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Abstract It has been known for some time that the cosmo-
logical Friedmann equation deduced from general relativity
can also be obtained within the Newtonian framework under
certain assumptions. We use this result together with quan-
tum corrections to the Newtonian potentials to derive a set
a of quantum corrected Friedmann equations. We examine
the behavior of the solutions of these modified cosmological
equations paying special attention to the sign of the quan-
tum corrections. We find different quantum effects crucially
depending on this sign. One such a solution displays a quali-
tative resemblance to other quantum models like Loop quan-
tum gravity or non-commutative geometry.

1 Introduction

It must have come as a surprise to the physics community
when McCrea and Milne [1] derived the cosmological Fried-
mann equations known from general relativity from New-
tonian mechanics assuming the existence of expansion. The
interest in this derivation has persisted over years [2–10] pay-
ing attention to refine the Newtonian set up and conclusions.
In this paper we go one step further and put forward the ques-
tion of what kind of modified Friedmann equations would
emerge if we include quantum corrections to the Newtonian
potential which, of course, is one of the main ingredients in
the Newtonian derivation of the Friedmann equations. Such
corrections have been known for some time [11–25]. As we
will show below, it is straightforward to repeat the McCrea–
Milne derivation including these quantum corrections and
to arrive at the modified Friedmann equations with terms
proportional to h̄. Depending on the sign of the quantum
corrections (and also on the equation of state) different quan-
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tum effects emerge with one of them resembling qualitatively
those of other quantum models. This similarity consists in the
behavior of the scale factor R describing a universe which
has been contracting in the past, reaching a minimal value
of R and expanding again after the bounce. For the other
sign of the quantum effect, the behavior is qualitatively dif-
ferent as the universe spontaneously appears at Rmin close to
the Planck length and starts expanding from this point. The
primary expansion is accelerated, reminding us of inflation.
We do not claim that our modified Friedmann equations give
necessarily the correct description of a quantum universe, but
it is certainly worthwhile to consider them. For one they give
the right Friedmann equation when no quantum corrections
are included and as such could contain the right clues and
hindsights when we include the latter. Second, we think it
is timely to venture one step more in the area of Newtonian
cosmologies.

The paper is organized as follows. In the next section
we give a brief account of the derivation of the standard
Friedmann equation within the Newtonian framework. Next
we introduce the quantum corrections and derive the mod-
ified Friedmann equations. In Sect. 4 we study the behav-
ior of these new cosmological equations varying the sign of
the quantum corrections and choosing different equations of
state.

2 Friedmann equations from Newtonian dynamics

There exist different derivations of the cosmological Fried-
mann equation from the Newtonian dynamics [1–10] and
although conceptually such derivations differ [3,10], in the
end they all arrive at the same Friedmann equations. We there-
fore take here the simplest and original point of view which
starts by taking into account the expansion of the universe.
This is done by writing

dR

dt
= HR (1)
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where H is the Hubble parameter and R is a measure of
distance. The next step considers the total energy for an object
(say, a galaxy) of mass m, which reads

E = 1

2
m

(
dR

dt

)2

− GMm

R
. (2)

Writing the mass inside the sphere of radius R as M =
4
3πR3ρ where ρ is the density of the universe, Eq. (2) takes
the form

2E

mR2 = H2 − 8

3
πGρ. (3)

Since E and m are constants we define k ≡ 2E
m and obtain

the first Friedmann equation

H2 = 8πG

3
ρ − k2

R2 . (4)

To get the second Friedmann equation the argument goes
as follows: when the volume V of the universe expands by
dV , the pressure does work equal to pdV, which decreases
the energy in V by that amount. Using energy–mass equiva-
lence one obtains

d

(
ρ

4

3
πR3

)
= −pd

(
4

3
πR3

)
. (5)

On the other hand this is the well-known conservation law
which can be cast in the convenient form

R
dρ

dt
+ 3(ρ + p)

dR

dt
= 0. (6)

If we write the first Friedmann equation as
(

dR

dt

)2

= 8πG

3
ρR2 − kR(t1)

2. (7)

By taking a derivative of this equation and replacing R dρ
dt

from the conservation equation one arrives at the second
Firedmann equation

d2R

dt2 = −4πG

3
(ρ + 3p)R. (8)

From our point of view the crucial ingredient is how the New-
tonian potential enters the derivation. Quantum corrections
to the latter are known and it makes some sense to try to re-
derive the cosmological equations by taking this correction
into account.

3 Quantum corrected Friedmann equations

Several authors have obtained h̄ corrections to the Newto-
nian potential by taking gravity as an effective theory and
performing one-loop graviton calculations [11–28].

φ(r) = −GM1M2

r

[
1 − γq

Gh̄

r2c3

]
. (9)

Table 1 Different values of γq
found in the literature

(Year) References γq

(1994) [11] 127
30π2

(1995) [12] 122
15π

(1995) [13] − 17
20π

(1998) [14] 107
10π2

(2002) [15] − 121
10π

(2003) [16] − 41
10π

(2003) [17] − 167
30π

(2007) [18] − 41
10

(2007) [19] 107
30π

(2002) [20] 122
15π

(2012) [21] − 41
10π

(2015) [22] − 41
10

Sometimes the results of the quantum corrected Newtonian
potential is given in a different form,

�(r)=−GM1M2

r

[
1+λ

G(M1 + M2)

rc2 −γ̃
Gh̄

r2c3 +· · ·
]

,

(10)

where λ and γ̃ are parameters which take different values
depending on the author(s). Partly, we can attribute the reason
for these discrepancies to the precise coordinate definition
used in the calculation [27]. The question about the ambigu-
ity of this potential due to the lack of clarity on the coordi-
nates has also been risen in some related articles [16,27,29].
It is argued that a redefinition r → r ′ = r(1 + aGM/r)
would change the parameter λ without affecting the observ-
ables. The general consensus is that we can write the cor-
rected potential as given in Eq. (9). The aforementioned re-
parametrization freedom still cannot account for all the dis-
crepancies of the different γq ’s found in the literature. A
number of errors have been identified [11,16], but it is not
clear if this accounts for all the different values available. It
is therefore fair to list some of the results (see Table 1). In
the table we have collected the different values for γq , which
also vary in sign (we will see that the sign plays the most
important role in the cosmology derived from these correc-
tions).

