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Abstract Here, we peruse cosmological usage of the most
promising candidates of dark energy in the framework
of f(T) gravity theory where T represents the torsion
scalar teleparallel gravity. We reconstruct the different f(7)
modified gravity models in the spatially flat Friedmann—
Robertson—Walker universe according to entropy-corrected
versions of the holographic and new agegraphic dark energy
models in power-law and logarithmic corrections, which
describe an accelerated expansion history of the universe.
We conclude that the equation of state parameter of the
entropy-corrected models can transit from the quintessence
state to the phantom regime as indicated by recent obser-
vations or can lie entirely in the phantom region. Also,
using these models, we investigate the different areas
of the stability with the help of the squared speed of
sound.

1 Introduction

The type Ia Supernovae and cosmic microwave background
(CMB) [1,2] observations point out that our universe is pre-
cisely accelerating, which is caused by some unknown fluid
having positive energy density and negative pressure, called
“Dark Energy” (DE). Observations indicate that dark energy
occupies about 70 % of the total energy of the universe,
whereas the contribution of dark matter is 26 % and the
rest 4 % is baryonic matter. For related review works see
Refs. [3,4]. Although a long-time argument has been made
on this interesting issue of modern cosmology, we still have
little knowledge about DE. The cosmological constant A is
the most appealing and simplest candidate for DE which
obeys the equation of state parameter w = —1. However,
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the cosmological constant suffers from two serious theoret-
ical problems, i.e., the cosmological constant problem and
the coincidence problem. In this respect, different dynam-
ical DE models and different modified theories of grav-
ity have been developed. Moreover, the reconstruction phe-
nomenon of different DE models [5—8] is gaining great atten-
tion in the discussion of the accelerated expansion of the
universe.

In recent years, an interesting idea has been proposed: to
study the dark energy in the new form, i.e., the Holographic
Dark Energy (HDE) model [9-11], which arises from the
holographic principle [12] stating that the number of degrees
of freedom of a physical model must be finite [13] and an
infrared cut-off should constrain it [14]. In quantum field
theory [14], for developing a black hole , the UV cut-off A
should relate with the IR cut-off L due to the limit set. In Ref.
[15] Li debated the relation L3p, < LM%,, where pp is the
quantum zero point energy density and Mp = oG is the
reduced Planck mass, i.e., the mass of a black hole of the size
L should not be exceeded by the total energy in a region of
same size. The HDE models have been discussed in [16-20].
The black hole entropy Sgy plays an important role in the
simplification of HDE, given as usually, Spy = %, where
A ~ L? is the area of the horizon.

The power-law corrections arise in dealing with the entan-
glement of quantum fields moving into and out of the horizon
[21-23], for which the entropy—area relation for a power-law
correction can be given as

A e
SBH=E[1—KEA‘ 21, (1)
where

_ e(@m)!
@
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Here, r. is the crossover scale and ¢ is the dimensionless
constant. Motivated by this corrected entropy—area relation
(1) in the setup of LQG (loop quantum gravity), Wei [24]
suggested the energy density of the ECHDE in power-law
correction.

Also the entropy—area relation for a logarithmic correction
can be improved to [25-28]

S A 1 A 2
BH—E-FO(H[E}'F,B, (2
where o and B are dimensionless constants of order unity.
Recently, inspired by the corrected entropy—area relation (2)
in the setup of LQG, Wei [24] propounded the energy den-
sity of the entropy-corrected HDE (ECHDE) in logarithmic
correction.

From quantum mechanics along with the gravitational
purpose in general relativity, another type of dark energy
is the agegraphic DE (ADE) model. The original agegraphic
DE model was presented by Cai [29] to study the accelerating
expansion of the universe where the age (7') of the universe
is present in the expression of the energy density, given by

on =3cIMAT 2. 3

The numerical factor 3¢? is used to recover some uncer-
tainties. Subsequently, Wei and Cai [30] suggested a new
kind of ADE model by removing the age of the universe and
replacing it with the conformal time (), called the new age-
graphic DE (NADE) model. Recently, Wei [24] initiated the
energy density of the entropy-corrected NADE (ECNADE)
in power-law and logarithmic corrections like the entropy-
corrected HDE (ECHDE) in a power-law and a logarithmic
correction model and details of these were discussed in [31—
35].

