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Abstract In this paper, we study the covariant form of
the non-relativistic Schrödinger–Pauli equation in the space-
time generated by a cosmic string and discuss the solutions
of this equation in the presence of interaction between the
magnetic dipole momentum and electromagnetic field. We
study the influence of the topology on this system. We obtain
the solution of radial part as well as the energy levels. We
consider all thermodynamic properties of a neutral particle in
a magnetic cosmic string background by using an approach
based on the partition function method.

1 Introduction

The interaction between electric and magnetic fields and
multipole moments has attracted attention in a great deal
of studies, such as [1–13], the holonomic quantum computa-
tion [14–16], and the Landau quantization [17,18]. Besides,
recent studies of the interaction between a moving electric
moment and external fields [11,12] have shown a differ-
ence between the field configuration that yields the occur-
rence of geometric phases for an electric charge [1,2,19],
an electric dipole moment [3,4,9,10], and a moving elec-
tric moment. The quantum mechanics dynamics on conical
spaces in the presence of topological defects has attracted
much attention in recent years [20–22]. Among different
motivations we can recall the context of the (2 + 1) dimen-
sional quantum gravity [23] and cosmic strings [24]. The
simple, but nontrivial, geometry of the cone appears as an
effective geometry in such diverse physical entities as cos-
mic strings [25]. Accordingly, the dynamics of quantum neu-
tral particles in a conical background has been studied with
very different motivations [26–29]. An important issue con-
cerning the cone is the fact that the conical background is
naturally associated to a curvature singularity at the cone
tip. The quantum dynamics of a single particle in a coni-
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cal space-time has been investigated by several authors. Till
now, some problems have been investigated in a conical
space-time including classical and quantum non-relativistic
dynamics of a particle [30] and the influence of conical
singularities in the energy levels of a harmonic oscillator
[31].

In our work, we are going to discuss the solution of
the non-relativistic Schrödinger–Pauli equation produced by
a cosmic string. The latter is a linear defect that changes
the topology of the medium. Topological defects will arise
in some of the models with spontaneous symmetry break-
down in field theory. The cosmic strings are expected to
have large mass density and very thin width. The space-
time geometry around an infinitely stretching straight string
has a peculiar property. From the field theory point of
view, the cosmic string can be viewed as a consequence
of a symmetry breaking phase transition in the early uni-
verse [32]. Till now, some problems have been inves-
tigated in curved space-time including the one-electron
atom

This paper is organized as follows. In Sect. 2, we
first review the covariant non-relativistic Schrödinger–Pauli
equation in the space-time generated by a cosmic string. We
next report the solution of the radial part as well as the energy
levels. Finally, in Sect. 3, We consider all thermodynamic
properties of neutral particle in magnetic cosmic string back-
ground by using an approach based on the partition function
method.

2 Neutral particle in cosmic string background

The cosmic string space-time with an internal magnetic field
in cylindrical coordinates is described by the line element
[33–36]

ds2 = −dt2 + dr2 + α2r2dφ2 + dz2 (1)
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with −∞ < z < ∞, r ≥ 0, and 0 ≤ ϕ ≤ 2π . The parameter
α is related to the linear mass density m̃ of the string via
α = 1 − 4m̃ and varies in the interval (0, 1].

We can build the local reference frame through a non-
coordinate basis with e(a)

μ where e(a)
μ and eμ

(a) (x) are trans-
formation matrices. The components of the non-coordinate
basis e(a)

μ are called tetrads or vierbeins that form our local
reference frame and eμ

(a) (x) satisfy

ηabeμ
ā (x) eν

b̄
(x) = gμν (x) (2)

where μ, ν = 0, 1, 2, 3 are tensor indices and ā, b̄ =
0, 1, 2, 3 denote tetrad indices [37,38]. We can obtain the
component of spin connection from

ωā
μb̄

= eāνe
σ

b̄

ν

σμ + eāν ∂μe
ν

b̄
; (3)


σ
μν are the Christoffel symbols of the second kind. The non-

vanishing components of the spin connection are

ω1̄2
ϕ = e1̄

μe
ν2̄


μ
ϕν − eν2̄∂ϕe1̄

μ == 1 − α,

ω1̄2
ϕ = −ω2̄1̄

ϕ .
(4)

The relativistic dynamics of the neutral particle in this
curved space-time was studied in [39]. In the same paper,
the non-relativistic behavior of the neutral particle in curved
space-time was obtained through the application of the
Foldy–Wouthuysen approximation [40] to the Dirac equa-
tion. We assume that the dipole magnetic moments are par-
allel to the z-axis of the space-time. The non-relativistic equa-
tion is [13]

i
∂ψ

∂t
= mψ +

[
1

2m
�π2 − μ2E2

2m
+ μ

2m
�∇. �E + μn̂. �B

]
ψ.

