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Abstract We discuss the cosmological reconstruction of
f (R, Rαβ Rαβ, φ) (where R, Rαβ Rαβ , and φ represent the
Ricci scalar, the Ricci invariant, and the scalar field) corre-
sponding to a power law and de Sitter evolution in the frame-
work of the FRW universe model. We derive the energy con-
ditions for this modified theory which seem to be more gen-
eral and can be reduced to some well-known forms of these
conditions in general relativity, f (R) and f (R, φ) theories.
We have presented the general constraints in terms of recent
values of the snap, jerk, deceleration, and Hubble parameters.
The energy bounds are analyzed for reconstructed as well as
known models in this theory. Finally, the free parameters are
analyzed comprehensively.

1 Introduction

In current cosmic picture dark energy (DE) is introduced
as an effective characteristic which tends to accelerate the
expansion in universe. Modified theories have achieved sig-
nificant attention to explore the effect of cosmic accelera-
tion [1]. These models have been developed to distinguish
the source of DE as a modification to the Einstein Hilbert
action. Some modified theories of gravity are f (R) grav-
ity with Ricci scalar R [2], f (T ) gravity with torsion scalar
T [3], Gauss–Bonnet gravity with G invariant [4], f (R, T )

gravity with T as the trace of the stress-energy tensor [5–14],
f (R, T , Rμν)Tμν [15–17] and f (R,G) gravity that contains
both R and G [18] etc. The acceleration of the expanding
universe can be explored by these theories through their cor-
responding invariants.

To generalize Einstein’s theory of general relativity (GR),
there is a vast literature on relativistic theories that reduce to
GR in the proper limitations. An especially attractive class
of these generalizations are the fourth-order theories. These
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theories were initially considered by Eddington in the early
1920s [19]. Whatever the inspiration to examine the gen-
eralized fourth-order theories, it is necessary to understand
their weak-field limit, and these limits confirm the increasing
behavior of these theories in observational data.

Generally a fourth-order theory of gravity is obtained by
adding RabRab and Rabcd Rabcd in the standard Einstein
Hilbert action [20,21]. However, it is now established that
we can ignore the Rabcd Rabcd term if we use the Gauss–
Bonnet theorem [22]. About half a century ago, Brans and
Dicke (BD) [23] presented the scalar–tensor theory of grav-
itation, which is still popular and has received great interest
in cosmological dynamics as a replacement to dark matter
and dark energy theories. The motivation behind the BD the-
ory was Mach’s idea [24] to present a varying gravitational
constant in general relativity. Among the theories alternative
to Einstein’s gravity, the simplest and best known is Brans–
Dicke theory. In this theory, the gravitational constant has
been taken to be inversely proportional to the scalar field φ.
The BD theory may be represented as a generalization of
f (R) theory with f ′(R) = F(R) = φR [2].

In modified theories, cosmological reconstruction is one
of the important prospects in cosmology. In f (R) gravity, the
reconstruction scheme has been used in different contexts to
explain the conversion of the matter dominated era to the
DE phase. This can be examined by considering the known
cosmic evolution and the field equations are used to calculate
a particular form of the Lagrangian which can reproduce the
given evolution background. In these theories the existence
of exact power law solutions for the FRW spacetime has
been examined. In [25–27] the authors have reconstructed
f (R, T ) gravity models by employing various cosmological
scenarios. Nojiri et al. developed f (R) gravity models [28],
which were further applied to f (R,G) and modified Gauss–
Bonnet theories [29]. To reconstruct f (R) gravity models,
Carloni et al. [30] have established a new technique by using
the cosmic parameters instead of using a scale factor.
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Energy conditions are necessary to study the singular-
ity theorems; moreover, we have the theorems related to
black hole thermodynamics. For example, the well-known
Hawking–Penrose singularity theorems [31] invoke the null
energy condition (NEC) as well as the strong energy condi-
tion (SEC). The violation of SEC allows one to observe the
accelerating expansion, and NECs are involved in the proof
of the second law of black hole thermodynamics.

The energy conditions have been explored in different con-
texts like f (T ) theory [32,33], f (R) gravity [34], and f (G)

theory [35], Brans–Dicke theory [36]. Further the energy
conditions of a very generalized second-order scalar–tensor
gravity have been discussed by Sharif and Saira [37]. Sharif
and Zubair have examined these conditions for f (R, T )

gravity [25] and for f (R, T, RμνTμν) gravity [38], which
involves the nonminimal coupling between the Ricci ten-
sor and the energy-momentum tensor. Saira and Zubair [39]
have discussed these conditions for F(T, TG) having a T tor-
sion term invariant along with TG , equivalence of the Gauss–
Bonnet term, and one discussed the teleparallel case.

In this paper we are interested in developing some cosmic
models in agreement with the recent observational data in the
context of generalized scalar–tensor theories. We present the
energy conditions in f (R, Rαβ Rαβ, φ) gravity utilizing the
FRW universe model with perfect fluid matter and develop
some constraints on the free parameters on reconstructed as
well as well-known models. The paper is arranged as fol-
lows: In the next section, we provide a general introduc-
tion of f (R, Rαβ Rαβ, φ) gravity. In Sect. 3 we define the
basic expressions of the energy conditions and then derive
the energy conditions of f (R, Rαβ Rαβ, φ) gravity using the
deceleration, jerk, and snap parameters. Section 4 is devoted
to the reconstruction of models in f (R, Rαβ Rαβ, φ) gravity
and the energy bounds of these models and in Sect. 5 we
have derived the energy conditions of some known f (R, φ)

models. In Sect. 6, we sum up our conclusion.

2 Scalar tensor fourth-order gravity

f (R, Rαβ Rαβ, φ) gravity is one of the more interesting the-
ories among the more general scalar–tensor theories, and its
action is of the form [40]

Sm =
∫

d4x
√−g

[
1

κ2

(
f
(
R, Rαβ R

αβ, φ
)

+ω(φ)φ;αφ;α)
+ Lm

]
, (1)

where f is an unspecified function of the Ricci scalar,
the curvature invariant, and the scalar field, denoted by R,
Rαβ Rαβ ≡ Y , and φ (where Rαβ is the Ricci tensor). Lm is
the matter Lagrangian density, ω is a generic function of the
scalar field φ, g is the determinant of the metric tensor gμν .

In the metric approach, by varying the action (1) with
respect to gμν the field equations are obtained:

fR Rμν −1

2

(
f + ω(φ)φ;αφ;α)

gμν

− fR;μν + gμν� fR + 2 fY R
α
μRαν

− 2[ fY Rα
(μ];ν)α + �[ fY Rμν]

+ [ fY Rαβ ];αβgμν + ω(φ)φ;μφ;ν = κ2Tμν, (2)

where � = gμν∇μ∇ν and κ2 ≡ 8πG. We consider the flat
FRW universe model with a(t) as the scale factor, given by

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (3)

The gravitational field equations corresponding to a perfect
fluid as the matter content are given by

κ2ρ = −3
(
Ḣ + H2

)
fR + 3H∂t fR − 1

2

(
f − ω(φ)φ̇2

)

− 6H
(

2Ḣ + 3H2
)

× ∂t fY

+
(

114Ḣ H2 + 24Ḣ2 + 42H4
)
fY , (4)

κ2 p = 1

2

(
f + ω(φ)φ̇2

)
+

(
Ḣ + 3H2

)
fR − 2H∂t fR

− ∂t t fR + 4H
(
Ḣ + 3H2

)
∂t fY

+
(

4Ḣ + 6H2
)

∂t t fY +
(

4
...
H + 20Ḧ H + 10Ḣ H2

+ 16Ḣ2 − 18H4
)
fY . (5)

The field equation (2) can be rearranged in the following
form:

Gμν = Rμν − 1

2
Rgμν = T eff

μν , (6)

which is similar to the standard field equations in GR. Here
T eff

μν , the effective energy-momentum tensor in f (R, Y, φ)

gravity, is defined as

T eff
μν = 1

fR

[
κ2Tμν + 1

2

(
f + ω(φ)φ;αφ;α − R fR

)
gμν

+ fR;μν − gμν� fR − 2 fY R
α
μRαμ

+2[ fY Rα
(μ];ν)α − �[ fY Rμν] − [ fY Rαβ ];αβgμν

−ω(φ)φ;μφ;ν
]
.