Having established the quantum correction we can pro-
ceed as before. The total energy receives a new contribution
due to the quantum correction in the Newtonian potential,
i.e.,

E = 1

2
m

(
dR

dt

)2

− GMm

R
+ γq

G2h̄Mm

R3c3 . (11)
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Introducing again the density ρ and the Planck length l p =√
Gh̄
c3 the above equation is equivalent to

2E

mR2 = 1

R2

(
dR

dt

)2

− 8

3
πGρ + 8

3
πGρ

l2pγq

R2 . (12)

With the help of (1) the first Friedmann equation with an
h̄-correction can be given as

H2 = 8πG

3
ρ − 8πG

3
ρ
l2pγq

R2 − k

R2 . (13)

The second corrected Friedmann equation follows from the
fact that the conservation law (6) remains unchanged. We can
proceed as before to obtain

d2R

dt2 = −4πG

3
(ρ + 3p)R + 4πGl2pγq

(ρ + p)

R
. (14)

We consider Eqs. (13) and (14) as the quantum corrected
Friedmann equations derived withing the framework of New-
tonian mechanics. We will show below that they imply a
quantum bounce or in other words the initial singularity at
R = 0 is avoided.

For the sake of comparison with other models and a bet-
ter understanding of similarities and differences between the
standard Friemdann equations and Eqs. (13) and (14) we can
re-cast the latter in different forms. By re-introducing the
cosmological constant � and taking an initially flat universe
with k = 0. We have then

H2 = 8πG

3
ρ + �

3
− 8πG

3
ρ
l2pγq

R2 . (15)

We note that it is sufficient to put h̄ → 0 to recover the
Friedmann equations from general relativity. Making use of
the standard definitions ρcrit(t) = 3H2

8πG and ρvac = �
8πG the

first Friedmann equation (with the cosmological constant and
the h̄ corrections) is simply

1 = 	m

(
1 − l2pγq

R2

)
+ 	�. (16)

We could also define a new ρcrit , namely

ρ̃crit = ρcrit

1 − l2pγq
R2

� ρcrit

(
1 + l2pγq

R2

)
, (17)

as well as 	̃m = ρ
ρ̃crit

. Then we simply have

1 = 	̃m + 	�. (18)

If we assume the equation of state of radiation the conser-
vation law gives us

(
ρ

ρ0

)1/2

= 1

a2 (19)

with a = R/R0. Then it is easy to see that the first Friedmann
equation becomes

H2 = 8πG

3
ρ

(
1 − β ′ R2

0

R2

)
= 8πG

3
ρ

(
1 − β ′ 1

a2

)

= 8πG

2
ρ

(
1 − β ′

(
ρ

ρ0

)1/2
)

(20)

with β ′ = γql2p/R
2
0. In the case of positive γq (positive β ′) it

would make sense to introduce a critical density

ρ̃cr = ρ0

(β ′)2 = ρ0
R4

0

γ 2
q l

4
p

= constant, (21)

such that H = 0 when ρ = ρ̃cr . Although we will make
a detailed comparison with other models at the end of the
paper we notice already here that in loop quantum gravity
the expression is similar, i.e.,

H2 = 8πG

3
ρ

(
1 − ρ

ρ
(LQG)
C

)
. (22)

This does not imply that there is quantum bounce only if γq
is positive. Indeed, in the next section by solving explicitly
the Friedmann equations that even in the case of γq < 0 the
universe has no singularity at R = 0. Different scenarios are
possible, mostly depending on the sign of γq and the equation
of state.

Some mathematical features of classical and quantum uni-
verses are common. In the following steps we will briefly
discuss two solutions of the standard Friedmann equations
without quantum corrections. First let us consider a toy uni-
verse with � = 0, γq = 0 and k = 0 filled with radiation.
It is an easy exercise to show that the solution to the Fried-
man equations for a = R/R0 reads (a2 − 1)/2 = ±τ ≡√

8πGρ0/3(t − t0). The two branches correspond to

a+ = √
2τ + 1, τ > −1/2

a− = √
1 − 2τ , 1/2 > τ

(23)

with a+(0) = a−(0). The branch a− is decreasing whereas
a+ is growing in time (see Fig. 1). It would be incorrect to try
to avoid the singularity by gluing the two branches at τ = 0
discarding the rest. This would lead to an ambiguity in the
solution as we would have four possible solutions. This tells
us that we can only glue the two branches if we arrive at a
unique smooth solution. Second, we take the radiation case
with � = 0, γq = 0 and k = 1. Due to H2 = 8πG

3 ρ − k
R2

the Hubble constant can be zero, but this corresponds to a
local maximum as we will see. Indeed, the solutions are

a−(τ ) =
√√√√− 3

8πG

1

ρ0

τ 2

R2
0

− 2τ

R2
0

√
R4

0 − 3

8πG

1

ρ0
R2

0 + 1
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Fig. 1 Cosmological solutions
for the scale parameter a from
the standard Friedmann
equations. See the text for more
explanation

a+(τ ) =
√√√√− 3

8πG

1

ρ0

τ 2

R2
0

+ 2τ

R2
0

√
R4

0 − 3

8πG

1

ρ0
R2

0 + 1,

(24)

which we plotted in Fig. 1. There is a restriction on R0 in form

R0 ≥
√

3
8πG

1
ρ0

and on R given us the position of the maxi-

mum of a. The latter is R ≤ Rmax =
√

8πG
3 ρ0R2

0 making the
Hubble parameter vanish. In the case of quantum universes
as derived in this paper we will see that H = 0 will either
indicate a local minimum or an absolute minimum.

4 Newtonian quantum universes

To find the effect of the new term proportional h̄ in the Fried-
mann equations we start from the energy conservation equa-
tion and use first an equation of state (EOS) of the form

p = (γ − 1)ρ (25)

where γ is not to be confused with γq . We can solve for ρ in
terms of R, namely, the standard solution is

ρ(R) = ρ0

(
R0

R

)3γ

= ρ0a
−3γ , (26)

such that ρ(R0) = ρ0. Inserting this into the first Friedmann
equation with k = 0, i.e.,

(
dR

dt

)2

= 8πG

3
ρ(R)R2 − 8πG

3
ρ(R)β (27)

with β = l2pγq , we obtain

(
dR

dt

)2

= 8πG

3
ρ0

R3γ
0

R3γ

[
R2 − β

]
. (28)

In the integral form this reads

t − t0 = ± 1

R3γ /2
0

√
8πG

3 ρ0

∫ R

R0

R̄3γ /2√
R̄2 − β

d R̄. (29)

The behavior of the solution depends strongly on the sign of
β (which is the same as the sign of γq ) and on the equation
of state (γ ). It therefore makes sense to discuss the different
cases separately.

