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Abstract The leading-order spin–orbit coupling is in-
cluded in a post-Newtonian Lagrangian formulation of spin-
ning compact binaries, which consists of the Newtonian term,
first post-Newtonian (1PN) and 2PN non-spin terms and 2PN
spin–spin coupling. This leads to a 3PN spin–spin coupling
occurring in the derived Hamiltonian. The spin–spin cou-
plings are mainly responsible for chaos in the Hamiltonians.
However, the 3PN spin–spin Hamiltonian is small and has
different signs, compared with the 2PN spin–spin Hamilto-
nian equivalent to the 2PN spin–spin Lagrangian. As a result,
the probability of the occurrence of chaos in the Lagrangian
formulation without the spin–orbit coupling is larger than that
in the Lagrangian formulation with the spin–orbit coupling.
Numerical evidences support this claim.

1 Introduction

On February 11, 2016, the LIGO Scientific Collaboration
and Virgo Collaboration announced the detection of gravita-
tional wave signals (GW150914), sent out from the inspiral
and merger of a pair of black holes with masses 36M� and
29M� [1]. The gravitational wave discovery directly con-
firmed a major prediction of Albert Einstein’s 1915 general
theory of relativity. The LIGO project was originally pro-
posed in the 1980s and its initial funding was approved in
1992. Since then, the dynamics of spinning compact binaries
has received more attention. A precise theoretical waveform
template is necessary to match with gravitational wave data.
As a kind of description of the waveforms and dynamical evo-
lution equations, the post-Newtonian (PN) approximation to
general relativity was used. Up to now, the PN expansion of
the relativistic spinning two-body problem has provided the
dynamical non-spin evolution equations and the spin evolu-
tion equations to fourth post-Newtonian (4PN) order [2–7].
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A key feature of the gravitational waveforms from a
chaotic system is the extreme sensitivity to initial conditions
[8–10], and therefore the chaos is a possible obstacle to the
method of matched filtering. For this reason, several authors
were interested in the presence or absence of chaotic behavior
in the orbital dynamics of spinning black hole pairs [11–17].
There were three debates about this topic.

Sixteen years ago fractal methods were used to show that
the 2PN harmonic-coordinate Lagrangian formulation of two
spinning black holes admits chaotic behavior [11]. Here the
Lagrangian includes contributions from the Newtonian, 1PN
and 2PN non-spin terms and the effects of spin–orbit and
spin–spin couplings.1 However, the authors of [12] made an
opposite claim on ruling out chaos in compact binary sys-
tems by finding no positive Lyapunov exponents along the
fractal of [11]. The authors of [18,19] refuted this claim by
finding positive Lyapunov exponents, and pointed out that
the reason for the false Lyapunov exponents obtained in Ref.
[12] lies in using the Cartesian distance between two nearby
trajectories by continually rescaling the shadow trajectory.
This is a debate with respect to Lyapunov exponents result-
ing in two different claims on the chaotic behavior of com-
parable mass spinning binaries. In fact, the true reason for
the discrepancy was found in Ref. [20] and should be that
different treatments of the Lyapunov exponents were given
in Refs. [12,18,19]. The authors of [12] used the stabiliz-
ing limit values as the values of the Lyapunov exponents,
whereas those of [18,19] used the slopes of the fit lines. It is
clear that obtaining the limit values requires more CPU time
than obtaining the slopes.

A second debate is concerned with different descriptions
of chaotic regions and parameter spaces. It was reported in
Ref. [21] that increasing the spin magnitudes and misalign-
ments leads to the transition to chaos, and the strength of

1 The leading-order spin–orbit coupling is at 1.5PN order and the
leading-order spin–spin coupling is at 2PN order.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4339-7&domain=pdf
mailto:xwu@ncu.edu.cn


488 Page 2 of 10 Eur. Phys. J. C (2016) 76 :488

chaos is the largest for the spins perpendicular to the orbital
angular momentum. However, an entirely different descrip-
tion from Ref. [22] is that chaos occurs mainly when the
initial spins are nearly antialigned with the orbital angular
momentum for the binary configuration of masses 10M� and
10M�. These descriptions seem to be apparently conflicting,
but they can all be correct, as mentioned in Ref. [23]. This
is because a complicated combination of all parameters and
initial conditions rather than a single physical parameter or
initial condition is responsible for yielding chaos. No uni-
versal rule can be given to dependence of chaos on each
parameter or initial condition.