One can define the effective energy density and pressure of
the form

ρeff = 1

fR

[
κ2ρ + 1

2

(
f − ω(φ)φ̇2

)
+ 3

(
ȧ2

a2 + ä

a

)
fR

− 3
ȧ

a
∂t fR + 6

(
ȧ3

a3 + 2
ȧä

a2

)
∂t fY

+
(

24
ä2

a2 − 66
ȧ2ä

a3 + 48
ȧ4

a4

)
fY

]
(7)
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and

peff = 1

fR

[
κ2 p − 1

2

(
f + ω(φ)φ̇2

)
− 3

(
ä

a
+ ȧ2

a2

)
fR

+ 2
ȧ

a
∂t fR + ∂t t fR2

(
ä

a
+ 2

ȧ2

a2

)
∂t t fY

−4

(
ȧä

a2 + 2
ȧ3

a3

)
∂t fY −

(
4

....
a

a
+ 4

ȧ
...
a

a2

− 34
ȧ2ä

a3 − 4
ä2

a2 − 4
ȧ4

a4

)
fY

]
. (8)

3 Energy conditions

The energy conditions have an important role to play in GR,
and also they have useful applications in modified theories of
gravity. In the context of GR, these constraints help to con-
strain the possible choices of matter contents. Four types of
energy conditions are developed in GR by applying a geomet-
rical result known as the Raychaudhuri equation [31]. These
conditions are known as the null energy condition (NEC), the
weak energy condition (WEC), the strong energy condition
(SEC), and the dominant energy condition (DEC).

In a spacetime manifold, the temporal evolution of the
expansion scalar is described by the Raychaudhuri equation,

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνu

μuν, (9)

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνk

μkν, (10)

where Rμν , σμν , ωμν are the Ricci tensor, the shear tensor and
rotation; the tangent vectors to timelike and null-like curves
in the congruence are represented by uμ and kμ. The aspect
of gravity of interest makes the congruence geodesic con-
vergent and leads to the condition dθ

dτ
< 0. By ignoring the

second-order terms and integrating, the Raychaudhuri equa-
tion implies that θ = −τ Rμνuμuν and θ = −τ Rμνkμkν . It
further leads to the inequalities

Rμνu
μuν ≥ 0, Rμνk

μkν ≥ 0. (11)

These inequalities can be written as a linear combination of
the energy-momentum tensor and its trace by the inversion
of the gravitational field equations as follows:(
Tμν − T

2
gμν

)
uμuν ≥ 0,

(
Tμν − T

2
gμν

)
kμkν ≥ 0.

(12)

In the case of a perfect fluid with density ρ and pressure p,
these inequalities give NEC, WEC, SEC, and DEC defined
by

NEC : ρ + p ≥ 0,

WEC : ρ ≥ 0, ρ + p ≥ 0,

SEC : ρ + p ≥ 0, ρ + 3p ≥ 0,

DEC : ρ ≥ 0, ρ ± p ≥ 0. (13)

In modified theories of gravity, assuming that the total matter
contents acts like a perfect fluid, these conditions can be
determined by interchanging ρ with ρeff and p with peff .
The energy conditions for the scalar–tensor fourth-order
gravity are:

NEC : ρeff + peff = 1

fR

[
κ2 (ρ + p) − ω(φ)φ̇2 + ∂t t fR

− H∂t fR − 2
(
2Ḣ + 3H2)∂t t fY +

(
8Ḣ H + 6H3

)
∂t fY

−
(

4
...
H + 20H Ḧ + 28Ḣ H2 + 40Ḣ2

)
fY

]
, (14)

WEC : ρeff = 1

fR

[
κ2ρ + 1

2

(
f − ω(φ)φ̇2 − R fR

)

− 3H∂t fR + 6H
(

2Ḣ + 3H2
)

∂t fY

−
(

18Ḣ H2 + 24Ḣ2 + 18H4
)
fY

]
, (15)

SEC : ρeff + 3peff = 1

fR

[
κ2 (ρ + 3p) − f − 2ω(φ)φ̇2

+ R fR + 3H∂t fR + 3∂t t fR − 6
(

2Ḣ + 3H2
)

∂t t fY

−18H3∂t fY − (
12

...
H + 60Ḧ H

+ 48Ḣ H2 + 72Ḣ2 − 36H4
)
fY

]
, (16)

DEC : ρeff − peff = 1

fR

[
κ2 (ρ − p) + f − R fR − ∂t t fR

− 5H∂t fR + 2
(

2Ḣ + 3H2
)

∂t t fY + (
16Ḣ H

+30H3
)

∂t fY + (
4

...
H + 20H Ḧ

− 8Ḣ H2 − 8Ḣ2 − 36H4
)
fY

]
. (17)

Inequalities (14)–(17) represent the null, weak, strong, and
dominant energy conditions in the context of f (R, Y, φ)

gravity for the FRW spacetime.
We define the Ricci scalar and its derivatives in terms of

the deceleration, jerk, and snap parameters as [41,42]

R = −6H2(1 − q), Ṙ = −6H3( j − q − 2),

R̈ = 6H4(s + q2 + 8q + 6), (18)

where

q = − 1

H2

ä

a
, j = 1

H3

...
a

a
, s = 1

H4

....
a

a
, (19)

and we express the Hubble parameter and its time derivatives
in terms of these parameters as [38,39]

H = ȧ

a
, Ḣ = −H2 (1 + q) , Ḧ = ( j + 3q + 2) H3,

...
H = H4

(
s − 4 j − 12q − 3q2 − 6

)
. (20)
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Using the above definitions, the energy conditions (14)–(17)
can be rewritten as

NEC : κ2 (ρ + p) − ω(φ)φ̇2

− 6H4 (s − j + (q + 1)(q + 8)) fRR +
{
Ÿ

− HẎ + 12H6(s(1 − 2q) + j (1 + 4q)

+ (q + 1)(−2q2 − 17q + 4)
)}

× fRY + (
φ̈ − H φ̇

)
fRφ − 2H2 (

Ÿ + HẎ
)

− 2q
(
Ÿ − 2HẎ

)
fYY − 2H2

× {(
φ̈ + H φ̇

) − 2q
(
φ̈ − 2H φ̇

)}
fYφ

+ 36H6 ( j − q − 2)2 fRRR − 12H3

× ( j − q − 2)
{
Ẏ + 6H5 (1 − 2q) ( j − q − 2)

}
fRRY

− 12φ̇H3 ( j − q − 2) × fRRφ

+Ẏ
{
Ẏ + 24H5(1 − 2q)( j − q − 2)

}
fRYY + φ̇2 fRφφ

+ 2φ̇
{
Ẏ + 12H5(1 − 2q)( j − q − 2)

}
fRYφ

+ Ẏ
(
Ẏ fYYY + φ̇ fYYφ

) + φ̇
(
φ̇ fYφφ + Ẏ fYYφ

)
− 4H4

(
s + j + 7q2 + 16q + 7

)
fY ≥ 0, (21)

WEC : κ2ρ + 1

2

(
f − ω(φ)φ̇2

)
− 1

2
R fR

+ 18H4 ( j − q − 2)
{
fRR − 2H2

× (1 − 2q) fRY } − 3H
(
Ẏ fRY + φ̇ fRφ

)
+ 6H3 (1 − 2q)

(
Ẏ fYY + φ̇ fYφ

)
− 6H4

(
4q2 + 5q + 4

)
fY ≥ 0, (22)

SEC : κ2 (ρ + 3p) − f − 2ω(φ)φ̇2

+ R fR − 6H4
(

2s + 2 j − 6q2 + 14q
)