4.1 Case β < 0

4.1.1 Radiation (γ = 4/3)

In this case the solution can be given in terms of standard
functions, namely

τ ≡
√

8πG

3
(t − t0) = ±1

2

R

R2
0

√
R2 + |β|

∓1

2

|β|
R2

0

ln

[
R +

√
R2 + |β|

]
+ D

(30)

where D takes care of the initial value R(t0) = R0. After
implementing the initial value we obtain

τ =
√

8πG

3
ρ0(t − t0) = ±1

2

[√
a2 + β ′ −√1 + β ′

]

∓1

2
β ′ ln

[
a +√a2 + β ′
1 + √

1 + β ′

]
. (31)
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Fig. 2 Cosmological solutions for the scale parameter a from the mod-
ified Friedmann equations. This figure displays the solution for the radi-
ation equation of state and negative β ′. See the text for more explanation

Figure 2 shows the solutions according to Eq. (31). To the
right and left of the straight line τ = 0 we have the different
branches due to the ± signs in (31). As long as |β ′| < 1
we get always a non-singular universe: the expanding uni-
verse starts at a nonzero value Rmin < R0 (below the line
a = 1) determined by the single-valuedness of a. The mir-
ror universe in such a case is a contracting one ending at
the same Rmin This is shown in Fig. 2 for β ′ = −0.6. For
|β ′| > 1 we obtain a singular universe starting at R = 0
and ending at some Rmax > R0 following one of the signs
(the other sign gave the mirror collapsing universe starting
at Rmax and contracting to zero. The critical point seems to
be β ′ = −1. If we choose the solution according to one sign
and the single-valuedness of the solution we would end up
with two expanding universes, one starting from zero and
expanding up to R0, the other starting from R0 and expand-
ing up to infinity (a similar picture emerges for the collapsing
branch). However, these two curves merge smoothly at R0

and therefore we can construct a unique forever expanding
universe starting at zero (and similarly the mirror image).
We conclude that for negative β ′ with |β ′| < 1 the quantum
effect is that the universe starts at a finite value of R0. In
Sect. 5 we solve these equations by including the cosmolog-
ical constant. The next section is devoted to the comparison
with other quantum models. In the last section we draw our
conclusions.

4.1.2 Dust (γ = 1)

The integral to solve is now

t − t0 = ± 1√
8πG

3 ρ0R3
0

∫ R

R0

dR

√
R̄3

R̄2 + |β| , (32)

which can be rewritten in terms of a = R/R0 as√
8πG

3
ρ0(t − t0) = ±I(a),

I(a) =
∫ a

1
dτ

√
τ 3

τ 2 + |β ′ | , β
′ = β

R2
0

.

(33)

In order to solve the integral appearing in the above expres-
sion we first rewrite it as follows:

I(a) =
∫ a

1
dτ

τ 2√
τ(τ 2 + |β ′ |) . (34)

Using 230.1 in [30] yields

I(a) = 1

3

[
2
√
a(a2 + |β ′ |) − 2

√
1 + |β ′ | − |β ′ |

×
∫ a

1

dτ√
τ(τ 2 + |β ′ |)

]
. (35)

At this point, it is convenient to split the integral above as∫ a

1

dτ√
τ(τ 2 + |β ′ |) =

∫ a

0

dτ√
τ(τ 2 + |β ′ |)

−
∫ 1

0

dτ√
τ(τ 2 + |β ′ |) . (36)

Both integrals on the r.h.s. of the above expression can be
computed by means of 239.00 in [30] and we find that∫ a

1

dτ√
τ(τ 2 + |β ′ |)

= 1

|β ′ |1/4
×
[
F

(
cos−1

(
|β ′ |1/2 − a

|β ′ |1/2 + a

)
,

1√
2

)

−F

(
cos−1

(
|β ′ |1/2 − 1

|β ′ |1/2 + 1

)
,

1√
2

)]
, (37)

where F(ϕ, k) denotes the elliptic integral of the first kind
with amplitude and modulus represented by ϕ and k, respec-
tively. Finally, we obtain

I(a) = 2

3

[√
a(a2 + |β ′ |) −

√
1 + |β ′ |

]

−|β ′ |3/4

3

[
F

(
cos−1

(
|β ′ |1/2 − a

|β ′ |1/2 + a

)
,

1√
2

)

−F

(
cos−1

(
|β ′ |1/2 − 1

|β ′ |1/2 + 1

)
,

1√
2

)]
. (38)

The results are plotted in Fig. 3. Following one branch, i.e.
one sign, we conclude that all universe are singular as they
start at zero (or end at zero). We conclude that in order to
get a non-singular universe in the case of negative β ′ the
equation of state plays a crucial role. Needless to say that at
the beginning of the universe a relativistic equation of state
is preferred.

123



543 Page 6 of 14 Eur. Phys. J. C (2016) 76 :543

Fig. 3 The same as in Fig. 2, but for the case of dust. See text for a
detailed discussion

4.2 Case β > 0

4.2.1 Radiation (γ = 4/3)

The solution is now given by

√
8πG

3
ρ0(t − t0) = ±1

2

R

R2
0

√
R2 − β ± 1

2

β

R2
0

× ln

[
R +

√
R2 − β

]
+ C (39)

whereC is a constant. In terms of a = R/R0 and implement-
ing the initial value explicitly it reads

τ =
√

8πG

3
ρ0(t − t0) = ±1

2

[√
a2 − β ′ −√1 − β ′

]

±1

2
β ′ ln

[
a + √

a − β ′
1 + √

1 − β ′

]
. (40)

We see that in general the case with γq > 0 imposes a certain
limit upon the value of R, namely R2 ≥ R2

min ≡ β or, equiv-
alently, a2 ≥ β ′. This is clearly reflected in Fig. 4 where we
have plotted the solutions.

Since according to (40) we obtain a solution if β ′ ≤ 1 we
note that all universes start (or end) at Rmin as expected as
long as β ′ is smaller than one. In the case that β ′ = 1 Rmin

is the position of the local minimum. This minimum joins
the two branches with different signs smoothly and gives
a unique solution. This universe is then different from the
others as it “comes” from infinity, reaches a minimum and
expands again.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

τ
0.5

1.5

2.5

a

β’ = 0.3
β’= 0.5
β’ = 1

 Radiation

Fig. 4 Cosmological solutions for the scale parameter a from the mod-
ified Friedmann equations. This figure displays the solution for the radi-
ation equation of state and positive β ′. See the text for more explanation

4.2.2 Dust (γ = 1)

We end up with the computation of the following integral:

τ =
√

8

3
πGρ0(t − t0) = ±I (a),

I (a) =
∫ a

1
dτ

τ 2√
τ(τ 2 − β

′
)
. (41)

If we apply 230.1 form [30] to I (a), we find that

I (a) = 1

3

[
2
√
a(a2 − β

′
) − 2

√
1 − β

′

+β
′
∫ a

1

dτ√
τ(τ 2 − β

′
)

]
. (42)

Since the integrand is real, we must require that 0 < β
′ ≤ 1.