There is an another discussion for the cosmic accelera-
tion of the universe (predicted from observational data), the
so-called “modified gravity” where we do not require any
additional components like DE (for a review see [36]) for the
acceleration of the universe. Various kinds of modified theo-
ries have been proposed such as the f(R) [38], f(G) [39,40],
Horava-Lifshitz [41] and Gauss—Bonnet [42,43] theories of
gravity. Recently, [44,45] formulated a new kind of theory
of gravity known as f(7T') gravity in a space-time possessing
absolute parallelism. f(7") gravity has been recently stud-
ied in [46,47]. In the f(T) theory of gravity, the teleparallel
Lagrangian density gave a description of the torsion scalar
T, using a function of 7', i.e., f(T), for the late-time cosmic
acceleration [48]. In arecent work, Jamil et al. [49,50] inves-
tigated the interacting DE model and state-finder diagnostic
in f(T) cosmology.

Recently, the reconstruction of various types of modi-
fied gravities f(R), f(T), f(G), Einstein—aether etc. with
the various dark energy models have made a plea topic in
cosmology [51-55]. Farooq et al. [56] reconstructed f(T)
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and f(R) gravity according to (m, n)-type holographic dark
energy, Karami et al. [57] did the reconstruction of f(R)
modified gravity from ordinary and entropy-corrected ver-
sions of holographic and new agegraphic dark energy models
and also Debnath [58] discussed the topic of reconstruction
of f(R), f(G), f(T), and Einstein—aether gravities from
entropy-corrected (m, n) type pilgrim dark energy. Moti-
vated by these works, with the help of modified f(7') gravity
and considering the entropy-corrected versions of the HDE
and NADE scenarios, it is interesting to investigate how the
f(T)-gravity can describe ECHDE and ECNADE densities
in power-law and logarithmic versions as effective theories
of DE models.

This paper is arranged as follows. In Sect. 2, we give a brief
idea of the theory of f(T') gravity and corresponding solu-
tions for a FRW background. In Sects. 3 and 4, we reconstruct
the different f(7T) gravity models, i.e., we find an unknown
function f(T') corresponding to the ECHDE and ECNADE
models in the power-law and logarithmic versions, respec-
tively, and analyze the EoS parameter for the corresponding
models. Karami et al. [59] also investigated the modified
teleparallel gravity models as an alternative for holographic
and new agegraphic dark energy models. In Sect. 5, we pro-
vide the analysis and comparison of the reconstructed mod-
els. Section 6 is devoted to our conclusions.

2 The brief idea of f(T') gravity and ECHDE in
power-law and logarithmic correction

Teleparallel gravity is correlated with a gauge theory for the
translation group. For the unusual character of these trans-
lations, any gauge theory with these translations is different
from the usual gauge theory in many ways, mostly in the
background of a tetrad field, whereas this field is used to
define a linear Weitzenbock connection, presenting torsion
without curvature. For the details of this gravity theory see the
review [60]. We consider here how to generalize the telepar-
allel Lagrangian T to a function f(7) = T + g(T'), which is
the same as the generalization of the Ricci scalar in Einstein—
Hilbert action to the modified f (R) gravity. We can write the
action of f(T') gravity, coupled with matter, L,,, by [61-65]

_ 1 4
= lenc d*xe(T +g(T)+ Ly) 4)

where ¢ = det (eL) = ./—g. Now we will take the units
8m G = ¢ = 1. Here, the teleparallel Lagrangian 7', known
as the torsion scalar, is defined as follows:

