity described as [44]

ds2 = − N 2

f 2(ω/ωp)
dt2

+ 1

g2(ω/ωp)N 2 dr2 + r2

g2(ω/ωp)
d�2, (2.1)

where

N 2 = 1 − 2G0M

r
+ r2

l20
. (2.2)

This is a spherically symmetric solution to the modified field
equation in rainbow gravity of

Gμν(ω/ωp) + �(ω/ωp)gμν(ω/ωp)

= 8πG(ω/ωp)Tμν(ω/ωp) (2.3)

in the absence of matter. Here, Gμν(Tμν) is the Einstein
(energy-momentum) tensor,G(ω/ωp)(�(ω/ωp)) is an energy-
dependent Newton (cosmological) constant, and G0(�0 =
−3/ l20) is the physical Newton (cosmological) constant at
the low-energy limit of ω/ωp → 0. Here, the energy ω-

dependent constants are related with the physical ones as

G(ω/ωp) = G0

g(ω/ωp)
,

�(ω/ωp) = − 3

l2(ω/ωp)
= g2(ω/ωp)�0. (2.4)

Note that the solution reduces to the usual Schwarzschild–
AdS vacuum solution

ds2 = −N 2dt2 + 1

N 2 dr2 + r2d�2 (2.5)

in the low-energy limit of ω/ωp → 0. The mass defined by
N 2 = 0 is given by

M(r+) = r+
2G0

(
1 + r2+

l20

)
(2.6)

with the event horizon r+.
Then the modified Hawking temperature TH is obtained,

TH = κH

2π
= g(ω/ωp)

f (ω/ωp)
T 0

H, (2.7)

from the surface gravity κH at the event horizon as follows:

κH = −1

2
lim
r→r+

√
−g11

g00

(g11)′

g00 . (2.8)

Here, the standard Hawking temperature T 0
H of the

Schwarzschild–AdS black hole is given by

T 0
H = 1

4π

(
1

r+
+ 3r+

l20

)
. (2.9)

Making use of the explicit rainbow functions (1.2), the black
hole temperature can be written as

TH =
√

1 − η(ω/ωp)nT
0
H (2.10)

so that the temperature depends on the energy ω of a probe.
Now, in order to eliminate the ω dependence of the probe

in the modified Hawking temperature (2.10), one can use the
Heisenberg uncertainty principle (HUP) as in Ref. [53]. In
the vicinity of the black hole surface, an intrinsic position
uncertainty 	x of the probe of order of the event horizon r+
leads to a momentum uncertainty of order of p [57] as

p = 	p ∼ 1

r+
. (2.11)

Plugging the momentum uncertainty into the MDR (1.1),
one can determine the energy ω. We explicitly show this by
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Fig. 1 The modified Hawking temperatures of the Schwarzschild–
AdS black hole in the rainbow gravity for η = 1 (solid line) and for
the upper bound of η = 49/6 (thick line) with l0 = 7, G0 = 1, and the
standard Hawking temperature (dashed line) with l0 = 7

choosing n = 2 in the rainbow functions (1.2) without loss
of generality. Then the energy for the massless particle can
be solved as

ω = ωp√
η + r2+ω2

p

. (2.12)

Therefore, one can rewrite the black hole temperature (2.10)
as

TH = r+√
r2+ + ηG0

T 0
H, (2.13)

with ω2
p = 1/G0. When η = 0, it is just the standard Hawk-

ing temperature of the Schwarzschild–AdS black hole. Note
that as r+ → 0, it becomes finite as TH = 1/(4π

√
ηG0).

This result implies that the standard divergent Hawking tem-
perature of the Schwarzschild–AdS black hole could be reg-
ularized in the rainbow gravity as like in the Schwarzschild
case [53]. In Fig. 1, we have plotted the modified and the
standard Hawking temperatures showing that the former is
finite at r+ = 0 due to the rainbow gravity effect while the
latter blows up.