+ 17 fY − 18H4
(
s + j + q2 + 7q + 4

)
fRR

+ 3
{
HẎ + Ÿ + 12H6 (1 − 2q)

×
(
s + 8q + q2 + 6

)
+ 36H6 ( j − q − 2)

}
fRY

+ 3
(
H φ̇ + φ̈

)
fRφ − 6H2 × (

(1 − 2q) Ÿ + 3HẎ
)
fYY

− 6H2 (
(1 − 2q) φ̈ + 3H φ̇

)
fYφ + 108H6

× ( j − q − 2)2 fRRR − 36H3 ( j − q − 2)

×
(
Ẏ + 6H5 (1 − 2q) ( j − q − 2)

)

× fRRY − 36H3 ( j − q − 2)

×
{
Ẏ + 6H5 (1 − 2q) ( j − q − 2)

}
fRRY − 36H3

×( j − q − 2)φ̇ fRRφ

+ 3
{
Ẏ 2 + 24H5Ẏ (1 − 2q)( j − q − 2)

}
fRYY + 3φ̇2 fRφφ

+ 6
{
φ̇Ẏ + 12H5φ̇(1 − 2q)( j − q − 2)

}
fRYφ

− 6H2φ̇(1 − 2q)(φ̇ fYφφ

+ Ẏ fYY ) − 6H2Ẏ (1 − 2q)(φ̇ fYYφ + Ẏ fYYY ) ≥ 0, (23)

DEC : κ2(ρ − p) + f − R fR − (
5H Ṙ + R̈

)
fRR

−
{

5HẎ + Ÿ − 2H2×
× (1 − 2q)R̈ − ṘH3(14 − 16q)

}
fRY

− (
5H φ̇ + φ̈

)
fRφ − Ṙ2 fRRR − 2Ṙ ×

×
(
Ẏ − ṘH2(1 − 2q)

)
fRRY − 2φ̇ Ṙ fRRφ

+
(

4H2(1 − 2q)Ṙ − Ẏ
)
Ẏ fRYY

− φ̇2 fRφφ + 2φ̇
(

2H2 Ṙ(1 − 2q) − Ẏ
)
fRYφ

+ 2H2Ẏ (1 − 2q)
(
Ẏ fYYY + φ̇ fYYφ

)
+ 2H2φ̇ (1 − 2q)

(
Ẏ fYYφ + φ̇ fYφφ

) + H2 {
2(1 − 2q)Ÿ

+HẎ × (14 − 16q)
}
fYY

+H2 {
2(1 − 2q)φ̈ + H φ̇(14 − 16q)

}
+ 4H4(s + j − 5q2 − q − 5) fY ≥ 0. (24)

4 Reconstruction of f (R,Y, φ) gravity

In this section, we present the reconstruction of f (R, Y, φ)

gravity by using well-known cosmological solutions, namely
de Sitter (dS) and power law cosmologies.

4.1 de Sitter universe models

The dS solutions are very important in cosmology in explain-
ing the current cosmic epoch. The dS model is described by
the exponential scale factor, the Hubble parameter, and the
Ricci tensor as

a(t) = a0e
H0t , H = H0, R = 12H2

0 . (25)

In this reconstruction, we consider a matter source with con-
stant EoS parameter w = p

ρ
, so that

ρ = ρ0e
−3(1+w)H0t , w �= −1. (26)

Here we use [43,44]

ω(φ) = ω0φ
m, φ(t) ∼ a(t)β . (27)

Using these quantities along with Eqs. (25) and (26) in Eq.
(4), we obtain

3H2
0 βφ fRφ − 18H4

0 βφ fYφ − 3H2
0 fR + 42H4

0 fY

−1

2
f (R,Y, φ) + 1

2
β2ω0

×H2
0 φm+2 − κ2ρ0a

3(1+w)
0 φ

− 3
β = 0. (28)
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This is a second-order partial differential equation which can
be converted in canonical form, whose solution yields

f (R,Y, φ) = α1α2α3e
α1Reα2Yφγ1 + γ2φ

γ3 + γ4φ
γ5 , (29)

where α′
i s are constants of integration and

γ1 = 18βα1H2
0 − 108βα2H4

0 − 5 + 6α1H2
0 − 84α2H4

0

6
(
H2

0 α1β − 6βα2H4
0

) ,

γ2 = ω0β
2H2

0 ,

γ3 = m + 2, γ4 = −2κ2ρ0a
3(1+w)
0 , γ5 = − 3

β
. (30)

Introducing model (29) in the energy conditions (14)–(17) it
follows that

NEC : κ2ρ0e
−3H0(1+w)t + κ2 p − ω0β

2H2
0 a

β(m+2)
0

×eβ(m+2)H0t + β(βγ1 − 1)α1α2

×α3γ1H
2
0

(
α1 − 6α2H

2
0

)
aβγ1

0 eβγ1H0t+12α1H2
0 +36α2H4

0

+β2α1α2α3γ1 (γ1 − 1) ×
(
α1 − 6α2H

2
0

)
H2

0 a
βγ1
0

×eβγ1H0t+12α1H2
0 +36α2H4

0 ≥ 0, (31)

WEC : κ2ρ0e
−3H0(1+w)t

+ 1

2
α1α2α3a

βγ1
0 eβγ1H0t+12α1H2

0 +36α2H4
0

(
1 − 12α1H

2
0

− 36α2H
4
0

)
+ γ2a

βγ3
0 eβγ3H0t + γ4a

βγ5
0 eβγ5H0t

− 1

2
ω0β

2H2
0 a

β(m+2)
0 eβ(m+2)H0t − 3βα1α2α3γ1

H2
0

(
α1 − 6α2H

2
0

)
aβγ1

0 eβγ1H0t+12α1H2
0 +36α2H4

0 ≥ 0, (32)

SEC : κ2ρ0e
−3H0(1+w)t + 3κ2 p + α1α2α3a

βγ1
0

×eβγ1H0t+12α1H2
0 +36α2H4

0

(
36α2H

4
0 + 12α1H

2
0 − 1

)

− γ2a
βγ3
0 eβγ3H0t − γ4a

βγ5
0 eβγ5H0t − 2ω0β

2H2
0 a

β(m+2)
0

×eβ(m+2)H0t + 3β(1 + β)α1α2α3γ1H
2
0

×
(
α1 − 6α2H

2
0

)
eβγ1H0t+12α1H2

0 +36α2H4
0

×aβγ1
0 + 3β2α1α2α3γ1(γ1 − 1)H2

0

(
α1 − 6α2H

2
0

)
aβγ1

0

×eβγ1H0t+12α1H2
0 +36α2H4

0 ≥ 0, (33)

DEC : κ2ρ0e
−3H0(1+w)t − κ2 p

+α1α2α3a
βγ1
0 eβγ1H0t+12α1H2

0 +36α2H4
0 (1 − 12α1

×H2
0 − 36α2H

4
0

)
+ γ2a

βγ3
0 eβγ3H0t + γ4a

βγ5
0 eβγ5H0t

+β(β + 5)α1α2α3γ1H
2
0

×
(

6α2H
2
0 − α1

)
aβγ1

0 eβγ1H0t+12α1H2
0 +36α2H4

0

+β2α1α2α3γ1(γ1 − 1)H2
0 ×

×
(

6α2H
2
0 − α1

)
aβγ1

0 eβγ1H0t+12α1H2
0 +36α2H4

0 ≥ 0. (34)

The inequalities (31)–(34) depend on the six parameters
α1,α2,α3,β,m, and t . In this approach, we fix two parameters
and find the viable region by exploring the possible ranges
of the other parameters. We prefer to fix the integration con-
stants and show the results for WEC and NEC. Herein, we
set the present day values of the Hubble parameter, the frac-
tional energy density, and the cosmographic parameters as
H0 = 67.3, �m0 = 0.315 [45] q = −0.81, j = 2.16,
s = −0.22 [25]. The viability regions for all the possible
cases for the dS f (R,Y, φ) model are presented in Table 1.