It is convenient to rewrite the integral above as follows:
∫ a

1

dτ√
τ(τ 2 − β

′
)

=
∫ a

√
β

′
dτ√

τ(τ 2 − β
′
)

−
∫ 1

√
β

′
dτ√

τ(τ 2 − β
′
)
. (43)

The integrals appearing on the r.h.s. of the above expression
can be evaluated by means of 237.00 in [30] and we obtain

∫ a

1

dτ√
τ(τ 2 − β

′
)

=
√

2

(β
′
)1/4

⎡
⎣F

⎛
⎝sin−1

√
a −√β

′

a
,

1√
2

⎞
⎠

−F

(
sin−1

√
1 −

√
β

′
,

1√
2

)⎤
⎦ (44)

123



Eur. Phys. J. C (2016) 76 :543 Page 7 of 14 543

Fig. 5 Cosmological solutions for the scale parameter a from the mod-
ified Friedmann equations as in Fig. 4, but for dust. See the text for more
explanation

where F is the elliptic integral of the first kind. Hence, the
integral I (a) can be computed to be

I (a) = 2

3

[√
a(a2 − β

′
) −

√
1 − β

′
]

+
√

2

3
(β

′
)3/4

×
[
F

⎛
⎝sin−1

√
a −√β

′

a
,

1√
2

⎞
⎠

−F

(
sin−1

√
1 −

√
β

′
,

1√
2

)]
. (45)

The results are presented in Fig. 5. In the case of positive
β ′ there is not much difference if we change the equation of
state. Therefore, the interpretations are similar to the radia-
tion case and β ′ = 1 is again a special case.

In passing, we make a remark on the curvature scalar. The
general theory of relativity is defined by the Einstein equa-
tions. Our derivation of the modified Friedmann equation lies
outside these equations, but we can still interpret a(t) derived
from the Newtonian scheme as a model for a(t) appearing in
the Friedmann–Robertson–Walker–Lemaitre (FRWL) met-
ric

ds2 = −dt2 + a2(t)
[
dr2 + r2d	2

]
. (46)

The latter is a metric based on symmetries as homogeneity
and isotropy. In such a case, we are also allowed to calculate
the curvature scalar R. Alone from the FRWL metric one
obtains [31]

R = 6

[
ä

a
+
(
ȧ

a

)2
]

. (47)

Given our modified Friedmann equations for k = 0 and � =
0 for the radiation case (ρ(a) = ρ0a−4),

(
ȧ

a

)2

= 8πG

3

ρ0

a4 − 8πG

3

ρ0

a4

l2pγq

R2
0a

2
, (48)

ä

a
= −8πG

3

ρ0

a4 + 16πG

3

ρ0

a4

l2pγq

R2
0a

2
, (49)

the Ricci scalar takes the simple form

R = 16πG
ρ0β

′

a6 (50)

where β ′ = l2pγq
R2

0
. As long as a 
= 0 we do not have an initial

singularity. We know that the case that reproduces a smooth
bounce is the one in which we have β > 0 (β ′ > 0 and thus
γq > 0) and this particular case has a bound for the value
of β ′, namely β ′ ≤ 1, thus we have an upper bound on the
curvature given by

R ≤ 16πG
ρ0

a6 . (51)

An upper bound expression for the curvature is also found in
loop quantum cosmology [32] where the curvature can never
be larger than 31/ l2p.

5 Cosmological perturbations

The question how to handle cosmological perturbations with
the Newtonian (or related) scheme is an important one.
Indeed, it has been addressed in a number of papers [33–38]
without invoking the h̄-correction present in our Friedmann
equations.

The adequate theory of cosmological perturbations con-
sistent with general relativity requires a set up which goes
beyond the Newtonian approach presented in this paper even
in the case h̄ → 0. This is to say, the derivation of the Fried-
mann equation does not proceed as we have outlined it in the
beginning of our paper, but is based on a set of three equations
[39]. The first one is a version of the standard Poisson equa-
tion for the gravitational potential, the second one a version
of the continuity equation for the mass density and supple-
mented by an equation of motion (Euler equation). In the
above we used the phrase “version” since several different
schemes seem to co-exist (see [38] for a brief review). What
we could call the purely Newtonian approach starts with

∂ρ

∂t
+ ∇ · (ρv) = 0

∂v
∂t

+ (v · ∇)v = −∇ p

ρ
− ∇φ

∇2φ = 4πGρ

(52)
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and upon setting ∇ p = 0 (justified by homogeneity and
isotropy) leads to the Friedmann equations for matter as
known from general relativity. However, the perturbation the-
ory does not agree with general relativity [34,40]. For this
reason a Neo-Newtonian approach has been attempted which
is also not unique. The Neo-Newtonian type I approach is
based on the following equations:

∂ρ

∂t
+ ∇ · [(ρ + p)v] = 0

∂v
∂t

+ (v · ∇)v = − ∇ p

ρ + p
− ∇φ

∇2φ = 4πG(ρ + 3P),

(53)

which again, given the fact that ∇ p = 0 give rise to the
same standard Friedmann equations with k = 0 as well as
the continuity equation. When perturbation theory is applied
with this scheme the results agree with corresponding ones
in general relativity only if we restrict ourselves to the large
scale regime [36]. A better prediction is provided by the Neo-
Newtonian theory of type II based on a slightly different set
of equations:

∂ρ

∂t
+ ∇ · (ρv) + p∇ · v = 0

∂v
∂t

+ (v · ∇)v = − ∇ p

ρ + p
− ∇φ

∇2φ = 4πG(ρ + 3P),

(54)

which, given our argument for the choice of ∇ p = 0, just
yields the classical Friedmann and continuity equations for
k = 0. When perturbation theory is applied to the type II Neo-
Newtonian approach, the results are consistent with general
relativity under the condition of adiabatic pressure perturba-
tions and a constant equation of state parameter [37]. Finally,
the Hwang–Noh approach starting from [33]

ρ̇ + ∇
[(

ρ + P

c2

)
v
]

= 2

c2 v · ∇ p

v̇ + (v · ∇)v = −∇φ − 1

ρ + p
c2

(
∇ p + v ṗ

c2

)

∇2φ = 4πGρ

(55)

leads to the standard continuity equation and a modified
Friedmann equation of the form

Ḣ + H2 = −4πG

3
ρ − 1

ρ + p
c2

H ṗ. (56)

There exists also a modified Hwang–Noh [36] approach
whose Friedmann equation reads

Ḣ + H2 = −4πG

3
ρ(1 + 3ω) − H Ṗ

ρc2 + P
. (57)

The results of perturbation theory in the Hwang–Noh
schemes match the general relativistic perturbations in the
small scale limit [36].