It seems appropriate to comment that the modified Hawk-
ing temperature has its minimum

Tm
H =

√
3

2πl0

√
1 − 3ηG0

l20
(2.14)

at r+ = l0√
3

√
1 − 6ηG0

l20
. Moreover, the upper bound for the

parameter η < l20/6G0 is required for r+ being real. In Fig.
1, the thick line is for η = l20/6G0 where r+ is zero and the
curve has its minimum.

Next, from the first law of black hole thermodynamics,
one can obtain the entropy:

S =
∫

dM

TH
= πr+

G0

√
r2+ + ηG0 + πη sinh−1

(
r+

ηG0

)
.

(2.15)

Here, we have chosen the integration constant to be satisfied
with S → 0 as r+ → 0. This is the exactly same form with
the entropy of the Schwarzschild black hole in the rainbow
gravity [53], but explicitly different in r+. This is nothing new
since we know that the standard Schwarzschild black hole
and the Schwarzschild–AdS black hole also have the same
form of entropy of S = πr2+, but different in r+. Moreover, in
the standard Schwarzschild–AdS limit of η = 0, the entropy
(2.15) becomes one-fourth of the area of the event horizon
S = A/4G0. Note that the next leading order is logarithmic
as S ≈ A/4G0 + 1

2πη ln(A/4), which is reminiscent of the
quantum correction to the entropy [58–62]. From these, one
can see that the rainbow metric contributes to the quantum
corrected metric.

At this stage, it is appropriate to comment on the choice
of n = 2 in the rainbow functions (1.2), which makes us
analytically solve the MDR (1.1) and eventually gives the
logarithmic correction to the entropy. If not, it would be dif-
ficult to solve the MDR first, and then have another forms of
correction without the logarithmic term to the entropy [32].

3 Schwarzschild–AdS black hole thermodynamics in
rainbow gravity

Now, let us study Schwarzschild–AdS black hole thermody-
namics in rainbow gravity. In order for the study to be focused
and feasible, we take the rainbow functions (1.2) with n = 2.

We would like to consider a local observer who is at rest at
the radius r , which we mean to introduce a spherical cavity
enclosing the Schwarzschild–AdS black hole. Then the local
temperature Tloc seen by the local observer can be obtained:

Tloc = TH√−g00
=

1
4π

(
1
r+ + 3r+

l20

)√
r2+

r2++ηG0√
1 − r+

r

(
1 + r2+

l20

)
+ r2

l20

(3.1)

by implementing the redshift factor of the metric [63].
Before proceeding further, let us briefly look into the limits

of the modified Hawking temperature (2.13) and local tem-
perature (3.1) of the Schwarzschild–AdS black hole in the
rainbow gravity enclosed in a cavity. First, by turning off the
rainbow gravity, in the Schwarzschild–AdS limit of η → 0,
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the standard Hawking and local temperatures will be

T SAdS
H = 1

4π

(
1

r+
+ 3r+

l20

)
, (3.2)

T SAdS
loc =

1
4π

(
1
r+ + 3r+

l20

)

√
1 − r+

r

(
1 + r2+

l20

)
+ r2

l20

, (3.3)

and in the Schwarzschild limit of l20 → ∞ as well as η → 0,
those become

T Sch
H = 1

4πr+
, (3.4)

T Sch
loc = 1

4πr+
√

1 − r+
r

. (3.5)

For the sake of a detailed discussion, their corresponding
specific heats can also be written down as

CSAdS = −2πr2+
G0

(
l20 + 3r2+
l20 − 3r2+

)
, (3.6)

CSAdS
loc

= 4πr2+(r − r+)(l20 + r2 + rr+ + r2+)(l20 + 3r2+)

G0
[
r+(3l40 + 2l20r

2+ + 3r4+) − 2r(l20 + r2)(l20 − 3r2+)
]

(3.7)

for the Schwarzschild–AdS black hole, and

CSch = −2πr2+
G0

, (3.8)

CSch
loc = −4πr2+

G0

(
r − r+

2r − 3r+

)
(3.9)

for the Schwarzschild black hole. Here, the subscript ‘loc’
indicates that the specific heat is obtained from a black hole
enclosed in a cavity.