(5)

The unit vector n̂ indicates the direction of the magnetic
dipole moment. We introduce the generalized momentum in
the presence of an electromagnetic field by

�π = −i h̄ �∇ +
(

μ
(
n̂ × �E

)
+ (1 − α)

2
ϕ̂

)
j

(6)

where

�∇ = ∂

∂r
r̂ + 1

αr

∂

∂ϕ
ϕ̂ + ∂

∂z
ẑ. (7)

We choose the electric field as

�E = λρ

2
ρ̂. (8)

λ is a linear density charge. By substituting Eq. (5) and by
using the � = e−i Etψ we have

− 1

2m

(
∂2ψ

∂ρ2 + 1

ρ

∂ψ

∂ρ
+ 1

α2ρ2

∂2ψ

∂ϕ2 + ∂2ψ

∂z2

)

− i

2m

(
μλ

α
+ (1 − α)

α2ρ2

)
∂ψ

∂ϕ
+ μ2λ2

8m
ρ2ψ

+ 1

8m

(
(1 − α)2)

α2ρ2 ψ
μλ

2m
ψ + μλ

4m

(1 − α)

α
ψ = Eψ. (9)

The solution of the Schrödinger–Pauli equation can be
written in the form [13]

ψnl (ρ, ϕ, z) = eilϕeikz Rnl (ρ) . (10)

By substituting in Eq. (9)

[
− 1

2m

(
∂2

ρ + 1

ρ
∂ρ

)
+ k2

2m
+ γ 2

2mα2ρ2 + γω

2α
+ mω2

8
ρ2 + ω

2

]

Rnl (ρ) = ERnl (ρ) (11)

where we defined γ = l + (1−α)
2 and ω = μλ/m. We make

the convenient change of variables of ξ = mω
2 ρ2.

Then we have [13]

R′′
nl + 1

ξ
R′
nl + 1

ξ2

(
ξβ − γ 2

4α2 − ξ2

4

)
Rnl = 0 (12)

where

β = E

ω
− k2

2mω
− γ

2α
− 1

2
. (13)

We can solve this equation. The corresponding wave func-
tions and energy eigenvalues are obtained:

ψnl = Nξ
1
2 +

√
1
4 + γ 2

4η2 e− ξ
2 L

1+2

√
1
4 + γ 2

4η2

n (ξ) , (14)

ε =
(
n + a

2

)
ω, (15)

where

a =
⎛
⎝2 +

√
1 + γ 2

α2 + k2

mω
+ γ

α

⎞
⎠ (16)

and N is the normalization constant.
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Fig. 1 The comparison of the
Helmholtz free energy as a
function of KT for different
angular quantum number ψ

Fig. 2 The comparison of the
thermodynamic energy U/N as
a function of KT for different
angular quantum number

3 Thermodynamic properties of system

In order to consider thermodynamic properties of the neu-
tral particle in a magnetic cosmic string background for a
constant � we concentrate, at first, on the calculation of the
partition function,

Q1 = ∞
�
n=0

e−β(n+ a
2 )ω = e−βω

(a−1)
2

{
2 sinh

βω

2

}−1

, (17)

where β = 1/κT . The partition function for the N-body
system with no interaction inside is obtained via

QN = (Q1)
N = e−Nβω a

2
{
eβω − 1

}−N
. (18)

Once the Helmholtz free energy is obtained, the other sta-
tistical quantities are obtained in a straightforward manner,

A = − 1

β
ln QN = Nω

(a − 1)

2
+ NKT ln

(
2 sinh

βω

2

)
.