A third debate is related with the different dynamical
behaviors of PN Lagrangian and Hamiltonian conservative
systems at the same order. Ten years ago, the 2PN harmonic
coordinate Lagrangian formulation of the two-black hole
system with one body spinning was numerically proved to
be chaotic in [21,24], but the 2PN Arnowitt–Deser–Misner
(ADM) Hamiltonian formulation of the two-black hole sys-
tem with one body spinning was analytically shown to be
integrable and non-chaotic in [25,26]. In fact, this debate
deals with a question whether the Lagrangian and Hamil-
tonian formulations are equivalent. The equivalence of the
ADM Hamiltonian and the harmonic coordinate Lagrangian
approaches at 3PN order were proved by two groups [27–29].
This result is still correct for approximation accuracy to next-
to-next-to-leading (4PN) order spin1–spin2 couplings [4]. In
spite of this, Levin [24] found on the basis of the two opposite
claims that the PN Lagrangian and Hamiltonian approaches
are not exactly equal but are approximately related. It was fur-
ther pointed out that the dynamical difference between the
two approaches is due to replacing the acceleration in higher-
order terms of the Euler–Lagrange equations with lower-
order terms but exactly deriving the equations of motion from
the Hamiltonian formalism. Approximately conserving the
constants of motion in the Lagrangian system but exactly
conserving them in the Hamiltonian system is also a simi-
lar reason. Recently, Wu et al. [30] revisited this question.
In their opinion, besides the two differences, two other dif-
ferences exist. Substituting lower-order terms for the accel-
erations in higher-order terms of the PN harmonic coordi-
nate generalized Lagrangian formalism depending on coor-
dinates, velocities, and accelerations leads to the occurrence
of approximations, but no such substitution is required for the
ADM Hamiltonian formalism of coordinates and momenta.
In addition, approximations must arise when the transforma-
tion between the ADM and harmonic coordinates is made.
For the sake of a true description of the relation between
the PN Lagrangian and Hamiltonian systems, the four dif-
ference sources should be avoided. An example satisfying
these requirements is a special two-black hole system with
two bodies spinning, whose ADM Lagrangian formulation
includes the Newtonian term and the 1.5PN spin–orbit cou-

pling. This Lagrangian is exactly equivalent to a full ADM
Hamiltonian2 with the Newtonian term, the 1.5PN spin–orbit
coupling, and the 3PN spin–spin coupling, but it is not iden-
tical to the truncated Hamiltonian with the Newtonian term
and the 1.5PN spin–orbit coupling. It is clear that the 3PN
spin–spin coupling is a difference between the Lagrangian
and the truncated Hamiltonian. This difference leads to the
non-integrability of the Lagrangian and the integrability of
the truncated Hamiltonian. Here are some details as regards
this result. The truncated Hamiltonian contains five inde-
pendent integrals of motion consisting of the total energy,
the total angular momentum vector and the amplitude of the
orbital angular momentum. As to the conserved amplitudes
of the spins, they are used to construct the canonical, con-
jugate spin variables [31]. The five independent integrals in
a ten-dimensional phase space can sufficiently support the
integrability of the truncated Hamiltonian. However, the 3PN
spin–spin term gives rise to the loss of the constant ampli-
tude of the orbital angular momentum in the full Hamiltonian.
Therefore, the full Hamiltonian is no longer integrable, and
its equivalent Lagrangian can be chaotic under appropriate
circumstances. It should be emphasized that the presence
of the five independent integrals in the truncated Hamil-
tonian and the existence of the four independent integrals
in the full Hamiltonian (i.e. the Lagrangian) are indepen-
dent of the choice of coordinates or gauges. Even if the two
Hamiltonians are expressed in terms of action-angle vari-
ables rather than coordinates and are coordinate (or gauge)
invariant [32–34], these integrals still exist. The integrabil-
ity or non-integrability of these systems does not depend on
the choice of coordinates. As an important result given in
[30], truncating higher-order PN terms are responsible for
causing dynamical differences between the PN Lagrangian
and Hamiltonian formulations at the same order. In partic-
ular, these differences cannot always be avoided regardless
of the Hamiltonians expressed in terms of the action-angle
variables if the truncation of higher-order terms occurs. The
equivalence claimed in Refs. [4,25,26] is unlike that of [30]
and means that all the known results of the ADM Hamilto-
nian approach can be transferred to those of the harmonic-
coordinate Lagrangian approach, or all the known results of
the harmonic-coordinate Lagrangian approach can be trans-
ferred to those of the ADM Hamiltonian approach. Notic-
ing that the Euler–Lagrange equations and the constants
of motion are generally approximate in a PN Lagrangian
system but exact in its related Hamiltonian, perhaps one
would believe in the preference of the Hamiltonian formal-
ism over the Lagrangian formalism in the study of chaos.
This point of view is problematic because it is unclear
which of the Lagrangian and Hamiltonian formalisms can