T =S1T8, 5)
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where

TS, = e (E)Mef) - aueL) , 6)
w 1 o w0y vt

S/o =§(Kp +5pT9 —8pT9 ), (7)

and K ,"f Y is the contorsion tensor
KH = —l(T’“) — TYH — Ty (8)
P TNy p p 7t

Making a variation of the action with respect to the vierbein
e),» we get the field equations:

e 19 (eS/") (1 + gr) — e T Sptgr + S0, (Thgrr
1 1
—Ze,.”(l +g(T)) = Ee;.oT[‘)’, 9)

where g7 and gr7 are the first and second derivatives of
g with respect to T. Here Y, is the stress tensor. Now
we assume the usual spatially flat metric of the Friedmann—
Robertson—Walker (FRW) universe giving the line element
written as

3
ds? = dt* — a*(t) Z(dx")2 (10)
i=1

where a(t) is the scalar factor, a function of the cosmic time 7.
Moreover, we consider the background to be a perfect fluid.
Using the FRW metric and the perfect fluid matter in the
Lagrangian (5) and the field equation (9), we obtain

T = —6H?, (11)

31L12—,o—l — 6H? (12)
- 2g gTa

. 1 .
—3H2—2H:p+§g+2(3H2+H)gT

—24HH%grr, (13)

where p and p are the energy density and pressure of ordi-
nary matter content of the universe, respectively. The Hubble
parameter (H) is defined as H = %, where the “dot” denotes
the derivative with respect to the cosmic time. Equation (11)
shows that T < 0.

The equation of state (EoS) parameter due to the torsion
contribution is defined as

wy = 2N (14)

PA
which shows the phantom, wy < —1, and quintessence,

wp > —1, dominated universe.
We define the redshift z as

_aop(t)
T oa()

14z

where ag(¢) = 1 for the present epoch.

For a given a(t), with the help of Egs. (12) and (13) one
can reconstruct the f(T') gravity according to any DE model
given by the EoS pan = pa(pa), i.e., po = pa(a). There
are two classes of scale factors which one usually considers
for describing the accelerating universe in f(R), f(T), etc.

Class I The first class of scale factor is given by [66],

a(t) =apts —)™", t <t (15)

where ag, n are constants and #; defines the future singularity
time. Hence,
n
ty—t’
T ’ 6n2 (17)
B (ts - t)z )
Class II For the second class of scale factor defined as
[66],

H =

(16)

a(t) =apt",n > 0. (18)
One obtains
n
H=", (19)
6n?
T=-"1 (20)

For both cases we get

7= (M%) ~1. 1)

Using the two classes of scale factors (15) and (18), we
reconstruct the different f(7) gravities according to the
ECHDE and ECNADE models in power-law and logarith-
mic versions.

3 f(T) reconstruction from ECHDE in a power-law
and a logarithmic correction models

3.1 ECHDE in power-law correction

Reference [24] proposed the energy density of the ECHDE
in power-law correction using the relation (1) [24],
pn =38°R; % — AR, € (22)

where A is a constant related with € and K., § is a constant.
In the special case A = 0, the above equation reduces to the
well-known HDE density. Also Ry, is the future event horizon
defined as

s dt
Ry = a/ -, (23)
t

a
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Figs. 1-6 a,c, e Plots of f(T) and wy for class I scale factor in ECHDE f(T') gravity in a power-law correction model. b, d, f Plots of f(7') and
wy for class II scale factor in ECHDE f(T') gravity in a power-law correction model

For the first class (class I) of the scale factor (15) and using
Eq. (16), the future event horizon Ry, yields

Ry =a(r) / — = o’ (24)
h=a a(t) n+1 T+ )2
Substituting Eq. (24) into (22) one can get
82(n 4+ 1)*(=T) n+1\° ¢
PA 2 ( Jen ) (=7) (25)
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Substituting Eq. (25) in the differential equation (12), i.e.,
p = pa, gives the following solution

2 2
F(T) = y=T = DD +nl2) D

+ 22 (n + 1) (—T)$
(e =1 \ Vén
where c is the integration constant to be determined from

the necessary boundary condition. In Fig. 1-6, we under-
stand that f(T) - 0 as T — 0 for the solution obtained