(19)

The chemical potential can be obtained as

μ = ∂A

∂N
= ω

(a − 1)

2
+ KT ln

(
2 sinh

βω

2

)
(20)

and the pressure is zero,

P = − ∂A

∂V
= 0. (21)
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Fig. 3 The comparison of the
Helmholtz free energy as a
function of KT for different α

Fig. 4 The comparison of the
thermodynamic energy U/N as
a function of KT for different α

Fig. 5 The entropy S/NK as a
function of KT for different ω
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Fig. 6 The heat capacity
C/NK as a function of KT for
different ω

Fig. 7 The entropy S/NK as a
function of KT for ω = 1

Once the Helmholtz free energy is obtained, the other sta-
tistical quantities are obtained in a straightforward manner.
The mean energy is

U = −∂ ln QN

∂β
= Nω

(
a − 1

2
+ coth

βω

2

)
. (22)

The main statistical quantity, i.e., the entropy, is related to
the other quantities via

S

K
= β2 ∂A

∂β
=

(
−N ln

(
2 sinh

βω

2

)
+ Nβ

ω

2
coth

βω

2

)
;

(23)

the specific heat capacity at constant volume is obtained from

C

K
= −β2 ∂U

∂β
= −β2ω2N

e−βω

1 − e−βω
. (24)

One can verify that in the limit α → 1, the space-time
becomes flat. We recover the general solution for flat space-
time in this limit where Eq. (12) is rewritten as

R′′
nl + 1

ξ
R′
nl + 1

ξ2

(
ξβ − γ 2

4
− ξ2

4

)
Rnl = 0. (25)

In this case γ = l and

β = E

ω
− k2

2mω
− l

2
− 1

2
. (26)
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Fig. 8 The heat capacity
C/NK as a function of KT for
ω = 1

The corresponding wave functions and energy eigenvalues
are obtained from the NU method as

ψ = N ′ξ
1
2 (1+√

1+l2)e− ξ
2 L1+√

1+l2
n (ξ) , (27)

ε =
(
n + a′

2

)
ω, (28)

where

a′ =
(

2 +
√

1 + l2 + k2

mω
+ l

)
, (29)

and N ′ is the normalization constant. In the limit α → 1 the
thermodynamic properties of system will be obtained from
Eqs. (17–24); the parameter a must be replaced by a′.

In the following we depict the thermodynamic properties
of the system vs. KT in Figs. 1, 2, 3, 4, 5, and 6. In Fig.
1 the Helmholtz free energy is plotted vs. KT for different
angular quantum number. In the interval 0 ≤ KT ≤ 100, it
is seen that the energy decreases with a nearly linear behavior
for increasing KT . In Fig. 2, the thermodynamic energy is
plotted vs. KT for different angular quantum numbers in the
interval 0 ≤ KT ≤ 100. It reveals that, for increasing KT ,
the internal energy is linearly increased as well. As we see
in Figs. 1 and 2 the Helmholtz free energy and thermody-
namic energy both increase by increasing angular quantum
number. Figure 3 shows the Helmholtz free energy plotted
vs. KT for different α. In the interval 0 ≤ KT ≤ 100, the
energy decreases with a nearly linear behavior for increas-
ing KT . Figure 4 represents the energy behavior vs. KT for
different α in the interval 0 ≤ KT ≤ 100. As expected the

thermodynamic properties tend to their behavior in flat space-
time when α tends to 1. Figure 5 reveals that the entropy is
slowly increasing for large KT values. The curve is repeated
for ω = 1, 2, 3, 4. The variation of the heat capacity vs. KT
for various ω values is shown in Fig. 6. As can be seen in
Figs. 5 and 6, the entropy and the heat capacity decrease for
increasing ω. As we see in Figs. 7 and 8 the entropy and the
heat capacity are independent of α. As expected in Fig. 8 for
increasing KT , the heat capacity tends to its saturation value
in high temperature.

Conclusion

With the purpose of discussing the role of the topology on
the Landau quantization we obtain the thermal properties of
neutral particles with a permanent magnetic dipole moment
interacting with an external magnetic field. In this way, some
new results to the interesting problem are considered in sem-
inal papers by Bakke [13] about the effects of gravitational
fields on breaking the infinite degeneracy of the Landau–
Aharonov–Casher levels obtained in flat space-time. The
presence of a cosmic string changes the solution as com-
pared with the flat Minkowski space-time results that are
due to the combined effects of the curvature and the nontriv-
ial topology determined by the deficit solid angle associated
with this space-time. We have investigated the influence of
the topological defects on thermal properties. We obtain the
solution of the radial part as well as the energy levels. We
consider all thermodynamic properties of a neutral particle in
a magnetic cosmic string background by using an approach
based on the partition function method. We have also ana-
lyzed the thermodynamic properties behavior graphically.
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We see that, by increasing the parameters of the topology
α, the entropy, the heat capacity, and the free energy will
also increase. The entropy and the heat capacity are inde-
pendent of the parameters of the topology. As we expect
when α → 1, we recover the general solution for flat space-
time.
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