2 The full Hamiltonian represents that no truncated terms occur in this
Hamiltonian derived from the Lagrangian.
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truly describe a real physical system. For example, is the
Hamiltonian formalism truer in describing the two-black
hole system including the Newtonian term and the 1.5PN
spin–orbit coupling than the Lagrangian formalism? No one
has answered this question. In fact, a Lagrangian formal-
ism is approximate in general at the same PN order if it is
derived from a Hamiltonian formalism; on the contrary, a
Hamiltonian formalism is approximate in most cases if it is
derived from a Lagrangian formalism. When a Lagrangian
formalism is exactly equivalent to a Hamiltonian formal-
ism, it is of course better to apply the Hamiltonian formal-
ism to investigate the chaotic dynamics. This is because the
Hamiltonian formalism can exactly provide the equations of
motion and some constants of motion, and it has many advan-
tages on the properties of a canonical system.3 Fortunately,
another important result of [30] is that for a lower-order PN
Lagrangian formulation with Euler–Lagrange equations to
an infinite PN order there always exists a formally equiv-
alent PN Hamiltonian at the infinite order from a theoret-
ical point of view or a certain finite order from a numeri-
cal point of view. This result is supported analytically and
numerically via a special 1PN Lagrangian formulation of a
relativistic circular restricted three-body problem with the
Euler–Lagrange equations and the equivalent Hamiltonian
as a converging Taylor series [36]. Thus, the integrability
or non-integrability of a PN Lagrangian formalism can be
shown in terms of that of its formal equivalent PN Hamil-
tonian. Since a conservative PN Hamiltonian of compara-
ble mass compact binaries with one body spinning has four
integrals of the total energy and total angular momentum in
an eight-dimensional phase space, it is integrable and non-
chaotic. This also shows the integrability of any conservative
PN Lagrangian of comparable mass compact binaries with
one body spinning. Stated succinctly, neither the conserva-
tive PN Lagrangian dynamics of comparable mass compact
binaries with one body spinning nor the conservative PN
Hamiltonian dynamics of comparable mass compact bina-
ries with one body spinning is chaotic [31]. The debate on
the two different claims of the chaotic behavior between
the PN Lagrangian and Hamiltonian formulations of com-
parable mass compact binaries with one body spinning was
ended.

As was mentioned above, one of the main results of
[30,36] is that for a PN Lagrangian approach at a certain

3 As one of the properties, the number of first integrals equal to half the
dimension of phase space of an autonomous canonical Hamiltonian is
often sufficient to determine the integrability of this system [35]. How-
ever, the number of first integrals less than half the dimension shows
the non-integrability and chaos becomes possible. Notice that the inte-
grability of an autonomous non-canonical system such as a Lagrangian
system needs the number of first integrals equal to the dimension of
phase space. This property is a main reason that the mathematical the-
ory of chaos is based on Hamiltonian techniques.

order there always exists a formally equivalent PN Hamil-
tonian. This is helpful for us in our study of the Lagrangian
dynamics using the Hamiltonian dynamics. Following this
direction, we shall revisit the 2PN ADM Lagrangian dynam-
ics of two spinning black holes [11], in which the New-
tonian, 1PN and 2PN non-spin terms and the 1.5PN spin–
orbit and 2PN spin–spin contributions are included. A com-
parison between the Lagrangian and related Hamiltonian
dynamics will be made, and the question of how the orbit–
spin coupling exerts influence on chaos resulting from the
spin–spin coupling in the Lagrangian will be particularly
discussed. The present investigation is unlike [11], where
the onset of chaos in the 2PN Lagrangian formulation
was mainly shown. It is also unlike Ref. [38], where the
effect of the orbit–spin coupling on the strength of chaos
caused by the spin–spin coupling was considered but the
1PN and 2PN non-spin terms were not included in the
Lagrangian.

In our numerical computations, the velocity of light c and
the constant of gravitation G are taken as geometrized units,
c = G = 1.

2 Post-Newtonian approaches

Suppose that compact binaries have masses M1 and M2; then
their total mass is M = M1 + M2. Other parameters are the
mass ratio β = M1/M2, the reduced mass μ = M1M2/M
and the mass parameter η = μ/M = β/(1+β)2. In the ADM
center-of-mass coordinate system, r is a relative position of
body 1 to body 2, and v is a relative velocity. Let the unit
radial vector ben = r/r with radius r = |r|. The evolution of
spinless compact binaries can be described by the following
PN Lagrangian formulation:

L0 = LN + 1

c2 L1PN + 1

c4 L2PN. (1)

The above three parts are the Newtonian term LN , the first-
order PN contribution L1PN, and the second-order PN con-
tribution L2PN. They are expressed in [39] as

LN = 1

r
+ v2

2
, (2)

L1PN = 1

8
(1 − 3η)v4 + 1

2
[(3 + η)v2 + η(n · v)2]1

r

− 1

2r2 , (3)

L2PN = 1

16
(1 − 7η + 13η2)v6 + 1

8
[(7 − 12η − 9η2)v4

+ (4 − 10η)η(n · v)2v2 + 3η2(n · v)4]1

r

123



488 Page 4 of 10 Eur. Phys. J. C (2016) 76 :488

+ 1

2
[(4 − 2η + η2)v2 + 3η(1 + η)(n · v)2] 1

r2

+ 1

4
(1 + 3η)