(26)



Eur. Phys. J. C (2016) 76:491

Page 5 of 14 491

from Eq. (26). We also observe that f(7T) first decreases
and then increases as T increases keeping in mind that f(7)
takes always a negative value for all values of negative 7.
Substituting Eq. (26) into (13) and using (25) we obtain the
EoS parameter of the ECHDE f(T') gravity in a power-law
correction model as wp = p A graphically. In Fig. 1-6, we
see that the EoS parameter can justify the transition from
the quintessence state, wy > —1, to the phantom regime,
wp < —1, i.e., it crosses the phantom divide line wp = —1
if we draw the graph of the EoS parameter with T and z using
Eq. (21), respectively. So in this case, f (T) gravity generates
phantom crossing.

For the second class (class II) of the scale factor (18) and
using Eq. (19), the future event horizon R, yields

R o /OO dt —6n2 27)
h=a at) (n— D \VTwm=12

Substituting Eq. (27) into (22) one can get

_ 8% (n — DA(=T) N 1 s -
pA= s <fn)( ). (28)

Substituting Eq. (28) in the differential equation (12), i.e.,
p = pa, gives the following solution

82(m — D3(-T
(1) = e=T - 2O PCD)

P (Ey(—rﬁ (29)
(e—1 \/gn

where c is the integration constant to be determined from the
necessary boundary condition. In Fig. 1-6, we understand
that f(T) - 0 as T — O for the solution obtained from
Eq. (29). We also observe that f(7T) first increases and then
decreases as T increases keeping in mind that f(7") takes
always positive value for all values of negative 7'. It may
be stated that the solutions obtained in Eqs. (26) and (29)
are not very realistic models. Substituting Eq. (29) into (13)
and using (28) we obtain the EoS parameter of the ECHDE
f(T) gravity in a power-law correction model as wp = i—/’:
graphically. In Fig. 1-6, we see that the EoS parameter wholly
lies in the phantom region, i.e., wp < —1 always if we draw
the graph of the EoS parameter with 7" and z using Eq. (21)
respectively. So in this case, f(T") gravity does not generate
phantom crossing.

3.2 ECHDE in logarithmic correction

Reference [24] described the energy density of the ECHDE
in a logarithmic version using the corrected entropy—area
relation (2) [24],

2
SR 1n(R,%)+£4 (30)

pa= Tt pa
Rh Rh Rh

where « and S are dimensionless constants of order unity
and § is a constant. In the special case « = B = 0, the
above equation becomes the well-known HDE density. Since
only Ry, is very small, the last two terms in Eq. (30) can be
comparable to the first term, the corrections make sense only
at the early stage of the universe. When the universe becomes
large, ECHDE converts to the ordinary HDE [24].

For the first class (class I) of the scale factor (15) and using
Eq. (16), and the future event horizon Rj, (24) into (30), one
gets

T8%(n +1)% N aT?(n + 1)2
2n? 36n*

6n? BT (n + 1)*
X <_T<n+1)2> *

36n4
Substituting Eq. (31) in the differential equation (12), i.e.,
p = pa, gives the following solution:

PA = —

€1y

T*(n+1)*GB+20)  an+1)*

TY = /=T —
FI) =ec 1621% 54n°

6n> 82(n+1)2
x1In <_T(n+ 1)2) — " (32)

where c is the integration constant to be determined from
the necessary boundary condition. In Fig. 7-12, we under-
stand that f(T) - 0 as T — 0 for the solution obtained
from Eq. (32). We also observe that f(T') first increases and
then decreases as T increases keeping in mind that f(7)
takes always a negative value for all values of negative T.
Substituting Eq. (32) into Eq. (13) and using (31) we obtain
the EoS parameter of the ECHDE f(T') gravity model in a
logarithmic version as wa = Z—i‘ graphically. In Fig. 7-12,
we see that the EoS parameter can justify the transition from
the phantom state, wpy < —1, to the quintessence regime,
wp > —1, 1.e., it crosses the phantom divide line wp = —1
if we draw the graph of the EoS parameter with 7" and z using
Eq. (21) respectively. So in this case, f(7') gravity generates
phantom crossing.