Initially, we vary α1 and α2 to check the validity of WEC
and NEC for different values of α3, β andm. If we set both α1

and α2 positive then WEC is valid for m, however, β needs
some particular ranges, thus (α3 > 0, β ≥ 0), (α3 = 0, ∀
β) and (α3 < 0, β ≤ −1). NEC is valid only if α3 ≤ 0 and
the suitable regions are (α3 < 0, ∀ m, β), (α3 = 0, m ≥ 0,
β ≤ −1) and (α3 = 0, m ≤ −2.8, β ≥ 2). In Fig. 1, we
present the evolution of WEC and NEC to show some viable
regions in this case. If α1 < 0 and α2 > 0, WEC is valid for
all values of α3 and m with β ≥ 0. For α3 > 0, NEC is valid
for all values of m and β except β = 0 and if α3 = 0 then the
validity of NEC requires (m ≥ 0, β ≤ −2) or (m ≤ −2.8,
β ≥ 2). If α1 > 0 and α2 < 0, WEC is valid for all values
of α3, β and m with t > 3.6, in the case of NEC we require
(β ≤ −1.5, m ≥ 0), (β ≥ 2.8, m ≤ −3) for all α3. For
choosing α1 < 0 and α2 < 0, WEC is valid for all values of
α3, β, and m with t ≥ 3.6. For all values of α3, NEC is valid
for β ≤ −1.4 with m ≥ 0 and for β ≥ 1 with m ≤ −3.6.

Now we are varying α2 and α3, starting with α2 > 0 and
α3 > 0. For α1 > 0, WEC is valid for all values of m with
β > 0 and t ≥ 3.6 and NEC violates this, and for α1 < 0
WEC is valid for all values of m with β ≤ −1 and NEC is
valid for all values of m and β except β = 0. For α1 = 0,
WEC is valid for all values of m with β ≤ −1 and NEC is
valid for m ≥ 0 with β ≤ −1 and for m ≤ −3 with β ≥ 2.8.
In case of α2 > 0 and α3 < 0, the validity of WEC and NEC
establishes three cases: (i) if α1 < 0, WEC is valid for all
values of m with β > 0 and NEC violate, (ii) if α1 > 0,
WEC is valid for all values of m with β ≤ −1 and NEC is
valid for all values of m and β except β = 0, (iii) if α1 = 0,
WEC is valid for all values of β and m with t ≥ 3.6 and
NEC is valid for β ≥ 1 with m ≤ −3 and for β ≤ −1 with
m ≥ −1. For α2 < 0 and α3 > 0, WEC is satisfied for all
values of α1, β, and m with t ≥ 3.6 whereas the validity of
NEC requires (β ≤ −1, m ≥ 1) or (β ≥ 2.8, m ≤ −3) for
all α1. Similarly, for α2 < 0 and α3 < 0, WEC is valid for all
values of α1, β, and m with t ≥ 3.6 whereas the validity of
NEC requires (β ≤ −1, m ≥ 0.8) or (β ≥ 2.5, m ≤ −3.5)
for all α1.

Next we vary α1 and α3, taking α1 and α3 both positive.
For α2 > 0, WEC is valid for all values of m with β > 0 and
NEC violates this. For α2 ≤ 0, WEC is valid for all values
of β and m with t ≥ 3.6 and NEC is valid for β ≤ −1.5
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Table 1 Validity regions of WEC and NEC for dS f (R, Y, φ) model

Variations of α′
i s Validity of WEC Validity of NEC

α1 > 0, α2 > 0 α3 = 0, ∀ β and m α3 < 0 with ∀ m and β

α3 > 0, β ≥ 0, ∀ m α3 = 0 with (m ≥ 0, β ≤ −1) or (m ≤ −2.8, β ≥ 2)

α3 < 0, β ≤ −1, ∀ m

α1 < 0, α2 > 0 ∀ α3, m and β ≥ 0 α3 = 0 with (m ≥ 0, β ≤ −2) or (m ≤ −2.8, β ≥ 2)

α3 > 0 with β > 0 or β < 0 ∀ m

α1 > 0, α2 < 0 ∀ α3, β, m and t > 3.6 ∀ α3 with (m ≥ 0, β ≤ −1.5) or (m ≤ −3, β ≥ 2.8)

α1 < 0, α2 < 0 ∀ α3, β, m and t ≥ 3.6 ∀ α3 with (m ≥ 0, β ≤ −1.4) or (m ≤ −3.6, β ≥ 1)

α2 > 0, α3 > 0 α1 < 0 with β ≤ −1, ∀ m α1 < 0 with β > 0 or β < 0 and ∀ m

α1 = 0 with t ≥ 3.6, ∀ m and β α1 = 0 with (m ≤ −3, β ≥ 2.8) or (m ≥ 0, β ≤ −1)

α1 > 0 with β > 0, t ≥ 3.6, ∀ m

α2 > 0, α3 < 0 α1 < 0, β > 0, ∀ m α1 = 0 with (m ≤ −3, β ≥ 1) or (m ≥ −1, β ≤ −1)

α1 > 0, β ≤ −1, ∀ m α1 > 0 with β < 0 or β > 0 and ∀ m

α1 = 0, t ≥ 3.6, ∀ β and m

α2 < 0, α3 > 0 ∀ α1, β and m with t ≥ 3.6 ∀ α1 with (β ≤ −1, m ≥ 1) or (β ≥ 2.8, m ≤ −3)

α2 < 0, α3 < 0 ∀ α1, β and m with t ≥ 3.6 ∀ α1 with (β ≤ −1, m ≥ 0.8) or (β ≥ 2.5, m ≤ −3.5)

α1 > 0, α3 > 0 α2 > 0 with β > 0, ∀ m α2 ≤ 0 with (β ≤ −1.5, m ≥ 0) or (β ≥ 2.8, m ≤ −3)

α2 ≤ 0 with ∀ β, m and t ≥ 3.6

α1 > 0, α3 < 0 α2 ≤ 0 with ∀ β, m and t ≥ 3.6 ∀ α2 with (β ≤ −2, m ≥ 0) or (β ≥ 1, m ≤ −3)

α2 > 0 with β ≤ −0.5 and ∀ m

α1 < 0, α3 > 0 α2 ≤ 0 with ∀ β, m and t ≥ 3.6 α2 > 0 with ∀ β and m

α2 > 0 with β ≤ −0.5 and ∀ m α2 ≤ 0 with (β ≥ 2.8, m ≤ −3) or (β ≤ −1.4, m ≥ 0)

α1 < 0, α3 < 0 α2 > 0, β ≥ 0 and m α2 ≤ 0 with (β ≥ 2, m ≤ −3.5) or (β ≤ −1.4, m ≥ 0)

α2 ≤ 0 with ∀ β, m and t ≥ 3.6

Fig. 1 Variation of energy constraints for dS f (R, Y, φ) model with α1 > 0 and α2 > 0. In left plot we set m = −10 (one can set any value since
the results are valid for all m) and we show the variation for all α3 and β. Right plot shows the validity regions of NEC for α3 = 0

with m ≥ 0 and for β ≥ 2.8 with m ≤ −3. Now we take α1

positive and α3 negative. For α2 > 0, WEC is valid for all
values of m with β ≤ −0.5 and for α2 ≤ 0 WEC is valid for
all values of β and m with t ≥ 3.6. For all values of α2 NEC
is valid for β ≤ −2 with m ≥ 0 and for β ≥ 1 with m ≤ −3.

Taking α1 negative and α3 positive. For α2 > 0, NEC is valid
for all values of m with β ≤ −0.5 and WEC is valid for all
values of β and m. For α2 ≤ 0, WEC is valid for all values
of β and m with t ≥ 3.6 and NEC is valid for β ≥ 2.8 with
m ≤ −3 and for β ≤ −1.4 with m ≥ 0. Taking α1 and α3

123



Eur. Phys. J. C (2016) 76 :254 Page 7 of 13 254

both negative. For α2 > 0, WEC is valid for all values of m
with β ≥ 0 and NEC violates this. For α2 ≤ 0 WEC is valid
for all values of β and m with t ≥ 3.6 and NEC is valid for
β ≥ 2 with m ≤ −3.5 and for β ≤ −1.4 with m ≥ 0.