1

r3 . (4)

In fact, these dimensionless equations deal with the use of
a scale transformation: r → GMr , t → GMt , and L0 →
μL0. In terms of a Legendre transformation H0 = p ·v− L0

with momenta p = ∂L/∂v, we have the following Hamilto-
nian:

H0 = HN + 1

c2 H1PN + 1

c4 H2PN, (5)

where these sub-Hamiltonians are

HN = p2

2
− 1

r
, (6)

H1PN = 1

8
(3η − 1)p4 − 1

2
[(3 + η)p2 + η(n · p)2]1

r

+ 1

2r2 , (7)

H2PN = 1

16
(1 − 5η + 5η2)p6 + 1

8
[(5 − 20η − 3η2)p4

− 2η2(n · p)2p2 − 3η2(n · p)4]1

r
+ 1

2
[(5 + 8η)

×p2 + 3η(n · p)2] 1

r2 − 1

4
(1 + 3η)

1

r3 . (8)

The two Hamiltonians H1PN and H2PN are the results of Refs.
[32] and [39]. Besides them, other higher-order PN terms can
be derived from the Lagrangian L0. For example, a third-
order PN sub-Hamiltonian was given in [30] by

H3PN = 3

16
(−η + 7η2 − 12η3)p8 + 1

8r
[(2 − 7η + 3η2

+ 30η3)p6 + (4η − 11η2 + 36η3)(n · p)2p4

+ 6(η2 − 3η3)(n · p)4p2] + 1

4r2 [(5 + 18η

+ 21η2 − 9η3)p4 + 4(5η2 + 2η3)(n · p)4

+ (14η − 7η2 − 27η3)(n · p)2p2]
+ 1

2r3 [(−3 − 31η − 7η2 + η3)p2

+ (−η − η2 + 7η3)(n · p)2]. (9)

It is due to the coupling of the 1PN term L1PN and the 2PN
term L2PN in the Lagrangian L0. In fact, this Hamiltonian
plus the 3PN Hamiltonian from the 3PN Lagrangian of [39]
is in perfect agreement with the full 3PN Hamiltonian derived
in [39–43]. Since the difference between the 2PN Lagrangian
L0 and the 2PN Hamiltonian H0 is at least 3PN order, the two
PN approaches are not exactly equivalent. Clearly, a Hamil-
tonian that is equivalent to the 2PN Lagrangian4 cannot be

4 Here, the equations of motion derived from this Lagrangian are
required to reach a high enough order or an infinite order.

at second order but should be at a high enough order or an
infinite order. This is one of the main results of [30].

When the two bodies spin, some spin effects should
be considered. Now, the leading-order spin–spin coupling
interaction L2ss, as one kind of spin effect, is included in
the Lagrangian L0. In this sense, the Lagrangian obtained
becomes

L1 = L0 + L2ss, (10)

where

L2ss = − 1

2r3

[
3

r2 (S0 · r)2 − S0
2
]

,

S =
(

2 + 3

2β

)
S1 +

(
2 + 3β

2

)
S2, (11)

S0 =
(

1 + 1

β

)
S1 + (1 + β)S2.

Note that each spin variable is dimensionless, namely, Si =
Si Ŝi with spin magnitude Si = χi Mi

2/M2 (0 ≤ χi ≤ 1)

and three-dimensional unit vector Ŝi . Because L2ss is inde-
pendent of the velocity, it does not couple the 1PN term L1PN

or the 2PN term L2PN via the Legendre transformation. It is
only converted to a spin–spin coupling Hamiltonian,

H2ss = −L2ss. (12)

The leading-order spin–spin Hamiltonian H2ss is the same as
that in Ref. [44], and it includes the leading-order spin(a)–
spin(b) part and the leading-order spin(a)–spin(a) part. It is
also consistent with that in Refs. [45,46], but the scale factors
are different. Adding this term to the Hamiltonian H0, we
have the following Hamiltonian:

H1 = H0 + H2ss. (13)

When another kind of spin effect, the leading-order spin–
orbit coupling L1.5so, is further included in the above-
mentioned Lagrangian L1, we obtain a Lagrangian formu-
lation [11] as follows:

L2 = L1 + L1.5so, (14)

L1.5so = − 1

r3 S · (r × v). (15)

Unlike L2ss, L1.5so depends on the velocity. Therefore, the
Legendre transformation results in the appearance of the
leading-order spin–orbit Hamiltonian H1.5so obtained from
the coupling of the Newtonian term LN and the spin–orbit
term L1.5so, the next-order spin–orbit Hamiltonian H2.5so

obtained from the coupling of the 1PN term L1PN and the
spin–orbit term L1.5so and the next-order spin–spin Hamilto-
nian H3ss obtained from the coupling of the leading-order
spin–orbit term L1.5so and itself. These Hamiltonians are
written in [30] as