For the second class (class II) of the scale factor (18) and
using Eq. (19), the future event horizon R}, (27) into (30) one
can get

T82(n— 1%  aT?*(n—1)>2
PA = — 2 4
2n 36n
6n? BT%(n — 1)*
In(— ) 33
. n< T(n— 1)2> T &9

@ Springer
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Figs. 7-12 a, c, e Plots of f(T') and wy for class I scale factor in ECHDE f(T') gravity in a logarithmic correction model. b, d, f Plots of f(7')
and w for class II scale factor in ECHDE f(T') gravity in a logarithmic correction model

Substituting Eq. (33) in the differential equation (12), i.e., =~ where c is the integration constant to be determined from the

P = pa, gives the following solution necessary boundary condition. In Fig. 7-12, we understand
hat f(T) - 0as T — O for the solution obtained from Eq.
T2(n— 1)*(3B + 2 — ¢
f(T)=cv-T — ( 122( 4ﬂ +20) — a(§4 7 ) T2 (34). We also observe that f(T') decreases from some positive
62 " 52( 1y " value to negative value as T increases from negative value
> In | ——0 -2 (34)
T(n—1)2 n2
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to zero. It may be stated that the solutions obtained in Egs.
(32) and (34) are not so-realistic models. Substituting Eq.
(34) into (13) and using (33) we obtain the EoS parameter
of ECHDE f(T) gravity model in logarithmic version as
wp = g—;\‘ graphically. In Fig. 7-12, we see that the EoS
parameter can justify the transition from the quintessence
state, wp > —1, to the phantom regime, wp < —1, i.e., it

crosses the phantom divide line wp = —1 if we draw the
graph of the EoS parameter with 7 and z using Eq. (21),
respectively, i.e., it crosses the line wp = —1.

4 f(T) reconstruction from ECNADE model in
power-law and logarithmic corrections models

4.1 ECNADE in power-law correction

Reference [24] gives the energy density of the ECNADE in
a power-law correction with the help of quantum corrections
to the relation (1) in the setup of LQG given as

pa =38%n7% —an~c, (35)

which is very similar to that of ECHDE in the power-law
correction density (22) and Ry, is replaced with the conformal
time n which is given by
dr da
= —=| —. 36
n / P a2 (36)
Here & and ¢ are dimensionless constants of order unity.

For the first class (class I) of the scale factor (15), the
conformal time 1 with the help of Eq. (36) yields

B /’s e @ -t (6n2)"+!
"= AT T atan 2T+
(37)
Substituting Eq. (37) into (35) one can obtain
382ak(n + D)2 (—T)"*!

PA = (6n2)”+1

apgn +1)]°€ (nt1)e

6Tnn+l

Solving the differential equation (12) for the energy den-
sity (38) reduces to, i.e., p = py, gives the following solution

= 82+ DA(=T)"!
@) = =T = = D on + 1)
21 {ao(n +1 }e

+
(n+De—1 1% n+

(n+1)e

== (39

where c is the integration constant to be determined from the
necessary boundary condition. In Fig. 13—18, we understand
that f(T) - 0as T — O for the solution obtained from Eq.
(39). The function f(T) decreases as T increases to zero.

Substituting Eq. (39) into (13) and using (38) we obtain the
EoS parameter of the ECNADE f(T) gravity model in a
power-law version as wp = 2’—2 graphically. In Fig. 13-18,
we see that the EoS parameter can justify the transition from

the phantom state, wp < —1, to the quintessence regime,

wp > —1, i.e., it crosses the phantom divide line wp = —1
if we draw the graph of the EoS parameter with 7" and z using
Eq. (21) respectively i.e., it crosses the line wy = —1.