• de Sitter model independent of Y

Here we take the function f (R, φ) and insert Eq. (27) along
with Eqs. (25) and (26) in Eq. (4); we obtain

3H2
0 βφ fRφ −3H2

0 fR − 1

2
f (R, φ) + 1

2
ω0β

2H2
0 φm+2

− κ2ρ0a
3(1+w)
0 φ

− 3
β = 0. (35)

Solving this equation we have

f (R, φ) = α1α2e
α1Rφγ1 + γ2φ

γ3 + γ4φ
γ5 , (36)

where α′
i s are constants of integration and

γ1 = − 1

β
(1 + 1

6H2
0 α1

), γ2 = ω0β
2H2

0 ,

γ3 = m + 2, γ4 = −2κ2ρ0a
3(1+w)
0 , γ5 = − 3

β
. (37)

Introducing model (36) in inequalities (14)–(17) it follows
that

NEC : κ2ρ0e
−3H0(1+w)t + κ2 p

−ω0β
2H2

0 a
β(m+2)
0 eβ(m+2)H0t + β(β − 1)

×α2
1α2γ1H

2
0 a

βγ1
0 eβγ1H0t+12α1H2

0

+β2α2
1α2γ1 (γ1 − 1) H2

0 a
βγ1
0 × eβγ1H0t+12α1H2

0 ≥ 0,

(38)

WEC : κ2ρ0e
−3H0(1+w)t + 1

2
α1α2a

βγ1
0 eβγ1H0t+18α1H2

0

+ 1

2
γ4a

βγ5
0 eβγ5H0t − 6α2

1α2H
2
0 a

βγ1
0 eβγ1H0t+12α1H2

0

− 3βα2
1α2γ1H

2
0 a

βγ1
0 eβγ1H0t+12α1H2

0 ≥ 0, (39)

SEC : κ2ρ0e
−3H0(1+w)t + 3κ2 p

−α1α2a
βγ1
0 eβγ1H0t+12α1H2

0 − γ2a
βγ3
0 eβγ3H0t

− γ4a
βγ5
0 eβγ5H0t − 2ω0β

2H2
0 a

β(m+2)
0 eβ(m+2)H0t

+ 12α2
1α2H

2
0 a

βγ1
0 × eβγ1H0t+12α1H2

0

+3β(1 + β)α2
1α2γ1H

2
0 a

βγ1
0 eβγ1H0t+12α1H2

0

+ 3β2α2
1α2γ1 × (γ1 − 1)H2

0 a
βγ1
0 eβγ1H0t+12α1H2

0 ≥ 0,

(40)

DEC : κ2ρ0e
−3H0(1+w)t − κ2 p + α1α2a

βγ1
0 eβγ1H0t+12α1H2

0

+ γ2a
βγ3
0 eβγ3H0t + γ4a

βγ5
0 eβγ5H0t

−12α2
1α2H

2
0 a

βγ1
0 eβγ1H0t+12α1H2

0 − β(β + 5)α2
1α2γ1

×H2
0 a

βγ1
0 eβγ1H0t+12α1H2

0

−β2α2
1α2γ1(γ1 − 1)H2

0 a
βγ1
0 eβγ1H0t+12α1H2

0 ≥ 0. (41)

Here, we discuss the energy constraints for the dS f (R, φ)

model; the inequalities representing these conditions depend
on five parameters, namely, α1, α2, β, m, and t . One can see
that WEC only depends on α1, α2 and t . We find that WEC
is satisfied for two cases depending on the choice of α1: (i)
α1 > 0 with α2 ≥ 0, (ii) α1 < 0 with for all α2. Now we
discuss NEC for three viable cases depending on the choice
of α1 and α2. If both α1 and α2 are positive then NEC is
valid for (β < 0 with m > −2) and (β > 0 with m ≤ −2).
Taking α1 negative and α2 positive, NEC is valid for β ≥ 3
with m ≤ −5 and for β ≤ −1 with m ≥ 0.8, similarly for
α1 < 0, α2 < 0 the validity of NEC requires β ≥ 3.5 with
m ≤ −5 and β ≤ −1 with m ≥ 1.

• de Sitter model independent of R

Now we take the function f (Y, φ) and insert Eq. (27) along
with Eqs. (25) and (26) in Eq. (4); we get

18H4
0 βφ fYφ − 42H4

0 fY + 1

2
f (Y, φ) − 1

2
ω0β

2H2
0 φm+2

− κ2ρ0a
3(1+w)
0 φ

− 3
β = 0, (42)

whose solution yields

f (Y, φ) = α1α2e
α1Yφγ1 + γ2φ

γ3 + γ4φ
γ5 , (43)

where α′
i s are constants of integration and

γ1 = − 7

3β
+ 1

36H4
0 α1β

, γ2 = ω0β
2H2

0 ,

γ3 = m + 2, γ4 = −2κ2ρ0a
3(1+w)
0 , γ5 = − 3

β
. (44)

Using model (43) in the constraints (14)–(17) it follows that

NEC : κ2ρ0e
−3H0(1+w)t + κ2 p

−ω0β
2H2

0 a
β(m+2)
0 eβ(m+2)H0t − 6β(β − 1)

×α2
1α2γ1H

4
0 a

βγ1
0 eβγ1H0t+36α1H4

0

− 6β2α2
1α2γ1 (γ1 − 1) H4

0 a
βγ1
0 × eβγ1H0t+36α1H4

0 ≥ 0,

(45)

WEC : κ2ρ0e
−3H0(1+w)t + 1

2
α1α2a

βγ1
0 eβγ1H0t+36α1H4

0

+ 1

2
γ4a

βγ5
0 eβγ5H0t + 18α2

1α2γ1H
4
0 a

βγ1
0 eβγ1H0t+36α1H4

0

− 18α2
1α2H

4
0 a

βγ1
0 eβγ1H0t+36α1H4

0 ≥ 0, (46)

SEC : κ2ρ0e
−3H0(1+w)t + 3κ2 p

−α1α2a
βγ1
0 eβγ1H0t+36α1H4

0 − γ2a
βγ3
0 eβγ3H0t

− γ4a
βγ5
0 eβγ5H0t − 2ω0β

2H2
0 a

β(m+2)
0 eβ(m+2)H0t

− 18β(1 + β)α2
1α2γ1H

4
0 a

βγ1
0 × eβγ1H0t+36α1H4

0
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−18β2α2
1α2γ1(γ1 − 1)

×H4
0 a

βγ1
0 eβγ1H0t+36α1H4

0 + 36α2
1α2

×H4
0 a

βγ1
0 eβγ1H0t+36α1H4

0 ≥ 0, (47)

DEC : κ2ρ0e
−3H0(1+w)t − κ2 p

+α1α2a
βγ1
0 eβγ1H0t+36α1H4

0 + γ2a
βγ3
0 eβγ3H0t

+ γ4a
βγ5
0 eβγ5H0t + 6β(β + 5)α2

1α2γ1H
4
0 a

βγ1
0

×eβγ1H0t+36α1H4
0 + 6β2α2

1α2γ1 ×
×(γ1 − 1)H4

0 a
βγ1
0 eβγ1H0t+36α1H4

0

− 36α2
1α2H

4
0 a

βγ1
0 eβγ1H0t+36α1H4

0 ≥ 0. (48)

Here, WEC depends only onα1,α2, and t as in the previous
case. We find that WEC is satisfied only if α2 ≤ 0 for all
values of α1. Now we discuss the validity of NEC by varying
α1 and α2. If α1 and α2 both are positive then NEC violates
this whereas for all other cases, (α1 < 0, α2 > 0) (α1 > 0,
α2 < 0) and (α1 < 0, α2 < 0) it is valid for all values of m
and β except β = 0.