H1.5so = −L1.5so|v→p, (16)
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H2.5so = 1

r3

(
3η − 1

2
p2 − 3 + η

r

)
S · (r × p), (17)

H3ss = 1

2r6 [r2S2 − (S × r)2]. (18)

Notice that H1.5so is the result of [44]. Additionally, the next-
to-leading (3PN) order spin–spin coupling Hamiltonian H3ss

is only a part of that in Refs. [45,46], but different scale
factors are used. If the full 3PN spin–spin Hamiltonian in
Refs. [45,46] is derived from a PN Lagrangian formulation,
it is from the 3PN order spin–spin couplings L3ss in the
Lagrangian as well as the coupling of the leading-order spin–
orbit term L1.5so and itself in the Lagrangian. That is to say,
this Lagrangian should be equal to L2 plus L3ss. Similarly,
H2.5so is not a full next-to-leading-order spin–orbit coupling
Hamiltonian. In fact, the full 2.5PN spin–orbit Hamiltonian
should be equal to the Hamiltonian (17) plus the 2.5PN spin–
orbit Hamiltonian from the 2.5PN spin–orbit Lagrangian.
Now, we take three Hamiltonians:

H2 = H1 + H1.5so, (19)

H3 = H2 + H2.5so + H3PN, (20)

H4 = H3 + H3ss. (21)

Of the three Hamiltonians, H4 is the best approximation to the
Lagrangian L2 although the two are not exactly equivalent.

Let us investigate the integrability or non-integrability of
these PN Lagrangian and Hamiltonian systems. First, we
consider the case without the terms L1PN, L2PN and L2ss

in the Lagrangian L2, i.e. L̃A = LN + L1.5so. As was
claimed in [30], L̃A is not equivalent to H̃A1 = HN + H1.5so

but is exactly equivalent to H̃A2 = HN + H1.5so + H3ss.
The system H̃A1 holds five exact constants of motion: these
are the total energy E = H̃A1, the total angular momen-
tum vector J = L + S1 + S2, and the amplitude |L| of
the orbital angular momentum L = r × p. However, the
amplitude |L| is no longer invariant due to the presence
of H3ss in the system H̃A2. When the conserved ampli-
tudes of the two spins are used to construct the canonical,
conjugate spin variables [31], each of H̃A1 and H̃A2 has
a ten-dimensional phase space. Consequently, the dynam-
ics of H̃A1 is integrable and regular but that of H̃A2 (i.e.
L̃A) is non-integrable and possibly chaotic. Numerical evi-
dence showed the chaoticity of the system L̃A and the reg-
ularity of the system H̃A1 [30].5 Second, when the terms
L1PN and L2PN are included in the system L̃A, i.e. L̃B =
L̃A + L1PN + L2PN, no exactly equivalent Hamiltonians
but approximately related Hamiltonians can be given, e.g.,
H̃B1 = H̃A1 + H1PN + H2PN, H̃B2 = H̃B1 + H3PN + H2.5so

5 The authors of [30] gave another typical example for supporting some-
what nonequivalent dynamics between the 1PN Lagrangian and Hamil-
tonian approaches of a special relativistic circular restricted three-body
problem with the 1PN contribution from the circular motion of the pri-
maries.

and H̃B3 = H̃A2 + H1PN + H2PN + H3PN + H2.5so. For
the case of two bodies spinning, the five exact integrals (E ,
J and |L|) still show the integrability of H̃B1 and H̃B2,
but the four exact integrals (E and J) determine the non-
integrability of H̃B3. As far as the dynamics of L̃B is con-
cerned, the Euler–Lagrange equations are accurate to second
order. L̃B should have four exact integrals of the total energy
and the total angular momentum vector from the physical
point of view, but give only four approximate integrals from
the mathematical point of view. The approximate energy inte-
gral may be one of H̃B1, H̃B2 and H̃B3, and the approximate
angular momentum integral is J with p = v. Regardless
of these integrals being approximate or exact, the inclusion
of L1PN and L2PN does not destroy the non-integrability of
L̃A. That means that L̃B is not integrable. Third, when L2ss

is added to L̃B , L2 is obtained and is similar to the sec-
ond case. In this case, the presence of the 2PN spin–spin
coupling or the 3PN spin–spin coupling in the systems L1,
L2, H1, H2, H3, and H4 leads to the non-integrability of
these systems without doubt. As was mentioned in the Intro-
duction, the existence of the exact (or approximate) inte-
grals of motion in these systems is physical and does not
depend on the choice of coordinates or gauges. That is to
say, the integrability or non-integrability of these systems
is completely independent of the choice. If k first integrals
exist in an autonomous canonical Hamiltonian system, then
k cyclic coordinates appear in principle in this Hamiltonian
expressed by action-angle variables that render the Hamil-
tonian coordinate (or gauge) invariant. It is easy to apply
the action-angle variables for the circular orbits of some
integrable Hamiltonian systems without the spin–spin cou-
plings in [32–34], but it is difficult to do so for generic orbits
or the inclusion of the spin–spin couplings in the present
case.