Figure 2a shows the standard Hawking temperature (3.4)
of the Schwarzschild black hole which becomes zero as r+
goes to infinity, while it diverges as r+ goes to zero. If it
is enclosed in a cavity, the local temperature at the cavity
(3.5) goes up to infinity. This cavity makes the black hole
thermodynamically well defined. Then this thermodynamic
stability can easily be seen if one examines the specific heat
of T (dS/dT ) as in Fig. 3. In Fig. 3a, one sees the negative
specific heat as given in Eq. (3.8), which indicates that the
Schwarzschild black hole is unstable. On the other hand, as
seen in Fig. 3b, the Schwarzschild black hole in the cavity
has an asymptote at r+ = 2r/3, which is obtained from the
condition of dTloc/dr+ = 0, and if r+ is larger than 2r/3,
the black hole is stable. More precisely, if r+Tloc ≥ √

3/4π ,
there are two possible solutions in which the larger one is sta-
ble while the smaller one is unstable as shown in Figs. 2b and

3b. The equality occurs if the temperature is the minimum
at r+ = 2r/3. Below the minimum temperature there is no
black hole solution. These can be reconfirmed by analyzing
constant temperature slices [64] of the Schwarzschild black
hole confined in a cavity in Fig. 4a, b, which are obtained by
solving Eq. (3.5) in terms of r+ at a constant temperature. In
the diagram, one can easily see that thermodynamic stabil-
ity is in between 2r/3 < r+ < r . The turning points of the
curves satisfying with r+Tloc = √

3/4π remain on the line
r+ = 2r/3. Two solutions of the Schwarzschild black hole
in the cavity are possible to the right of this point, one above
the line and one below it. They would meet if a given temper-
ature equals the minimum temperature. For a higher cavity
temperature, the constant temperature curve shifts to the left,
and for a lower cavity temperature it shifts to the right.

Compared with the standard Schwarzschild black hole,
which is asymptotically flat, the temperatures and specific
heats of the Schwarzschild–AdS black hole, which is not
asymptotic flat, are depicted in Figs. 2 and 3c, d. When com-
pared the Hawking temperature in Fig. 2c with the local tem-
perature in Fig. 2b, one can see that they show the same
behavior with each other except that in the case of Fig. 2c
the cavity seems to be located at infinity. Thus, the asymp-
totically AdS geometry naturally plays the role of a cavity.
The real positive solutions of the Schwarzschild–AdS black
hole can be obtained when r+TH ≥ 1/2π , where the equality
takes place if the temperature is the minimum at r+ = l0/

√
3

(η = 0 case). The larger solution is locally stable and has a
positive specific heat, while the smaller solution is unstable
and has a negative specific heat as in Figs. 2, 3c.

If the Schwarzschild–AdS black hole is enclosed in a cav-
ity, the local temperature (3.3) and specific heat (3.7) are
depicted as in Figs. 2, 3d. As r+ approaches the radius r of the
cavity, the local temperature goes up to infinity, and the spe-
cific heat to zero. This is also the case for the Schwarzschild
black hole enclosed in the cavity, which can be seen through
the factor of C ∼ (r − r+) in Eqs. (3.7) and (3.9), while the
specific heat of the standard Schwarzschild–AdS black hole
diverges as in Fig. 3c.

Now, let us go back to the local temperature (3.1), which
is seen by the observer at r , is depicted in Fig. 5 where the
local temperature of the Schwarzschild–AdS black hole in
the rainbow gravity enclosed in a cavity was also drawn for
the purpose of comparison, which is divergent as r+ → 0.