4.2 Power law solutions

It would be very useful to discuss power solutions in this
modified theory according to different phases of cosmic evo-
lution. These solutions are helpful to explain all cosmic evo-
lutions such as dark energy, matter and radiation dominated
eras. We discuss power law solutions for two models of
f (R,Y, φ) gravity. The scale factor for this model is defined
as [25,46]

a(t) = a0t
n, H(t) = n

t
, R = 6n(1 − 2n)t−2, (49)

where n > 0. For a decelerated universe we have 0 < n < 1,
which leads to the dust dominated (n = 2

3 ) or radiation dom-
inated (n = 1

2 ) cases, while n > 1 leads to an accelerating
picture of the universe.

• Power law solution independent of R

Here, we take the function f (Y, φ), inserting Eqs. (26), (27),
and (49) in Eq. (4); we obtain

2(3n − 2)

4n2 − 3n + 1
Y 2 fYY − n(3n − 2)

2(4n2 − 3n + 1)
φY fYφ

+ 7n2 − 19n + 4

2(4n2 − 3n + 1)
Y fY

− 1

2
f − κ2ρ0a

3(1+w)
0 φ

− 3
β + 1

2
ω0β

2n2a
2
n
0 φ

m+2− 2
nβ = 0,

(50)

whose solution results in the following f (Y, φ) model:

f (Y, φ) = α1α2φ
γ1Y γ2 + γ3φ

γ4 + γ5φ
γ6 , (51)

where the α′
i s are constants of integration and

γ1 = 2(3n − 2)α1

4n2 − 3n + 1
+ 7n2 − 31n + 12

n(3n − 2)
− 2(4n2 − 3n + 1)2

n2(3n − 2)2α1
,

γ2 = n(3n − 2)α1

2(4n2 − 3n + 1)
, γ3 = −ω0β

2n2a
2
n
0 ,

γ4 = m + 2 − 2

nβ
, γ5 = −2κ2ρ0a

3(1+w)
0 , γ6 = − 3

β
. (52)

Introducing (51) in the energy constraints (14)–(17), one
can find the inequalities for this model to depend on the six
parameters α1, α2, β, m, n, and t . We will only discuss the
WEC and NEC for different values of β and m by fixing n
and αi ’s where i = 1, 2. Starting with α1 and α2 both posi-
tive, WEC is valid for n > 1 with β ≤ −0.1, m ≥ 0, t ≥ 1.1
and NEC is valid for all values of m with n > 1 and β ≥ 0.
Now taking α1 negative and α2 positive, WEC is valid for
1 < n ≤ 1.8 with β ≤ −3, m ≥ 0 and for n ≥ 2.3 with
β ≥ 2 and m ≤ −1. Similarly, NEC is valid for all values
of m with n > 1, β ≤ −0.12, and t ≥ 1.01. Now taking
α1 positive and α2 negative, WEC is valid for n ≥ 1.7 with
β ≥ 0.1 and m ≤ −10 and NEC is valid for all values of
m with n > 1, β ≥ 0 and t ≥ 1.07. Taking α1 and α2

both negative, WEC is valid for 1 < n ≤ 1.9 with β > 0,
m ≤ −6.5, and t > 1 and for n ≥ 2 WEC is valid for β ≤ 0
with m ≥ 4. In this case NEC is valid for 1 < n ≤ 1.5 with
β ≥ 0, m ≤ −2.6, and t ≥ 1.9 and for n ≥ 2 it is valid for
β < 0 with m ≥ 0, t ≥ 1.05, and for β ≥ 0 with m ≤ −4,
t ≥ 1.08.

• Power law solution independent of Y

Now we take the function f (R, φ); inserting Eq. (26) along
with Eqs. (27) and (49) in Eq. (4) yields

1

3n − 1
R2 fRR + n − 1

2(3n − 1)
R fR

− nβ

2(3n − 1)
φR fRφ − κ2ρ0a

3(1+w)
0 φ

− 3
β

− 1

2
f + 1

2
ω0β

2n2a
2
n
0 φ

m+2− 2
nβ = 0. (53)

Solving this we have

f (R, φ) = α1α2φ
γ1 Rγ2 + γ3φ

γ4 + γ5φ
γ6 , (54)

where α′
i s are constants of integration and

γ1 = α1

3n − 1
+ n − 3

nβ
− 2(3n − 1)2

n2β2α1
,

γ2 = n(n − 3)βα1

(3n − 1)2 , γ3 = ω0β
2n2a

2
n
0 ,

γ4 = m + 2 − 2

nβ
, γ5 = −2κ2ρ0a

3(1+w)
0 , γ6 = − 3

β
.

(55)
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Inserting (54) in the energy conditions (14)–(17) we can find
the energy conditions for this model. Here we are discussing
the validity of NEC and WEC for different values of β, m,
and t by fixing n and αi ’s where i = 1, 2. Starting with
α1 and α2 both positive, WEC is valid for all values of m
and β �= 0 with n = 3 while NEC is valid for n = 3 with
β ≤ −2, m ≥ 0, and t ≥ 1.03. Now taking α1 negative and
α2 positive, WEC is valid form ≥ 0 with n = 3, β ≥ 2.6 and
t ≥ 0.65 and for m ≤ −2 it is valid for n = 3 with β ≥ 22.5.
For this choice of αi ’s NEC is valid for n > 1 with β > 1,
m ≤ −5 and t ≥ 1.05. Next we are taking α1 positive and
α2 negative, here WEC is valid for n = 3 with (i) β ≥ 2.7,
m ≥ 0, and t ≥ 0.65 and with (ii) β ≤ −2, m ≤ −5.5 and
t ≥ 0.65. NEC is valid for n = 3 and for all values of m and
β except β = 0. If we take α1 and α2 both negative, both
WEC and NEC are valid for all values of m and β �= 0 with
n = 3.

5 Energy conditions for some well-known models

To show how these energy conditions apply in the limits
on f (R,Y, φ) gravity, we have also considered some well-
known functions in the following discussion.

5.1 f (R, φ) models

Here, we present f (R,Y, φ) gravity models which do not
involve a variation with respect to Y and correspond to
f (R, φ) gravity. We present the energy constraints for the
following models:

1. f (R, φ) = R−2�(1−ebφκ3R)

κ2 ,

2. f (R, φ) = R

(
ω0β2n2a2/n

0 (mnβ+2nβ+6n−2)

mnβ+2nβ−2

)
φ
m+2− 2

nβ ,

3. f (R, φ) = R(1 + ξκ2φ2),
4. f (R, φ) = φ(R + αR2).

For these models we explore the energy constraints in the
background of power law solutions with n > 1 favoring the
current accelerated cosmic expansion.

5.1.1 Model I

In [47], Myrzakulov et al. discussed the inflation in f (R, φ)

theories by analyzing the spectral index and the tensor-to-
scalar ratio and found results in agreement with the recent
observational data. In our paper, we have selected the fol-
lowing f (R, φ) model [47]:

f (R, φ) = R − 2�(1 − ebφκ3R)

κ2 , ω(φ) = 1, (56)

where κ3 is introduced for dimensional reasons and b is a
dimensionless number of order unity.