Clearly, the above-mentioned same PN order Lagrangian
and Hamiltonian approaches (e.g. L2 and H2) have to a
large extent dynamical differences because of many higher-
order terms having been truncated. Only if these higher-
order terms truncated would exist, would the differences
between the PN Lagrangian and Hamiltonian approaches be
present, and do approximations also occur even if action-
angle variables are used. Now, we are mainly interested in
how the spin–orbit coupling L1.5so affects the chaotic behav-
ior yielded by the spin–spin coupling L2ss in the above
Lagrangians. In other words, we should compare and see the
differences between the L1 and L2 dynamics. Considering
that the 2PN spin–spin coupling H2ss is equivalent to L2ss

and the 3PN spin–spin coupling H3ss associated to L1.5so

plays an important role in the onset of chaos in the Hamil-
tonians, we should also focus on differences between the
H3 and H4 dynamics. These discussions will properly be
presented in the context of the following numerical simula-
tions.
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(b)(a)

Fig. 1 Hamiltonian errors of the 2PN Lagrangian and Hamiltonian
approaches, L2 and H2. a The RKF8(9) is used to solve the Euler–
Lagrangian equations of L2 so as to obtain the difference �H between

the Hamiltonian H2(t) at time t and the initial Hamiltonian H2(0). b
The integrator directly solves the Hamiltonian H2 and we obtain the
difference �H

−10
0

10−10

0

10

−5

0

5
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Y

Z

L2
H2(a) (b)

Fig. 2 Comparison of orbits in the 2PN Lagrangian and Hamiltonian approaches, L2 and H2. a The orbits projected onto the X–Y plane, and b
the orbits in the three-dimensional Euclidean space

3 Numerical comparisons

Let us take initial conditions r(0) = (17.04, 0, 0), v(0) =
(0, 0.094, 0), dynamical parameters χ1 = χ2 = 1, β = 0.79,
and initial unit spin vectors

Ŝ1 = (0.1, 0.3, 0.8)/
√

0.12 + 0.32 + 0.82,

Ŝ2 = (0.7, 0.3, 0.1)/
√

0.72 + 0.32 + 0.12.

An eighth- and ninth-order Runge–Kutta–Fehlberg algo-
rithm of variable step sizes [RKF8(9)] is used to solve the
related Lagrangian and Hamiltonian systems. This algorithm
is highly precise. In fact, it gives an order of 10−11 to the
accuracy of the Lagrangian L2 and an order of 10−12 to the
accuracy of the Hamiltonian H2, as shown in Fig. 1. Here,
the errors of L2 and H2 were estimated according to two
different integration paths. The error of L2, i.e., the error
of H2, was obtained by applying the RKF8(9) to solve the
2PN Lagrangian equations of L2, while the error of H2 was
given by applying the RKF8(9) to solve the 2PN Hamiltonian
equations of H2. Although the errors have secular changes,
they are so small that the obtained numerical results should
be reliable.

The evolution of the orbit in Fig. 2 demonstrates that
the same-order Lagrangian and Hamiltonian formulations
L2 and H2 diverge quickly from the same starting point.
This supports again the general result of [30] on the
non-equivalence of the PN Lagrangian and Hamiltonian
approaches at the same order.

For the given orbit, we investigate dynamical differ-
ences among some Lagrangian and Hamiltonian formula-
tions using several methods to find chaos.

3.1 Chaos indicators

A power spectral analysis method is based on a Fourier trans-
formation and gives the distribution of frequencies to a cer-
tain time series. It can roughly detect chaos from order. Dis-
crete frequencies are usually regarded as power spectra of
regular orbits, whereas continuous frequencies are gener-
ally referred to as power spectra of chaotic orbits. In light
of this criterion, the distributions of continuous frequency
spectra in Fig. 3a and d–f seem to show the chaoticity of the
Lagrangian L1 and the Hamiltonians H2, H3, and H4. On the
other hand, the distributions of discrete frequency spectra in
Fig. 3b, c describe the regularity of the Hamiltonians H1 and
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(a) (b) (c)

(d) (e)
(f)

Fig. 3 Power spectra of six PN approaches

(a) (b)

Fig. 4 Lyapunov exponents λ of six PN approaches

the Lagrangian L2. It is sufficiently proved that the same PN
order Lagrangian and Hamiltonian approaches (L1 and H1,
L2 and H2) have different dynamics. It is worth emphasizing
that the method of power spectra is ambiguous in differentiat-
ing among complicated periodic orbits, quasiperiodic orbits,
and weakly chaotic orbits. Therefore, more reliable qualita-
tive methods should necessarily be used.