Figure 5 is also different from Fig. 1 in that this is the local
temperature seen by a local observer at r but not the modi-
fied Hawking temperature seen by an observer at the asymp-
totic infinity. One can see in the figure that for a fixed r the
local temperature is divergent as r+ approaches r , which is
the same as the local temperature of the Schwarzschild–AdS
black hole. We also observe that there exist a global minimum
temperature Tm at r = rm , and a local maximum tempera-
ture TM at r = rM . Moreover, the temperature remains finite
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Fig. 2 Temperatures for a the
Schwarzschild black hole, b the
Schwarzschild black hole
enclosed in a cavity, c the
Schwarzschild–AdS black hole,
and d the Schwarzschild–AdS
black hole enclosed in a cavity
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Fig. 3 Specific heats for a the
Schwarzschild black hole, b the
Schwarzschild black hole
enclosed in a cavity, c the
Schwarzschild–AdS black hole,
and d the Schwarzschild–AdS
black hole enclosed in a cavity
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Fig. 4 Constant temperature
slices of the Schwarzschild
black hole confined within a
cavity
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Fig. 5 Local temperature of the Schwarzschild–AdS black hole in the
η = 1 rainbow gravity enclosed in a cavity (solid line) and the standard
local temperature of the Schwarzschild–AdS black hole (dotted line)
with r = 10, l0 = 7. Here, Tm is globally minimum, TM is locally
maximum, and T0 is the temperature at r+ = 0

as r+ → 0 with T0 = 1/(4π

√
ηG0(1 + r2/ l20)). Thus, as

a result of the introduction of the rainbow gravity, one can
observe both the existence of the local maximum tempera-
ture near the origin and the finiteness of the local temperature
at the origin, which were first shown in Ref. [53]. However,
we also note that these were originally absent in the modified
Hawking temperature (2.13) as in Fig. 1.

Next, making use of the entropy (2.15) and the local tem-
perature (3.1), the thermodynamic first law yields the energy
Etot as

Etot =
∫ r+

0
TlocdS

= r

G0

⎛
⎝

√
1 + r2

l20
−

√√√√(
1 − r+

r

)
+ 1

l20

(
r2 − r3+

r

)⎞
⎠ .

(3.10)

To investigate thermodynamic stability of the
Schwarzschild–AdS black hole in the rainbow gravity, we
calculate the heat capacity as

C = ∂Etot

∂Tloc

=
4πr2+(r − r+)

(
l20 + r2 + rr+ + r2+

) (
l20 + 3r2+

) (
1 + η G0

r2+

) 3
2

G0H(r+, r, η,G0)

(3.11)

with

H(r+, r, η,G0) = r+
(

3l40 + 2l20r
2+ + 3r4+

)

−2r
(
l20 + r2

) (
l20 − 3r2+

)

−ηG0

[
3
(
r3+ − 4r3

)
+ 6l20 (r+ − 2r) − l40

r+

]
. (3.12)

When η → 0, it becomes the specific heat (3.7) for the stan-
dard Schwarzschild–AdS black hole in the cavity, and when
taking the radius r of the cavity to infinity, it becomes the
specific heat (3.6) for the Schwarzschild–AdS black hole.
Moreover, when l0 → ∞ as well as η → 0, it reduces to
the specific heat (3.9) for the Schwarzschild black hole in the
cavity, and with the radius of the cavity as r → ∞, it becomes
the specific heat (3.8) for the standard Schwarzschild black
hole. In Fig. 6 the specific heat is plotted as a function of
r+ and it shows three qualitatively different regions, two
stable and one unstable states of the black hole. Specifi-
cally, when r+ > rm , the specific heat is positive so that
the black hole is stable, which we will call the large stable
black hole (LSB), when rM < r+ < rm , it is negative, so
the black hole unstable, the intermediate unstable black hole
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Fig. 6 Heat capacity of the Schwarzschild–AdS black hole in the η = 1 rainbow gravity enclosed in the cavity with r = 10, l0 = 7, G0 = 1,
where rU is the upper bound of the event horizon r+
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Fig. 7 Constant temperature slice of the Schwarzschild–AdS black hole in the rainbow gravity confined within a cavity. Here, we choose T =
0.04564 as an external cavity temperature where there exist three black hole states

(IUB), and when 0 < r+ < rM , it is again positive, and
we call it as the small stable black hole (SSB). Note that
the SSB appears in the very vicinity of the vanishing event
horizon.