Introducing this model in the energy conditions (14)–(17)
along with Eqs. (26), (27), and (49), we find the following
constraints:

NEC : κ2(ρ0t
−3n(1+w) + p) − β2H2a2β

0 t2nβ

+ 2�bκβH2aβ
0 t

nβ (β − q − 2)

×e−6bφκ3(1−q)H2 − 12�b2κ4H4a2β
0 t2nβ

×
[ (

s + q2 + 8q + 6
)

+ β (1 − q) ×
× (β − 1 − q) + 2β ( j − q − 2)

+2β2 (1 − q) − ( j − q − 2) − β (1 − q)

]

×e−6bφκ3(1−q)H2 + 72�b3κ7H6a3β
0 t3nβ

×
[
β2 (1 − q)2 + 2β (1 − q) ( j − q − 2)

]

×e−6bφκ3(1−q)H2 ≥ 0, (57)

WEC : κ2ρ0t
−3n(1+w)

+ 1

κ2

[
3(1 − q)H2 − �

(
1 − e−6bφκ3(1−q)H2

)]
− 1

2
β2

×H2a2β
0 t2nβ − �bκH2aβ

0 t
nβ (β − 6 + 6q)

×e−6bφκ3(1−q)H2 + 36�b2κ4H4

×a2β
0 t2nβ (β(1 − q) + ( j − q − 2)) e−6bφκ3(1−q)H2 ≥ 0,

(58)

SEC : κ2(ρ0t
−3n(1+w) + 3p)

+ 2�

κ2

(
1 − e−6bφκ3(1−q)H2

)
− 2β2H2a2β

0 t2nβ

+ 6�bκH2a2β
0 t2nβ

[
β(β − 1 − q) + β − 2(1 − q)

]

×e−6bφκ3(1−q)H2 − 36�b2

×κ4H4a2β
0 t2nβ

[
(s + q2 + 8q + 6)

+β(1 − q)(β − 1 − q) + 4β( j − q − 2)

+ 2β2(1 − q) + ( j − q − 2) + β(1 − q)

]

×e−6bφκ3(1−q)H2 + 216�b3κ7H6 × a3β
0 t3nβ

[
β2(1 − q)2 + 2β(1 − q)( j − q − 2) + ( j − q − 2)2

]

×e−6bφκ3(1−q)H2 ≥ 0, (59)

DEC : κ2(ρ0t
−3n(1+w) − p)

− 2�

κ2

(
1 − e−6bφκ3(1−q)H2

)
− 2�bκH2aβ

0 t
nβ

×
[
β(β − 1 − q) + 5β − 6(1 − q)

]
e−6bφκ3(1−q)H2
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Fig. 2 Plot of NEC for Model II versus the parameters m, β and t with
n = 1.1

+ 12�b2κ4H4a2β
0 t2nβ

×
[
(s + q2 + 8q + 6) + β(β − 1 − q)(1 − q)

+ 4β( j − q − 2) + 2β2(1 − q)

+ 5( j − q − 2) + 5β(1 − q)

]
e−6bφκ3(1−q)H2 − 72�b3κ7

×H6a3β
0 t3nβ

[
β2(1 − q)2 + 2β(1 − q)( j − q − 2)

+( j − q − 2)2
]
e−6bφκ3(1−q)H2 ≥ 0.

Here, we are left with the four parameters b, β, n, and t
and we constrain these according to WEC and NEC. Starting
with b ≥ 0, NEC is valid for n > 1 with β ≤ −1.5 whereas
WEC is only valid for b = 0 with n > 1, β ≤ 0, and t ≥ 1.1.
Moreover, for b < 0 with n > 1, NEC and WEC are valid
for all values of β. In Fig. 2, we show the plot of NEC for
this model versus the parameters m, β, and t by fixing n > 1.

5.1.2 Model II

Here, we have formulated a specific model in this theory
using the form f (R, φ) = R f (φ). We have calculated f (φ)

from the Klein–Gordon equation by using ω(φ) = ω0φ
m

and φ = a(t)β given in [40],

2ω(φ)�φ + ωφ(φ)φ;αφ;α − fφ = 0. (60)

In this regard, we find the following expression:

f (R, φ)

= R

(
ω0β

2n2a2/n
0 (mnβ + 2nβ + 6n − 2)

mnβ + 2nβ − 2

)
φ
m+2− 2

nβ ,

(61)

where ω0 and a0 are constants. Using this model in the energy
conditions (14)–(17) along with Eqs. (26), (27), and (49) we
have energy conditions,

NEC : κ2ρ0t
−3n(1+w) + κ2 p

−ω0β
2H2a(m+2)β

0 t (m+2)nβ + ω0β
2H2a(m+2)β

0

×{(m + 2)nβ + 2(3n−1)} {(m + 2)nβ−2(n + 1)−nq}
×t (mnβ+2nβ−2) ≥ 0, (62)

WEC : κ2ρ0t
−3n(1+w) − 1

2
ω0β

2H2a(m+2)β
0 t (m+2)nβ

− 3ω0nβ
2H2a(m+2)β

0

×{(m + 2)nβ + 2(3n − 1)} tmnβ+2nβ−2 ≥ 0, (63)

SEC : κ2(ρ0t
−3n(1+w) + 3p) − 2ω0β

2H2a(m+2)β
0 t (m+2)nβ

+ 3ω0β
2H2a(m+2)β

0

×{(m + 2)nβ + 2(3n − 1)} t (mnβ+2nβ−2)

×{(mβ − q)n + 2(nβ − 1)} ≥ 0, (64)

DEC : κ2(ρ0t
−3n(1+w) − p) + ω0β

2H2a(m+2)β
0

×{(m + 2)nβ + 2(3n − 1)}
× {n(q − mβ) + 2(1 − 2n − nβ)} tmnβ+2nβ−2)β ≥ 0.

(65)

We examine the NEC and WEC against the parameters β,
n,m and t . We find that WEC can be satisfied for all values of
m and β only if t ≥ 1.3 while the validity of NEC requires;
(i) m ≥ 0 with β ≤ 0 and t ≥ 1.5 (ii) m < −2 with β ≥ 0
and t ≥ 1.2.

5.1.3 Model III

In this case we present the energy constraints for the follow-
ing model [48]:

f (R, φ) = R(1 + ξκ2φ2), (66)

where ξ is the coupling constant. Recently, this model has
been employed to discuss the cosmological perturbations for
non-minimally coupled scalar field dark energy in both the
metric and the Palatini formalisms. The interaction has been
analyzed depending on the coupling constant. Using this
model in the energy conditions (14)–(17) along with Eqs.
(26), (27), and (49) we get

NEC : κ2(ρ0t
−3n(1+w) + p) − ω0β

2H2a(m+2)β
0 t (m+2)nβ

+ 2βξκ2H2a2β
0 t2nβ × (β − 1 − q) + 2β2ξκ2H2a2β

0 t2nβ

− 2βξκ2H2a2β
0 t2nβ ≥ 0, (67)

WEC : κ2ρ0t
−3n(1+w) − 1

2
ω0β

2H2a(m+2)β
0 t (m+2)nβ

− 6βH2ξκ2 × a2β
0 t2nβ ≥ 0, (68)

123
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SEC : κ2(ρ0t
−3n(1+w) + 3p) − 2ω0β

2H2a(m+2)β
0 t (m+2)nβ

+ 6ξκ2βH2a2β
0 × t2nβ + 6ξκ2βH2(β − 1 − q)a2β

0 t2nβ

+ 6ξκ2β2H2a2β
0 t2nβ ≥ 0, (69)

DEC : κ2(ρ0t
−3n(1+w) − p) − 10βH2ξκ2a2β

0 t2nβ

− 2βH2ξκ2(β − 1 − q) × a2β
0 t2nβ

−2β2H2ξκ2a2β
0 t2nβ ≥ 0. (70)

We intend to discuss the NEC, WEC and constrain the param-
eters like β, ξ , n, m, and t . Here, we develop three cases
depending on the choice of scalar field power m. Starting
with m > 0 with n > 1, NEC is valid for all values of ξ with
β ≤ −3.7 and t ≥ 3 and WEC is valid for all values of ξ

with β ≤ −3.4 and t ≥ 2.8. Now taking m < 0 with n > 1,
for β ≤ −3.7 NEC is valid for all values of ξ with t ≥ 3.1
and for β > 0 it is valid for all values of t with ξ > 0. For
β ≤ −3.4 WEC is valid for all values of ξ with t ≥ 2.8
and for β ≥ 0 WEC is valid for all values of t with ξ ≤ 0.
Taking m = 0 with n > 1, WEC is valid in two regions:
(i) ξ ≤ −8.35 with β ≥ 0; (ii) for all ξ with β ≤ −3.4
and t ≥ 2.8. Similarly, NEC is satisfied for: (i) β ≥ 0 with
ξ ≥ 0.28; (ii) for all ξ with. β ≤ −3.7 and t ≥ 3.