As a common method to distinguish chaos from order,
a Lyapunov exponent characterizes the average exponential
deviation of two nearby orbits. The variational method and
the two-particle one are two algorithms for calculating the
Lyapunov exponent [47,48]. Although the latter method is
less rigorous than the former method, its application to a com-
plicated system is more convenient. For the use of the two-
particle method, the principal Lyapunov exponent is defined
as

λ = lim
t→∞

1

t
ln

d(t)

d(0)
, (22)

where d(0) and d(t) are the separations between two neigh-
boring orbits at times 0 and t , respectively. The best choice
of the initial separation d(0) is an order of 10−8 under the
circumstance of double precision [47]. In addition, avoiding
saturation of orbits needs renormalization. A global stable
system6 is chaotic if λ reaches a stabilizing positive value,
whereas it is ordered when λ tends to zero. In terms of this,
it can be seen clearly from Fig. 4 that the four approaches
L1, H2, H3, and H4 with positive Lyapunov exponents are
chaotic, and the two formulations H1 and L2 with zero Lya-

6 As an example, a global stable binary system in Ref. [37] means that
the two objects do not run to infinity, and do not merge, either. In fact,
the binaries move in a bounded region.
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(a) (b)

Fig. 5 Fast Lyapunov indicators (FLIs) of six PN approaches

punov exponents are regular. Note that each of these values
of Lyapunov exponents is given after an integration time of
2 × 105. Obtaining a reliable stabilizing limit value of Lya-
punov exponent usually costs an extremely expensive com-
putation [20].

A quicker method to find chaos is a fast Lyapunov indi-
cator (FLI) [49,50]. It was originally calculated using the
length of a tangential vector and renormalization is unnec-
essary. Similar to the Lyapunov exponent, this indicator can
be further developed with the separation between two nearby
trajectories [51]. The modified indicator is of the form

FLI = log10
d(t)

d(0)
. (23)

An appropriate choice for renormalization within a reason-
able amount of time span is important. See Ref. [51] for more
details of this indicator. The FLI increases exponentially with
time for a chaotic orbit, but algebraically for a regular orbit.
The completely different time rates are used to distinguish
between the two cases. Based on this point, the dynamical
behaviors of the six approaches L1, L2, H1, H2, H3, and H4

can be described by the FLIs in Fig. 5. These results are the
same as those given by the Lyapunov exponents in Fig. 4.
Here each FLI was obtained after t = 5 × 104.

As a notable question, invariant values of the Lyapunov
exponents and the FLIs should require the use of proper time
and distances [48]. However, the above computations of the
Lyapunov exponents and the FLIs use coordinate distances
and time that make the Lyapunov exponents and the FLIs not
invariant in general relativity. In spite of this, the dynamical
features given by the Lyapunov exponents and the FLIs with
coordinate distances and time should be the same as those
given by the Lyapunov exponents and the FLIs with proper
distances and time. This is because the difference between the
distance and the invariant distance is negligible in the present
problems and the ratio of the proper time to the coordinate
time is a positive finite value [52,53].

Because the FLI is indeed a faster method to identify chaos
than the Lyapunov exponent, it is widely used to sketch the
global structure of phase space or to provide some insight
into the dependence of chaos on a single physical parameter
or initial condition [23].

3.2 Effects of varying the mass ratio on chaos

Fixing the above initial conditions, initial spin configurations,
and spin parameters (χ1 and χ2), we let the mass ratio β run
from 0 to 1 in increments of 0.01. For each value of β, FLI is
obtained after an integration time t = 5 × 104. In this way,
we plot Fig. 6 in which the dependence of the FLI for each
PN approach on β is described. It is found through a number
of numerical tests that 7.5 is a threshold of FLI to distinguish
between regular and chaotic orbits. A globally stable orbit is
chaotic if its FLI is larger than the threshold, but ordered if
its FLI is smaller than the threshold. In this sense, this figure
shows clearly the correspondence between the mass ratio and
the orbital dynamics.

It is shown sufficiently that the PN Lagrangian and Hamil-
tonian approximations at the same order, (L1, H1) and (L2,
H2), have different dynamical behaviors in a significant mea-
sure. More details of the related differences are listed in Table
1. It can also be seen that the chaotic parameter space of
L1 is larger than that of L2. That means that the spin–orbit
coupling L1.5so makes many chaotic orbits in the system
L1 evolve into ordered orbits.7 In other words, the proba-
bility of the occurrence of chaos in the system L1 without
L1.5so is large, but that in the system L2 with L1.5so is small.
Thus, L1.5so plays an important role in weakening or sup-
pressing the chaotic behaviors yielded by L2ss. Here, the
chaotic behaviors weakened (or suppressed) are given from
a global point of view, but do not mean that an individual
orbit must become from strongly chaotic to weakly chaotic

7 The chaoticity of the system L1 is due to the spin–spin coupling L2ss.
L2 minus L1 is L1.5so.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Dependence of FLI on the mass ratio β for each approach