Having briefly outlined the state of art of the cosmological
perturbations within a Newtonian or Neo-Newtonian scheme
the question arises which one is suitable when we switch on
the h̄-corrections. Moreover, it is apriori not obvious how
we could implement these quantum corrections within the
Neo-Newtonian theory. Since we are talking here about cor-
rections we suspect that the outcome of the analysis of the
perturbations will be similar to the results obtained without
the quantum corrections. But a detailed analysis which is
beyond the scope of the present paper would be in order.

6 The case with a cosmological constant

It is of some interest to treat the full Friedmann equation
with the quantum corrections and spatial flatness. Including
the cosmological constant �, the Friedmann equations read

H2 = 8

3
πGρ + 1

3
� − 8

3
πGρ

l2pγq

R2

d2R

dt2 = −4πG

3
(ρ + 3p) R + 1

3
�R + 4πGl2pγq

(ρ + p)

R
.

(58)

We will solve this case perturbatively.

6.1 Radiation (γ = 4/3)

The integral to be solved in the radiation case and nonzero
positive cosmological constant is

t − t0 = ± 1

R2
0

∫ R

R0

R2dR√
8πG

3 ρ0(R2 − β) + 1
3� R6

R4
0

, (59)

which we can also rewrite this in terms of a(t) and ρvac ≡
�

8πG as follows:

√
8πG

3
ρ0(t − t0) = ±I(a), I(a) =

∫ a

1
dτ f (τ ),

f (τ ) = τ 2√
τ 2 − β

′ + ετ 6
, ε = ρvac

ρ0
. (60)

Since ε � 1, the integrand appearing in I (a) can be
expanded in powers of the small parameter ε. Hence, we
have

f (τ ) = τ 2√
τ 2 − β

′ − τ 8

2(τ 2 − β
′
)3/2

ε + O(ε2). (61)
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Taking into account that

F0(a) =
∫ a

1
dτ

τ 2√
τ 2 − β

′ = β
′

2
ln

a +√a2 − β
′

1 +√1 − β
′

+a

2

√
a2 − β

′ − 1

2

√
1 − β

′ (62)

and

F1(a) = −1

2

∫ a

1
dτ

τ 8

(τ 2 − β
′
)3/2

= 35

32
(β

′
)3

× ln
1 +√1 − β

′

a +√a2 − β
′ − a

4
√
a2 − β

′

×
[
a6

3
+ 7

12
β

′
a4 + 35

24
(β

′
)2a2 − 35

8
(β

′
)3
]

− 1

4
√

1 − β
′

[
35

8
(β

′
)3 − 35

24
(β

′
)2 − 7

12
β

′ − 1

3

]
,

(63)

we find that a(t) is given at the first order in ε by the following
expression:

τ =
√

8πG

3
ρ0(t − t0) = ± [F0(a) + F1(a)ε] + O(ε2).

(64)

6.2 Dust (γ = 1)

In this case the integral to be solved has the form
√

8πG

3
ρ0(t − t0) = ±S(a), S(a) =

∫ a

1
dτg(τ ),

g(τ ) =
√

τ 3

τ 2 − β
′ + ετ 5

ε = ρvac

ρ0
. (65)

Expanding the integrand in powers of the small parameter ε

yields

g(τ ) =
√

τ 3

τ 2 − β
′ − τ 5

2(τ 2 − β
′
)

√
τ 3

τ 2 − β
′ ε + O(ε2).

(66)

First of all, observe that

∫ a

1
dτ

√
τ 3

τ 2 − β
′

=
∫ a

1
dτ

τ 2√
τ(τ 2 − β

′
)

= I (a) (67)

with I (a) given by (A.9). Let

G(a) = −1

2

∫ a

1
dτ

τ 5

(τ 2 − β
′
)

√
τ 3

τ 2 − β
′

= −1

2

∫ a

1
dτ

τ 7

(τ 2 − β
′
)
√

τ(τ 2 − β
′
)

= −1

2

∫ a

1

dτ√
τ(τ 2 − β

′
)

[
τ 5 + β

′
τ 3 + (β

′
)2τ

+ (β
′
)3

2(τ −√β
′
)

+ (β
′
)3

2(τ +√β
′
)

]
. (68)

Then the solution can be written as√
8πG

3
ρ0(t − t0) = ± [I (a) + G(a)ε] + O(ε2). (69)

The way to compute G is long and we give all the details in
the appendix.

7 Comparison with other models

7.1 Loop quantum gravity and Friedmann equations

For this section we will follow closely Refs. [41,42]. Let
us consider the mini-superspace approach to classical gen-
eral relativity for the k = 0 case. After defining appropri-
ate Ashtekar variables, c and p,1 which inherit the Poisson
bracket given by {c, p} = 8

3πGβBI (βBI is the Barbero–
Immirzi parameter2 and G is Newton’s constant), the gravi-
tational Hamiltonian constraint acquires the usual form

HG = − 6

β2
BI

c2
√|p|. (70)

The contribution for a massless and free scalar field with a
Hamiltonian constraint given by

Hφ = 8πG
p2
φ

|p|3/2 . (71)

Therefore, defining the Hubble parameter as H = ṗ/(2p)
and the matter density for the scalar field as ρ = p2

φ/(2|p|3),
we get the total Hamiltonian constraint as 16πG

(HG + Hφ

)
,

from which the usual Friedmann equation,

H2 = 8πG

3
ρ, (72)

which predicts the usual big-bang singularity (the volume of
the universe goes to zero at t = 0) can be recovered.

To proceed with quantization we have to promote HG to a
quantum operator. The impossibility lies in the fact that there
is not quantum operator associated to c. The usual way to cir-
cumvent this problem is called polymerization (see the [42]
and references therein for technical details on the procedure).