In Fig. 7, it shows constant temperature slices of the
Schwarzschild–AdS black hole in the rainbow gravity con-
fined in the cavity. Compared with Fig. 4, one can reconfirm
that there is also a fine structure near the vanishing event
horizon due to the appearance of the local maximum tem-
perature as well as the finiteness of the temperature at the
origin, which is enlarged separately in the right-hand side of
the diagram. From this figure, we see that the thermodynamic
states of the Schwarzschild–AdS black hole in the rainbow
gravity confined in the cavity are divided into three regions;
region I with positive specific heat which corresponds to the
LSB, region II with negative specific heat to the IUB, and
region III again with positive specific heat to the SSB, respec-
tively.

4 Free energy and phase transition

Now, let us study the thermodynamic phase transition [65–
67]. The on-shell free energy of the Schwarzschild–AdS
black hole in the rainbow gravity enclosed in a cavity is
obtained by the use of the local temperature Tloc in Eq. (3.1)
and the thermodynamic energy Etot in Eq. (3.10), explicitly
as

Fon = Etot − TlocS

= r

G0

⎛
⎝

√
1 + r2

l20
−

√√√√(
1 − r+

r

)
+ 1

l20

(
r2 − r3+

r

)⎞
⎠

−
r+

(
1 + 3r2+

l20

)

4G0

√
(
1 − r+

r

) + 1
l20

(
r2 − r3+

r

)

×

⎛
⎜⎜⎝1 +

ηG0 sinh−1
(

r+
ηG0

)

r2+
√

1 + ηG0

r2+

⎞
⎟⎟⎠ , (4.1)

where S is the entropy in Eq. (2.15). When η = 0, it becomes
the on-shell free energy of the Schwarzschild–AdS black hole
enclosed in a cavity. Furthermore, when l0 → ∞, it recov-
ers the on-shell free energy of the Schwarzschild black hole
enclosed in a cavity. In order to understand the phase transi-
tion, we also need to introduce off-shell free energy, which
is composed of a set of saddle points of the on-shell free
energies as

Foff = Etot − T S. (4.2)

Here, Etot and S are the same as before, while T is an external
temperature of heat reservoir to control the phase transition.

In Fig. 8, we have plotted both the on-shell Fon(r+) and
the off-shell Foff(r+) free energies as a function of r+. This
picture is helpful when one considers thermodynamic stabil-
ity. On the other hand, in Fig. 9, we have drawn the on-shell
free energy as a function of the temperature T , which helps us
to understand phase as temperature changes. Some regions
including near the vanishing event horizon are magnified to
show fine details in Figs. 8 and 9.

First of all, the situation is mainly divided by two as shown
in Fig. 8b, c, respectively. First, in Fig. 8c, which describes
the well-known Hawking–Page phase transition, when T <
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Fig. 8 On-shell (solid line) and off-shell (dashed line) free energies
F(r+) of the Schwarzschild–AdS black hole in the η = 1 rainbow grav-
ity enclosed in the cavity with r = 10, l0 = 7,G = 1, where Tm is global

minimum, TM local maximum temperature, T0 at r+ = 0, and T (1)
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Fig. 9 On-shell free energy F(T ) in terms of T with r = 10, l0 = 7, G0 = 1, η = 1. The circle is magnified to show fine detail which structure
comes from the rainbow gravity

Tm , there are no black holes but a pure thermal radiation
phase which has zero free energy. When T = Tm , the free
energy exhibits an inflexion point in Fig. 8c at r+ = rm
where the specific heat is ill-defined, but a single unstable
black hole is formed which eventually decays into a pure
thermal radiation. As the temperature goes up in between
Tm < T < T (1)

c , there are two black holes that can be in
equilibrium with a thermal radiation, the small black hole is
formed at a local maximum of the off-shell free energy, while
the large black hole is formed at a local minimum. However,
the small black hole, which corresponds to the IUB with
the negative specific heat, is locally unstable and so decays
either into a thermal radiation or to the large black hole. On
the other hand, the large black hole corresponding to the LSB
with positive free energy is not globally stable; it is locally
stable in between Tm < T < T (1)

c though, so by the black

hole evaporation it would reduce its free energy. In brief,
the two small and large black hole states in this temperature
range are less probable than a pure thermal radiation. When
the temperature becomes T (1)