For the second class (class II) of the scale factor (18), the
conformal time 1 with the help of Eq. (36) yields

tdr tl—n 61_”1’12(1_”)
! /0 a  ao(l—n) (—T)'="ag(1 — n)? @0

where n < 1. Substituting Eq. (40) into (35) one can obtain

_ 38%aj(1—n)*(=T)!™" N ao(1 —n) )¢ 7y

PA = (6n2)1—n - 1n 1— (_ ) :
62 nl—n

(41)

Solving the differential equation (12) for the energy density
(41) reduces to, i.e., p = pp, giving the following solution:
6"8%a3(1 —n)>(=T)!="
f(T)=cv-T — 20 (1~ 2n)
2 ao(1 —n)|¢ (-me
-T) 2 42
+(l—n)e—l{ 1 =D (42)

672 nl—n

where c is the integration constant to be determined from the
necessary boundary condition. In Fig. 13—18, we understand
that f(T) - 0 as T — O for the solution obtained from
Eq. (42). The function f(T') decreases but keeps a negative
value as T increases to zero. [t may be stated that the solutions
obtained in Egs. (39) and (42) both are not realistic models.
Substituting Eq. (42) into (13) and using (41) we obtain the
EoS parameter of the ECNADE f(T) gravity model in a
power-law version, wy = Z2 graphically. In Fig. 13-18,
oA

we see that the EoS parameter entirely lies in the phantom
region, wp < —1 if we draw the graph of the EoS parameter
with T and z using Eq. (21), respectively. So in this case,
f(T) gravity generates phantom crossing, i.e., it does not
cross the line wp = —1.

4.2 ECNADE in logarithmic correction

Reference [24] gives the energy density of the ECNADE with
the help of quantum corrections to the entropy—area relation
(2) in the setup of LQG given as

302 £ ¢

pr = — + — () + = (43)
n n n

which is very similar to that of the ECHDE density in the log-

arithmic version (30) and R, is replaced with the conformal
time 7.

@ Springer
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Figs. 13-18 a, c and e Plots of f(7T") and w, for class I scale factor in the ECNADE f(T') gravity power-law correction model. b, d and f Plots
of f(T) and wy for class II scale factor in the ECNADE f(T) gravity in a power-law correction model

For the first class (class I) of the scale factor (15), using  Solving the differential equation (12) for the energy density

the conformal time 1 (40), equation (43) gives (44) reducing to, i.e., p = pp, gives the following solution:
2(_yntl 2 2
B T A U { Lt M DA TSP o 3o ( ?nﬂ a1+ )
(6n2)n+1 (6n2)2n+2 (6n°)" T (n + 3)
| (6n)"+! _Eag(+mt 1) (6n?)"*!
P\ ey ©6n)7 220+ ) \adn+ D> (=Ty
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Figs. 19-24 a, c and e Plots of f(7') and wp for class I scale factor in ECNADE f(T) gravity in a logarithmic correction model. b, d and f Plots
of f(T) and wy for class II scale factor in ECNADE f(T') gravity in a logarithmic correction model

where c is the integration constant to be determined from the
necessary boundary condition. In Fig. 19-24, we understand
that f(T) — 0 as T — O for the solution obtained from
Eq. (45). The function f(7T') increases but keeps a negative
value as T increases to zero. Substituting Eq. (45) into (13)
and using (44) we obtain the EoS parameter of the ECNADE
f(T) gravity model in a logarithmic version as wp = g—[’\‘
graphically. In Fig. 19-24, we see that the EoS parameter

can justify the transition from the quintessence state, w, >
—1, to the phantom regime, way < —1, i.e., it crosses the
phantom divide line wp = —1 if we draw the graph of the
EoS parameter with 7" and z using Eq. (21), respectively, i.e.,
it crosses the line wa = —1.