(or from chaotic to non-chaotic) when L1.5so is included in
L1. This orbit may become more strongly chaotic, or it may
vary from order to chaos. For example, β = 0.03 in Table 1
corresponds to the regularity of L1 but the chaoticity of L2.
In fact, the chaotic behaviors weakened or suppressed mean
decreasing the chaotic parameter space. The result obtained
in the general case with the PN terms L1PN and L2PN is an
extension to the special case without the PN terms L1PN and
L2PN in Ref. [38]. As the authors of [38] claimed, this result
is due to different signs of H2ss (equivalent to L2ss) and H3ss

(associated to L1.5so). The two spin–spin terms are respon-
sible for causing chaos in the Hamiltonian H4, and H2ss has
a more primary contribution to chaos. It is further shown in
Fig. 6 and Table 1 that H4 with the inclusion of H3ss has weak
chaos and a small chaotic parameter space, compared with
H3 in the absence of H3ss. This is helpful for us to explain
why L1.5so can somewhat weaken or suppress the chaoticity
caused by L2ss in the PN Lagrangian system L2.

4 Conclusions

When a Lagrangian formalism at a certain PN order is
transformed into a Hamiltonian formalism, many additional
higher-order PN terms usually occur. In this sense, the PN
Lagrangian and Hamiltonian approaches at the same order
are generally nonequivalent, and these higher-order PN terms
truncated are responsible for causing dynamical differences
between the PN Lagrangian and Hamiltonian formulations
at the same order. When the physical gauge invariant observ-

Table 1 Chaotic parameter spaces of each approach

Approach Mass ratio β

L1 0.05, 0.06, 0.08, [0.11,0.16], [0.18,0.83],

0.86, 0.86, [0.89,0.92], 0.94

H1 [0.12,0.19], [0.23,0.27], 0.30,

[0.33,0.34], [0.40,0.42], [0.62,0.64]

L2 0.03, 0.05, [0.09,0.41], [0.43,0.45], 0.47, 0.54

H2 0.09, [0.17,0.22], [0.24,0.99]

H3 [0.09,0.22], [0.24,0.65], [0.67,0.97]

H4 [0.09,0.10], [0.15,0.17], 0.19, 0.48, 0.62, 0.65,

0.68, 0.75, 0.79, 0.82, [0.84,0.91], 0.93

ables are used instead of the coordinates, approximations (or
differences) still occur if the truncation of higher-order PN
terms exists. The equivalence between the Lagrangian for-
mulation and a Hamiltonian system often requires that the
Euler–Lagrangian equations and the Hamiltonian should be
up to high enough orders or an infinite order. The integrabil-
ity or non-integrability of the Lagrangian formulation is that
of its equivalent Hamiltonian.

For the 2PN Lagrangian formulation of spinning com-
pact binaries, which includes the Newtonian term, 1PN
and 2PN non-spin terms, and 2PN spin–spin coupling, the
Legendre transformation gives not only the same-order PN
Hamiltonian but also many additional higher-order PN terms,
such as the 3PN non-spin term. Therefore, the same-order
Lagrangian and Hamiltonian approaches have some different
dynamics. This result is confirmed through numerical simu-
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lations. This Lagrangian is non-integrable and can be chaotic
under an appropriate circumstance due to the absence of a
fifth integral of motion in the equivalent Hamiltonian. When
the 1.5PN spin–orbit coupling is added to the Lagrangian,
the 3PN spin–spin coupling appears in the derived Hamilto-
nian. The 3PN spin–spin Hamiltonian is small and has dif-
ferent signs compared with the 2PN spin–spin Hamiltonian.
In this sense, the probability of the occurrence of chaos in
the Lagrangian formulation without the spin–orbit coupling
is large, whereas that in the Lagrangian formulation with the
spin–orbit coupling is small. That means that the leading-
order spin–orbit coupling can somewhat weaken or suppress
the chaos yielded by the leading-order spin–spin coupling in
the PN Lagrangian formulation. Numerical results also sup-
port this fact. It should be emphasized that the integrability or
non-integrability of these systems depends on the number of
the first integrals of these systems and is physical, but it does
not depend on the choice of coordinates. In other words, the
property given by the coordinates and the one given by the
physical gauge invariant observables are the same. Although
the chaos indicators use the coordinate distances and time,
they should give these systems the same dynamical infor-
mation described by the chaos indicators with the proper
distances and time. Here are two reasons. The difference
between the distance and the invariant distance is negligible
in the present problems, and the ratio of the proper time to
the coordinate time is a positive finite value.

The PN Lagrangian or Hamiltonian formulations have
been actually used in the construction of theoretical gravi-
tational wave templates and the successful detection of grav-
itational wave signals is based on the absence of chaos in the
considered dynamical systems. Of course, the future detec-
tion of gravitational wave signals also requires that chaos be
avoided when the PN formulations are planned to be used in
the construction of theoretical gravitational wave templates.
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