1 a2 = p and c = ȧ.
2 The value βBI ≈ 0.2375, as suggested by black hole physics, will be
considered along the rest of the manuscript.
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The important point is that the equations of motion derived
from certain Heff, given by ṗ = {p,Heff}, can be expressed
as a modified Friedmann equation, in the form

H2 = 8πG

3
ρ

(
1 − ρ

ρ
(LQG)
C

)
, (73)

where the critical density is given by

ρ
(LQG)
C = 3

8πGβ2
BIμ

2
0

≈ 0.41 ρp. (74)

The key point is that, in essence, the modified Friedmann
equation leads to a non-singular evolution. Moreover, ȧ van-
ishes at ρcrit and the universe bounces. In the limit μ0 → 0,
which corresponds to Gh̄ → 0, the critical density becomes
infinity and the classical singularity appears.

At this point some comments are in order. First of all, let
us recall that the h̄−corrections to the Friedmann equation
for the k = 0 case can be written as

H2 = 8πG

3
ρ

(
1 − β ′ 1

a2

)
. (75)

Therefore, some similarities and differences with the LQG-
corrected Friedmann equation, given by Eq. (73), are present.
For positive γq , as commented before, a constant critical den-
sity can be obtained within our model considering radiation,
although in this case the Friedmann equation is not com-
pletely similar to the LQG case. But qualitative similarities
persist. For negative γq given the different sign which appears
in Eq. (75) compared to that of Eq. (73), an immediate com-
parison between both predictions for the critical density is
not evident. Nevertheless we find a quantum effect for neg-
ative γq as the expanding universe starts at a finite nonzero
value for R. The crucial sign of γq will get also reflected in
comparison with models other than loop quantum gravity.

7.2 The generalized uncertainty principle,
Snyder-deformed algebra and Friedmann equations

As we have briefly commented, quantum corrections to the
Friedmann equation can be implemented by considering
Planck-scale modifications to the Hamiltonian constraint,
which lies at the heart of LQG. However, a different approach
can be considered. What is the effect, if there is any, of
deforming the usual Poisson brackets structure instead of
deforming the Hamiltonian constraint.

Without introducing Ashtekar variables, interestingly, the
generalized uncertainty principle (GUP) provides a theoreti-
cal framework where this deformation appears and a conse-
quence of the existence of a minimum length [43].

The starting point is the formulation of ordinary canonical
dynamics in FRW geometries. This dynamics is summarized
in the scalar constraint

H = −2πG

3

p2
a

a
− 3

8πG
ak + a3ρ = 0. (76)

Isotropy makes {a, pa} = 1 the only non-vanishing Poisson
bracket.

The equations of motion (in particular the Hubble equa-
tion) are easily deduced from the scalar constraint equation
(76) and from ȧ = {a,HE } and ṗa = {pa,HE }, where the
extended Hamiltonian is given by

HE = 2πG

3
N

p2
a

a
+ 3

8πG
Nak − Na3ρ = 0 + λ�. (77)

Here, N = N (t) is the lapse function, λ is a Lagrange mul-
tiplier and � is the momenta conjugate to N .

In the GUP framework, up to the first order in the defor-
mation parameter, α, the new Poisson bracket is {a, pa} =
1−2αpa . Using the new Hamilton’s equations and again Eq.
(76), the GUP-corrected Hubble equation acquires the form
[44]

H2 =
(

8πG

3
ρ − k

a2

)

×
[

1 − 2αa2

√
3

2πG

(
ρ − 3

8πG

k

a2

)1/2
]

. (78)

In particular, for the flat case (k = 0), the modified Hubble
equation reads

H2 = 8πG

3
ρ

(
1 − 2αa2

√
3

2πG
ρ1/2

)
. (79)

At this point, it is important to recall that GUP gives place to
a minimum length which, is this case, and taking α > 0, is
associated with the scale factor, a(t). Therefore the critical
density given by

ρc = 2πG

12α2a4 (80)

remains finite (this situation is reminiscent of the appearance
of a remnant mass in the GUP case for α > 0).

At this point it is interesting to consider some specific
models for matter in Eq. (79).

• radiation (γ = 4/3): In this case, Eq. (79) reads H2 =
8πG

3 ρ

(
1 − 2α

√
3

2πG ρ
1/2
0

)
and the critical density is

given by ρGU P
crit = πG/6α2.

• dust (γ = 1): In this case, Eq. (79) reads H2 =
8πG

3 ρ

(
1 − 2α

√
3

2πG ρ
2/3
0 ρ−1/6

)
and the critical density

is given by ρGU P
crit = ( 3

2πG

)3
(2α)6ρ4

0 .

A similar result can be obtained by invoking Snyder’s non-
commutative space, which gives place also to a deformed
Heisenberg algebra. In particular, the authors of Ref. [45],
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after replacing the usual Poissonian structure between a and
pa by {a, pa} = √

1 − αp2
a , obtained the following modified

Friedmann equation:

H2 =
(

8πG

3
ρ − k

a2

)[
1 − 3α

2πG
a2
(
a2ρ − 3

8πG
k

)]
.

(81)

Again considering the flat case the authors deduce

H2 = 8πG

3
ρ

(
1 − a4α

ρ

ρc

)
, (82)

where ρc = 2πG
3α

ρp. In this last step it is also assumed, as
a consequence of the deformed algebra, the existence of a
minimum length. Let us note again that α > 0 is necessary
to smooth out the singularity.

After considering Eq. (81) for radiation and dust matter,
we obtain

• radiation (γ = 4/3): H2 = 8πG
3 ρ

(
1 − 3α

2πG ρ0
)

and

ρ
Sny
crit = 2πG/3α.

• dust (γ = 1): H2 = 8πG
3 ρ

(
1 − 3α

2πG ρ
4/3
0 ρ−1/3

)
and

ρ
Sny
crit = ( 3α

2πG

)3
ρ4

0 .

Apart from comparing the critical density of our model,
both in the dust and radiation cases, with those present in the
previously mentioned approaches, it would also be interest-
ing to show if our modified Friedmann equation (in the flat
case) can be expressed in any of the forms predicted by LQG,
Snyder or GUP, for certain polytropic fluid.