For the second class (class II) of the scale factor (18), the
conformal time 7, see (40), Eq. (43) gives
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3a2al(l —n)2(—=T)!"
61—nn2(1—n)

6l—nn2(l—n)
X In 5 5 ; +
ag(l —n)=(=T)"—"

Solving the differential equation (12) for the energy density
(46) reduces to

f(T)=cv=T

%‘aé(l _ n)4T2—2n
62(1=n) p4(1—n)
{aé‘(l _ n)4T2—2n
62(1=n) 4(1—n)

PA =

(46)

_3e%ag(1l—n*(=T)'"
617nn2(17n)(% —n)

gag(l —n)*T2= 2 ((3 5 >
- ——2n
62(1—n) 4(1—n) (% _ 2n)2 2

| 6l—nn2(l—n) .
M\ @A e )

4 1 — 4T2—2n
_ §5i0( f) (47)
62(1—n) 41 n)(% —2n)

where c is the integration constant to be determined from the
necessary boundary condition. In Fig. 19-24, we understand
that f(T) — Oas T — O for the solution obtained from Eq.
(47). The function f(T') decreases from some positive value
to some negative value as 7 increases up to a certain negative
value and after that f(7') increases, keeping a negative sign.
It may be stated that the solutions obtained in Eqgs. (45) and
(47) are both realistic models. Substituting Eq. (47) into (13)
and using (46) we obtain the EoS parameter of the ECNADE
f(T) gravity model in a logarithmic version as wp = p—i
graphically. In Fig. 19-24, we see that the EoS parameter
can justify the transition from the quintessence state, wy >
—1, to the phantom regime, wp < —1, i.e., it crosses the
phantom divide line wp = —1 if we draw the graph of the
EoS parameter with 7" and z using Eq. (21), respectively, i.e.,
it crosses the line wp = —1.

5 Analysis and comparison of the reconstructed models

We now analyze an important quantity to verify the stability
of ECHDE f (T') in a power-law and a logarithmic correction
model and ECNADE f(T') in a power-law and a logarithmic
correction model, named the squared speed of sound v%:

dp
d -

U? 4P _ar (48)
Tl

The sign of vs2 is very important for checking the stability
of a background evolution of the universe. In general relativ-
ity a negative sign implies a classical instability of a given
perturbation [67,68]. Myung [68] has observed the always
negative sign of vf for HDE for the future event horizon

@ Springer

as we have an IR cut-off, while for a Chaplygin gas and a
tachyon, there is non-negativity. Kim et al. [67] found an
always negative squared speed of sound for agegraphic DE,
leading to the instability of the perfect fluid for the model.
Also, [69] found the ghost QCD DE model as an unstable
model. Recently, Sharif and Jawad [70] have shown negative
v? for the interacting new HDE.

5.1 Investigation of stability of ECHDE in power-law and
logarithmic corrections

For an ECHDE f(T) model in a power-law version there
are two cases. For the first class (class I scale factor) we see
from Fig. 25-32 that v > 0 for 7 < —2 and v? < O for
T > —2 and from 27 that vs2 < 0 for z < 0.1 and vs2 >0
for z > 0.1 and for the second class (class II scale factor) we
see from Fig. 25-32 that v> < 0 for the present and future
epoch. So we can conclude that the ECHDE f(7") model in
a power-law version implies a classical stability for 7 < —2,
z > 0.1 and a classical instability for 7 > —2, z < 0.1 for
the first class and a classical instability of the second class of
a given perturbation in general relativity.

For ECHDE f(T) model in a logarithmic version there
are two cases. For the first class (class I scale factor) we see
from Fig. 25-32 that vf < 0 for the present and future epoch
and for the second class (class II scale factor) we see from
Fig. 25-32 that vs2 < 0 also for the present and future and
future epoch. So we can conclude that the ECHDE f(T)
model in a logarithmic version implies a classical instability
of a given perturbation in general relativity both for the first
and second classes.

5.2 Investigation of stability of ECNADE in power-law and
logarithmic corrections

For ECNADE f(T) model in a power-law version there are
also two cases. For the first class (class I scale factor) we see
from Fig. 33-40 that vs2 > ( for the present and future epoch
and for the second class (class II scale factor) we see from
Fig. 3340 that vs2 < 0 for the present and future epoch. So
we can conclude that the ECNADE f(7') model in a power-
law version implies a classical stability for the first class and a
classical instability of the second class of a given perturbation
in general relativity.