5.1.4 Model IV

Bahamonde et al. have used the expression f (R) [49]

f (R, φ) = φ(R + αR2), (71)

where α is a constant with suitable dimensions. This gravi-
tational action is very familiar and enables one to reproduce
inflation. Inserting this model in the energy conditions (14)–
(17) along with Eqs. (26), (27), and (49) we have the energy
conditions,

NEC : κ2(ρ0t
−3n(1+w) + p)

−ω0β
2H2a(m+2)β

0 t (m+2)nβ − 24αβH4aβ
0 t

nβ

×( j − q − 2) − 12αH4(s + q2 + 8q + 6)aβ
0 t

(nβ

+β(β − 1 − q)H2aβ
0 t

nβ

− 12αβH4(β − 1 − q)(1 − q)aβ
0 t

nβ

+ 12αH4( j − q − 2)aβ
0 t

nβ − βH2aβ
0 t

nβ

+ 12αβH4(1 − q)aβ
0 t

nβ ≥ 0, (72)

WEC : κ2ρ0t
−3n(1+w) − 1

2
ω0βHa(m+2)β

0 t (m+2)nβ

− 18αH4(1 − q)2aβ
0 t

nβ

+ 36αH4( j − q − 2)aβ
0 t

nβ − 3βH2aβ
0 t

nβ

+ 36αβH4(1 − q)aβ
0 t

nβ ≥ 0, (73)

SEC : κ2(ρ0t
−3n(1+w) + 3p) − 2ω0β

2H2a(m+2)β
0 t (m+2)nβ

+ 36αH4(1 − q)2 × aβ
0 t

nβ − 36αH4( j − q − 2)aβ
0 t

nβ

+3βH2aβ
0 t

nβ − 36αH4(s + q2 + 8q + 6)aβ
0 t

nβ

− 36αβH4aβ
0 t

nβ + 3βH2(β − 1 − q)aβ
0 t

nβ − 72αβH4

×( j − q − 2)aβ
0 t

nβ − 36αβH4(β − 1 − q)(1 − q)

×aβ
0 t

nβ ≥ 0, (74)

DEC : κ2(ρ0t
−3n(1+w) − p) + 36αH4(1 − q)2aβ

0 t
nβ

+ 60αH4( j − q − 2) × aβ
0 t

nβ − 5βH2aβ
0 t

nβ

+60αβH4(1 − q)aβ
0 t

nβ + 24αβH4( j − q − 2)

×aβ
0 t

nβ + 12αH4(s + q2 + 8q + 6)aβ
0 t

nβ

−βH2(β − 1 − q)aβ
0 t

nβ

+ 12αβH4(β − 1 − q)(1 − q)aβ
0 t

nβ ≥ 0. (75)

We consider here NEC and WEC and check their validity
for different values of β, α, n, m, and t . Following the previ-
ous case we vary the coupling parameter α and set the other
parameters for the validity of WEC and NEC. If α > 0 with
n > 1, then WEC can be met in two regions, namely (β ≥ 0,
m ≤ −1 with t ≥ 1) and (for all values of m with β ≤ −9
and t ≥ 6). Now taking α < 0 with n > 1, WEC is valid for
all m with β ≤ 0, and NEC is valid if β ≤ −0.7 with m ≥ 0
and t ≥ 1 and for β ≥ 0.85 with m ≤ −1 and t ≥ 1. Taking
α = 0 with n > 1, for β ≥ 0 NEC is valid for m ≤ −1.05
with t > 1.01 and for β ≤ 0 it is valid for m ≥ 0 with t ≥ 1.
WEC is valid for all values of m with β ≤ 0.

6 Conclusion

Scalar–tensor theories of gravity are very useful to discuss
accelerated cosmic expansion and to predict the universe
destiny. One of the more general modified theories of grav-
ity is f (R, RμνRμν, φ), which includes the contraction of
the Ricci tensors, Y = RμνRμν , and the scalar field φ. In
this paper, we have applied the reconstruction programme
to f (R, RμνRμν, φ). The action (1) in the original and spe-
cific forms as regards f (R, φ), f (Y, φ) is reconstructed for
some well-known solutions in the FRW background. The
existence of dS solutions has been investigated in modified
theories [50–53]. Here, we have developed multiple dS solu-
tions which may be useful in explaining the different cosmic
phenomena. In a de Sitter universe, we have constructed the
more general case f (R,Y, φ) and establish f (R, φ), con-
sidering the function independent of Y , and f (Y, φ), by tak-
ing the function independent of R. The power law expan-
sion history has also been reconstructed in this modified
theory for both general as well as a particular form of the
action (1). These solutions explain the matter/radiation dom-
inated phase that connects with the accelerating epoch. The
f (R, RμνRμν, φ) model can also be reconstructed which
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will reproduce the crossing of the phantom divide exhibiting
the superaccelerated expansion of the universe.

The Lagrangian of f (R, RμνRμν, φ)gravity is more com-
prehensive implying that different functional forms of f
can be suggested. The versatility in the Lagrangian raises
the question of how to constrain such a theory on physical
grounds. In this paper, we have developed some constraints
on general as well as specific forms of f (R, T, RμνTμν)

gravity by examining the respective energy conditions. The
energy conditions are also developed in terms of the decel-
eration, q, jerk, j , and snap, s, parameters. To illustrate how
these conditions can constrain the f (R, RμνRμν, φ) gravity,
we have explored the free parameters in reconstructed and
well-known models. In the general dS case f (R,Y, φ) the
energy conditions are depend on the six parameters β, m, t ,
and αi ’s where i = 1, 2, 3. In this procedure we have fixed
the αi ’s and observe the feasible region by varying the other
parameters.

In dS f (R, φ) and f (Y, φ) models, the NEC depends on
the five parameters α1, α2, β,m, and t and WEC depends only
on the three parameters α1, α2, and t . In the case of NEC we
have fixed α1 and α2 and we find the constraints on the other
parameters. In WEC we change α1 and explore the possible
ranges on α2 and t . For power law f (R, φ) and f (Y, φ)

models, the functions depend on the six parameters α1, α2, β,
m, n, and t . In the power law case we have n > 1, and varying
α1, α2 we have analyzed the viable constraints on β, m, and
t . Furthermore, we have considered three particular forms
of f (R,Y, φ) gravity taking the function independent of Y ,
i.e., f (R, φ), R f (φ), φ f (R); from this we can gain a deep
understanding of the applications of the energy conditions.
Model I is a function of the four parameters b, β, n, and t , and
we have checked the validity of NEC and WEC by varying
b. Model II depends on β, m, n, and t , for n > 1 we have
explored the viability of the other parameters. Next in model
III we have the five parameters β, ξ , n,m, and t , for n > 1 we
find the feasible constraints on the other parameters by fixing
m. In model IV the conditions depend on the five parameters
β, α, n, m, and t . We have n > 1 and varying β we examined
the possible regions for the other parameters.

Finally, we generally discuss the variations of parameters
involved in power law solutions and the scalar field coupling
function, denoted by m and n, respectively. We have exam-
ined de Sitter models and found that the more general case
f (R,Y, φ) is more effective as compared to the f (R, φ) and
f (Y, φ) models since in the general case one can specify
the parameters in a more comprehensive way. In all cases of
de Sitter models, WEC is valid for all m and NEC is valid
if (m ≥ 1 and m ≤ −5). In the power law case f (R, φ),
for both NEC and WEC n has a fixed value n = 3 and m
shows variations (m ≥ 0 and m ≤ −5.5). For the f (Y, φ)

case we have (n ≥ 2.3 with m ≥ 4, m ≤ −1) for WEC and
for NEC we have n ≥ 2 with (m ≥ 0, m ≤ −4). In other

well-known f (R, φ) models, the validity of these conditions
require n > 1 with (m ≥ 0, m ≤ −2).
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