Specifically, it can be shown that our modified (spatially
flat) Friedmann equation corresponds to

• Snyder’s Friedmann when γ = 2
• GUP’s Friedmann when γ = 8/3
• LQG’s Friedmann when γ = 2/3

The plausibility of the matter content is usually addressed
with the help of the energy conditions. Introducing the vari-
able ω = γ − 1, the energy conditions corresponding to
the fluids with an equation of state of the form p = ωρ, for
which ω = c2

s (the sound speed associated with this equation
of state), are [46]:

• weak: ρ + p ≥ 0, ρ ≥ 0 ↔ ω ≥ −1
• strong: ρ + p ≥ 0, ρ + 3p ≥ 0 ↔ ω ≥ −1/3
• dominant: ρ ≥ p ↔ −1 ≤ ω ≤ 1

In particular, our model reproduces Snyder’s corrections
to the Friedmann equation when ω = 1. This corresponds to a
ultrastiff or incompressible fluid which has been proposed as
a possible description of the very early universe [46]. More-
over, this fluid is equivalent to a free massless scalar [47].

For this fluid, all the energy conditions are satisfied. In case
of dealing with a ω = 5/3 fluid, the GUP case is reproduced.
In this situation, the dominant condition is violated. Finally,
our model reproduces the LQG-corrected Friedmann equa-
tion when ω = −1/3. Interestingly, again in this situation,
which corresponds to certain dark-energy model [48], all the
energy conditions are satisfied.

7.3 Entropy corrections and Friedmann equations

In recent years, quantum corrections to the Bekenstein–
Hawking entropy have been shown to be either logarithmic or
power-law. While the first kind of corrections usually arises
from a minimum length scenario (such as LQG, GUP, etc.)
(see [43] and references therein), the second one deals with
the entanglement of quantum fields inside and outside the
horizon [49]. Moreover, the deep connection between grav-
ity and thermodynamics, reinforced by Jacobson [50] and
Padmanabhan [51], made some authors [52] derive modified
Friedmann equations by using corrections to the entropy in
addition with the ideas explored in Refs. [50] and [51]. In
addition, the entropy approach developed by Verlinde [53]
has been employed [54], assuming power-law corrections to
the entropy, to obtain corrections to Friedmann equations.

Although the authors of [52] derive corrections to the
Friedmann equations, they depend on the detailed gravity–
thermodynamics connection. Even more, their main result
(regarding our work), which is for the flat case, can be
expressed as their Eq. (10), which reads

H2 [(1 + g(α, H)] = 8πG

3
ρ, (83)

where g is a complicated function of α, which is either the
parameter that goes with the log-correction (for instance,
α = −1/2 in LQG) or the power of the entropy correction,
and H . However, in spite of the formal similitude between
Eqs. (75) and (83), the dependence of Eq. (83) on H makes
the comparison between both approaches very difficult to
establish, unless some specific matter contents are consid-
ered.

In the case of power-law entropic corrections [54], the key
point is to notice that the Newtonian force gets corrected as

F = −GMm

R2

[
1 − α

2

(rc
R

)α−2
]

, (84)

where rc is some crossover scale model-dependent and α is,
as in the previous case, the power of the entropy correction.
For the flat case, the authors of Ref. [54] obtain

H2 = 8πG

3
ρ

[
1 − βPL

(rc
R

)α−2
]

, (85)

where, assuming again an equation of the state of the form
p = ωρ, βPL is given by βPL = α

2
3ω+1

3ω+α−1 . Therefore, in
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spite of the similarities, Eqs. (75) and (85) are not equivalent
under any circumstances (α = 0 → βPL = 0).

8 Conclusions

In this paper we have attempted a quantum cosmology based
on the quantum corrections to the Newtonian potential and
repeating the derivation of Friedmann equation within the
Newtonian formalism. The latter is well known to reproduce
the correct Friedmann equations. This is one or the reasons
why we believe that the quantum corrected equations might
hint toward what one might call the full fledged quantum
cosmology. Indeed, with a certain choice of the sign of the
quantum correction we qualitatively agree with other models
of a quantum universe. In such a case a collapsing universe
bounces off a minimum length proportional to the Planck
length and begins to expand again. Other quantum effects,
for the opposite sign of this correction, manifest themselves
in a spontaneously created universe at nonzero scale factor
again close to the Planck length. We believe that, at least qual-
itatively, these results go in the right and expected direction.
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Appendix: Evaluation of integrals

We need to compute five integrals. Employing 230.01 in [30]
yields
∫ a

1
dτ

τ 5√
τ(τ 2−β

′
)
= 1

9

[
2a3
√
a(a2−β

′
)−2

√
1−β

′ +7β
′

×
∫ a

1
dτ

τ 3√
τ(τ 2 − β

′
)

]
. (A.1)

Applying 230.01 in [30] to the last integral in the above
expression leads to∫ a

1
dτ

τ 3√
τ(τ 2−β

′
)
= 1

5

[
2a
√
a(a2−β

′
)−2

√
1−β

′ +3β
′

×
∫ a

1
dτ

τ√
τ(τ 2 − β

′
)

]
. (A.2)

Concerning the last integral appearing on the r.h.s. in the
expression above, we rewrite it as follows:

∫ a

1
dτ

τ√
τ(τ 2 − β

′
)

=
∫ a

1
dτ

√
τ

τ 2 − β
′

=
∫ a

√
β

′ dτ

√
τ

τ 2 − β
′ −

∫ 1

√
β

′ dτ

√
τ

τ 2 − β
′ , (A.3)

and by applying 237.04 in [30] we find that∫ a

1
dτ

τ√
τ(τ 2 − β

′
)

= √
2(β

′
)1/4

[∫ u1

0
du nc2u −

∫ ũ1

0
du nc2u

]
. (A.4)

Here, ncu = 1/cnu where cn is one of the Jacobian elliptic
functions and the associated amplitudes and moduli are given
by

ϕ = am u1 = sin−1

√
a −√β

′

a
, ϕ̃ = amũ1

= sin−1

√
1 −

√
β

′
, k2 = 1

2
= k̃2. (A.5)

Invoking 313.02 in [30] we find that∫
du nc2u = 1

k̂ ′ 2

[
k̂ ′ 2u − E(ϕ̂, k̂) + dnu tn u

]
(A.6)

where E denotes the elliptic integral of the second kind, k̂ ′ =√
1 − k̂2 is the complementary modulus, dn u and tn u =

snu/cnu are the Jacobi elliptic functions. Taking into account
that 111.00 and 122.01 in [30] imply that E(0, k) = 0 =
E(0, k̃), dn0 = 1, tn 0 = 0 and, moreover, k = k̃ = 1/

√
2,

we obtain∫ u1

0
du nc2u −

∫ ũ1

0
du nc2u

= u1 − ũ1 − 2 [E(ϕ, k) − E(ϕ̃, k)]

+2 (dnu1tn u1 − dnũ1tn ũ1) . (A.7)

On the other hand, 121.01 in [30] implies that u1 = F(ϕ, k)
and ũ1 = F(ϕ̃, k) with F denoting the elliptic integral of the
first kind. Moreover, 120.01 allows also to find that

dnu1 =
√

1 − k2 sin2 ϕ =
√
a +√β

′

2a
,

dnũ1 =
√

1 − k2 sin2 ϕ̃ =
√

1 +√β
′

2
.