For the ECNADE f(T) model in a logarithmic version
there are also two cases. For the first class (class I scale factor)
we see from Fig. 33—40 that v? > ( for the present and future
epoch and for the second class (class II scale factor) we see
from Fig. 33-40 that v2 > 0 . So we can conclude that the
ECNADE f(T) model in a logarithmic version implies a
classical stability both for the first and second classes.
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6 Concluding remarks

In this work, we have assumed the f (7)) modified gravity the-
ory in the background of a flat FRW universe. We found the
modified Friedmann equations and then, from the equations,
we found the effective energy density and pressure for f(7)
modified gravity theory. Modified gravity gives a natural uni-
fication of the early-time inflation and late-time acceleration.
We have assumed two types of power-law forms of scale fac-
tor, the first class (class I) has a future singularity and the
second class (class II) has an initial singularity. In the frame-
work of an f(7") modified gravity model, four types of dark
energy have been considered: (1) the entropy-corrected holo-
graphic dark energy (ECHDE) in power-law version, (2) the
entropy-corrected holographic dark energy (ECHDE) in log-
arithmic version, (3) the entropy-corrected new agegraphic
dark energy (ECNADE) in a power-law version, and (4) the
entropy-corrected new agegraphic dark energy (ECNADE)
in alogarithmic version, where Ry, is assumed to be the future
event horizon and 7 is assumed to be conformal time. Using
the two classes of scale factors, the unknown function f(7)
has been found in terms of 7" for the ECHDE and ECNADE
models in power-law and logarithmic versions. The corre-
sponding equation of states have also been generated. For
the cases of ECHDE and ECNADE in power-law and loga-
rithmic versions the natures of f(7") vs. T are shown in Figs.
1-6, 7-12, 13—18 and 19-24. For the cases of ECHDE in a
power-law version (class I) and logarithmic version (class I
and II), ECNADE in a power-law version (class I) and loga-
rithmic version (class I and IT), the equation of state parameter
wp is shown in Figs. 1-6, 7-12, 13—18 and 19-24, whereas
in Figs. 1-6 and 19-24, the EoS parameter is divergent at
T=-1,-10,2=0,25T = -4,z = —6,andat T = —2,
z = 13.5. For the cases of ECHDE in a power-law version
(class II) and ECNADE in a power-law version (class II)
the equation of state parameter w, is shown in Figs. 1-6
and 13-18. From the figures we see that these models lie
entirely in the phantom region. It should be mentioned that
Karami et al. [59] have investigated the f(T") reconstructions
for the HDE, NADE models, and logarithmic versions of the
ECHDE, ECNADE models only, and for these models we got
the similar expressions of f(7') but we have in detail studied
the results graphically. To examine the stability test for all
the reconstructing models, we have investigated the signs of
the square of the velocity of sound. For ECHDE model in a
power-law version , we have concluded from Fig. 25-32, that
the corresponding model is a classical stable for T < —2,
z > 0.1, and classically unstable for 7 > —2, z < 0.1
for the first class and from Fig. 25-32 the corresponding
model is a classically unstable for second class of a given
perturbation in general relativity. For the ECHDE model in
a logarithmic version, we have concluded from Fig. 25-32
that the corresponding models are unstable both for class I

and class II. On the other hand, for the ECNADE model in
a power-law version (class I), we have seen from Fig. 33—-40
that the corresponding model is stable and for the ECNADE
model in a power-law version (class II) we have seen from
Fig. 33-40 that the corresponding model is unstable. Again
for ECNADE in a logarithmic version (class I and II), we
have seen from Fig. 33—40 that the corresponding models
are stable. Thus we may conclude that our reconstructed
ECHDE model (class I), ECNADE model in a power-law
version (class I) and logarithmic version (class I and II) are
more realistic (and classically stable) than the other models
(classically unstable) discussed.
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