c , the large black hole is at local
minimum with zero free energy, while the small black hole
keeps in locally unstable. When the temperature is in the
region of T (1)

c < T < T0, there are still two black holes
that the large black hole is now in globally stable, which
has both positive heat capacity and negative free energy, but
the small black hole has negative heat capacity and positive
free energy so that it is unstable to decay the globally stable
large black hole state. In short, below the phase transition
temperature of T (1)

c , it is more probably a thermal radiation,
while above T (1)

c it is more probably a large black hole so
that there exists a Hawking–Page phase transition between
them.
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Second, in Fig. 8b, which shows off-shell free energies
near the vanishing event horizon, one observes a new mixed
phase transition of the Schwarzschild–AdS black hole in the
rainbow gravity enclosed in a cavity. Note that compared
with the previous case, the phenomenon occurs in relatively
extremely tiny range of temperature between T0 < T (2)

c <

TM where three black hole states exist. One of them is the
SSB and the others are the same as before, the IUB and LSB.
When T0 < T < T (2)

c , the IUB, of which the free energy is
at local maximum with positive value and negative specific
heat, is unstable so it decays either into a thermal radiation
or to the SSB/LSB. When the temperature is T (2)

c , the IUB
has zero free energy. When the temperature is in between
T (2)
c < T < TM , all the three black holes are in stable states.

When T = TM , two stable black holes remains. However,
regardless how stable the SSB is, it is the LSB with much
lower free energy so that the SSB eventually decays into the
LSB. Finally, when T > TM , only the LSB exists.

5 Discussion

In this paper, we have studied local thermodynamics includ-
ing its phase transition of the Schwarzschild–AdS black hole
in the rainbow gravity enclosed in a cavity subject to the
MDR. The black hole temperature in the rainbow gravity
depends on the energy ω of a probe provided by the rainbow
functions (1.2), and making use of the HUP and deploying
the MDR, we have derived the modified Hawking tempera-
ture which is finite at r+ = 0. It implies that the divergent
standard Hawking temperature of the Schwarzschild–AdS
black hole is regularized in the rainbow gravity. Moreover,
the parameter η is found to have the upper limit given by the
Newton and the cosmological constants where r+ is zero and
the modified Hawking temperature has its minimum value,
in contrast to the case of the Schwarzschild black hole in the
rainbow gravity having no upper bound [53].

We have summarized in Fig. 2 the temperatures and spe-
cific heats of the Schwarzschild(–AdS) black hole with/
without a cavity which are obtained from taking the limits
of the Schwarzschild–AdS black hole in the rainbow grav-
ity enclosed in a cavity. As a result, from Figs. 2b, c and
3b, c, we have observed again the well-known facts that the
Schwarzschild–AdS black hole has a similar thermodynamic
behavior to the Schwarzschild black hole in a cavity; for a
given temperature of T > Tm , there are two black holes, the
larger one is stable and the small one is unstable, needless
to say, including the Hawking–Page phase transition from a
hot flat space to a black hole at the critical temperature, T (1)

c

for our case.
However, for the Schwarzschild–AdS black hole in the

rainbow gravity, due to deformation of temperature near the
vanishing event horizon, the modified local Hawking tem-

perature is quite different from the standard Hawking tem-
perature of the Schwarzschild–AdS black hole in a cavity as
shown in Fig. 5 where the former is finite even at r = r+
while the latter is divergent. As a result, it is shown that there
exists an additional stable tiny black hole together with the
small black hole above T0. Moreover, it is also shown that
there exists an additional critical temperature T (2)

c at which
the locally stable tiny black hole tunnels into the large sta-
ble black hole with the finite transition probability seen from
Figs. 8 and 9 of the on-shell and off-shell free energies.

Finally, it is appropriate to comment that in the presence
of the cosmological constant the HUP in Eq. (2.11), which is
used to eliminate the energy dependence of the probe in the
modified Hawking temperature, is corrected by the extended
uncertainty relation [68,69]. Therefore, as a further investi-
gation, it will be interesting to analyze the thermodynamic
quantities and phase transition in the rainbow gravity by using
the generalized uncertainty principle [70–74].
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