Furthermore, by means of 121.00 in [30] we obtain

tn u1 =
√√√√a −√β

′
√

β
′ , tn ũ1 =

√√√√1 −√β
′

√
β

′ .

Hence, we conclude that∫ u1

0
du nc2u −

∫ ũ1

0
du nc2u = F(ϕ, k) − F(ϕ̃, k)
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−2 [E(ϕ, k) − E(ϕ̃, k)]

+
√

2

(β
′
)1/4

⎛
⎝
√
a2 − β

′

a
−
√

1 − β
′

⎞
⎠ . (A.8)

This implies that
∫ a

1
dτ

τ√
τ(τ 2 − β

′
)

= 2

(√
a(a2 − β

′
)

a
−
√

1 − β
′
)

+√
2(β

′
)1/4 {F(ϕ, k) − F(ϕ̃, k)

−2 [E(ϕ, k) − E(ϕ̃, k)]} , (A.9)

and it is straightforward to verify that
∫ a

1
dτ

τ 3√
τ(τ 2 − β

′
)

= 2(a2 + 3β
′
)

5a

√
a(a2 − β

′
)

−2

5
(1 + 3β

′
)

√
1 − β

′ + 3

5

√
2(β

′
)5/4 {F(ϕ, k)

−F(ϕ̃, k) − 2 [E(ϕ, k) − E(ϕ̃, k)]} . (A.10)

Finally, we find that
∫ a

1
dτ

τ 5√
τ(τ 2 − β

′
)

= 10a4 + 14β
′
(a2 + 3β

′
)

45a

×
√
a(a2 − β

′
) − 10 + 14β

′
(1 + 3β

′
)

45

√
1 − β

′

+ 7

15

√
2(β

′
)9/4 {F(ϕ, k) − F(ϕ̃, k)

−2 [E(ϕ, k) − E(ϕ̃, k)]} . (A.11)

Moreover, using 230.03 in [30] yields∫ a

1

dτ

(τ −√β
′
)
√

τ(τ 2 − β
′
)

= 1

2β
′

[
2
√

1 − β
′ − 2

√
a(a2 − β

′
)

+
∫ a

1
dτ

τ −√β
′

√
τ(τ 2 − β

′
)

]
. (A.12)

Rewriting the integral appearing in the r.h.s. of the above
expression as
∫ a

1
dτ

τ −√β
′

√
τ(τ 2 − β

′
)

=
∫ a

√
β

′ dτ

√√√√ τ −√β
′

t (τ +√β
′
)

−
∫ 1

√
β

′ dτ

√√√√ τ −√β
′

t (τ +√β
′
)

(A.13)

and applying 237.03 in [30] lead to∫ a

1

dτ

(τ −√β
′
)
√

τ(τ 2 − β
′
)

= √
2(β

′
)1/4

×
[∫ u1

0
du tn2u −

∫ ũ1

0
du tn2u

]
(A.14)

with u1 and ũ1 defined as in (A.5). By means of 316.02 in
[30] we find that

∫ u1

0
du tn2u −

∫ ũ1

0
du tn2u =

√
2

(β
′
)1/4

×
(√

a(a2 − β
′
)

a
−
√

1 − β
′
)

+2 [E(ϕ̃, k)−E(ϕ, k)] ,

(A.15)

and hence
∫ a

1
dτ

τ −√β
′

√
τ(τ 2 − β

′
)

= 2

(√
a(a2 − β

′
)

a
−
√

1 − β
′
)

+2
√

2(β
′
)1/4 [E(ϕ̃, k) − E(ϕ, k)] . (A.16)

Finally, we obtain
∫ a

1

dτ

(τ −√β
′
)
√

τ(τ 2 − β
′
)

= −(a−1)

√
a(a2−β

′
)

aβ ′ +
√

2

(β
′
)3/4

[E(ϕ̃, k) − E(ϕ, k)] .

(A.17)

Observe that∫ a

1

dτ

(τ +√β
′
)
√

τ(τ 2 − β
′
)

=
∫ a

√
β

′
dτ

(τ +√β
′
)
√

τ(τ 2 − β
′
)

−
∫ 1

√
β

′
dτ

(τ +√β
′
)
√

τ(τ 2 − β
′
)
. (A.18)

By means of 237.13 in [30] and taking into account that
sn0 = 0 and cd0 = 1 by 122.01 in [30], we get

∫ a

1

dτ

(τ +√β
′
)
√

τ(τ 2 − β
′
)

=
√

2

(β
′
)3/4

×
[
u1−ũ1+E(ϕ̃, k)−E(ϕ, k)+ 1

2
(snu1cdu1−snũ1cdũ1)

]

(A.19)

with u1, ũ1, and k given by (A.5). By means of the relation
sn2u + cn2u = 1, it is not difficult to verify that cnu1 =
(β

′
)1/4/

√
a and cnũ1 = (β

′
)1/4 and hence, we have

cdu1 = cnu1

dnu1
=

√
2(β

′
)1/4√

a +√β
′
,

cdũ1 = cnũ1

dnũ1
=

√
2(β

′
)1/4√

1 +√β
′
. (A.20)
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At this point it is straightforward to verify that∫ a

1

dτ

(τ +√β
′
)
√

τ(τ 2 − β
′
)

= 1√
β

′

(√
a(a2 − β

′
)

a(a +√β
′
)

−
√

1 − β
′

1 +√β
′

)

+
√

2

(β
′
)3/4

[F(ϕ, k) − F(ϕ̃, k) + E(ϕ̃, k) − E(ϕ, k)] .

(A.21)

With the help of (A.9), (A.10), (A.11), (A.17), and (A.21)
we find that

G(a) = −
√
a(a2 − β

′
)

a

×
[

20a4 + 64β
′
a2 − 45(β

′
)2a + 417(β

′
)2

180
+ (β

′
)3

4(a +√β
′
)

]

+
√

1 − β
′
[

31

15
(β

′
)2 + 16

45
β

′ + 1

9
+ (β

′
)3

4(a +√β
′
)

]

−77

60

√
2(β

′
)9/4 {F(ϕ, k)−F(ϕ̃, k)−2 [E(ϕ, k)−E(ϕ̃, k)]} .

This completes the derivation.
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