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Abstract The 2 Higgs Doublet Model of type III has renor-
malisable Lepton Flavour-Violating couplings, and its one-
and two-loop (“Barr–Zee”) contributions to μ → eγ are
known. In the decoupling limit, where the mass scale M of the
second doublet is much greater than the electroweak scale,
the model can be parametrised with an Effective Field Theory
(EFT) containing dimension-six operators. The 1/M2 terms
of the exact calculation are reproduced in the EFT, provided
that the four-fermion operator basis below the weak scale
is enlarged with respect to the SU(2)-invariant Buchmuller–
Wyler list. It is found that the dominant two-loop “Barr–Zee”
contributions arise mostly in two-loop matching and running,
and that dimension-eight operators might be numerically rel-
evant.

1 Introduction

This exercise was born from a puzzle: experiments that
search for μ ↔ e flavour change constrain a long list
of QCD×QED-invariant four-fermion operators, some of
which turn out to be of dimension eight when SU(2) invari-
ance is imposed. But it is common, when describing New
Physics from above mW with Effective Field Theory(EFT)
[1,2], to use the SU(2)-invariant basis of dimension 6 oper-
ators given by Buchmuller and Wyler [3] and pruned in [4].
To explore when it is justified to neglect the additional four-
fermion operators below mW , we were looking for a model
where they might give relevant contributions. The first model
we tried was the 2 Higgs Doublet Model (2HDM). It turns
out that the additional four-fermion operators (not in the
Buchmuller–Wyler list) must be included below mW to cor-
rectly reproduce the O(1/M2) terms in the μ → eγ ampli-
tude of the 2HDM.

The exercise takes place in a Type III 2HDM in the decou-
pling limit, where the one-loop and two-loop “Barr–Zee”

a e-mail: s.davidson@ipnl.in2p3.fr

contributions to the μ → eγ amplitude are known [5]. The
aim is to extract the numerically dominant contributions and
to identify where they arise in an EFT description.

Section 2 reviews the 2HDM of Type III in the decoupling
limit and the calculation in this model of the μ → eγ ampli-
tude by Chang et al. [5] (CHK). Type III 2HDMs include
charged-lepton flavour-changing couplings; for simplicity,
only a μ ↔ e flavour-changing interaction is allowed. The
decoupling limit is taken by requiring the mass scale M of
the second doublet to be �10 v, to ensure that EFT can give
a reasonable approximation to the μ → eγ amplitude in this
model. In the final subsections, the O(1/M2) and O(1/M4)

parts of the μ → eγ amplitude are compared for the various
classes of diagrams.

Section 3 sets up an EFT formalism, based on dimension-
six operators and one-loop RGEs, which correctly reproduces
all the O([α log]n/M2) terms of the CHK calculation in the
full model. How to obtain the remaining terms of the CHK
result is outlined in Appendix B.

Section 4 summarises the less trivial aspects of the calcula-
tion and the location in the EFT of the Barr–Zee diagrams. It
should be readable independently of the more technical sec-
tions, Sects. 2 and 3. There are two-and-a-half issues with the
results obtained with dimension-six operators and one-loop
RGEs: the four-fermion operator basis belowmW only needs
to be invariant under QCD and QED, so it should be enlarged
with respect to the list [4] of SU(2)-invariant dimension-six
operators. Second, two-loop effects are important, because
the one-loop contribution is suppressed by the square of the
muon Yukawa coupling. Finally, dimension-eight terms can
be enhanced, both by logs and by unknown couplings in the
2HDM (encapsulated in tan β).

This exercise overlaps with several studies. Pruna and
Signer [6] studied μ → eγ in an EFT consisting of the SM
extended by a complete set of SU(2)-invariant operators, but
they focused on the electroweak running above mW , rather
than the matching at mW , so they did not extend the oper-
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ator basis below mW . In the context of B physics, Alonso
et al. [7] and Aebischer et al. [8] calculated the coefficients
of the enlarged operator basis below mW , given a selection
of SU(2)-invariant operators above mW . This exercise only
agrees approximatively with [7], as discussed in Sect. 4.

2 μ → eγ in the Type III 2HDM

2.1 Review of the 2HDM Type III in the decoupling limit

The 2HDM is a minimal extension of the Standard Model,
including one extra Higgs doublet with new unknown inter-
actions to the Standard Model fermions and Higgs—for a
review, see [9,10]. In the 2HDM considered here, the extra
doublet is taken to be heavy—this is the decoupling limit, and
it should be describable with EFT. To allow for LFV, consider
a “Type III” model, where there is no discrete symmetry that
distinguishes the Higgs, so there is no “symmetry basis” in
which to write the Lagrangian (so also no unambiguous def-
inition of tan β). For simplicity, the Higgs potential is taken
to be CP invariant.

The Lagrangian can be written in the “Higgs basis”,
defined such that 〈H1〉 �= 0, and 〈H2〉 = 0, so the doublets
are written1

H1 =
(

G+
1√
2

(
v+H0

1 + iG0
))

, H2 =
(

H+
1√
2

(
H0

2 + i A
))

,

(1)

where theGs are Goldstones. This shows that the mass eigen-
states A and H± are the CP-odd and charged components
of the vev-less H2, but there can be some mixing between
H1 and H2 in the CP-even scalars h, H . The convention
〈H1〉 = v/

√
2 implies v = 246 GeV,

4GF√
2

= 2

v2 ,
√

2GF = 1

v2 . (2)

In this “Higgs basis”, in the notation of [11], the potential
parameters are written in upper case, so the potential is

V = M2
11H

†
1 H1 + M2H†

2 H2 − [M2
12H

†
1 H2 + h.c.]

(in Higgs basis)

+ 1
2�1(H

†
1 H1)

2 + 1
2�2(H

†
2 H2)

2 + �3(H
†
1 H1)(H

†
2 H2)

+�4(H
†
1 H2)(H

†
2 H1)

+
{

1
2�5(H

†
1 H2)

2 + [
�6(H

†
1 H1)

+�7(H
†
2 H2)

]
H†

1 H2 + h.c.
}

. (3)

The angle β − α can be defined from the Higgs potential
of a Type III model, unlike β and α. It rotates between the

1 Neglecting the phase ambiguity χ discussed at eqn A.11 of [11].

mass basis of h, H and the Higgs basis:

h = H0
1 sβ−α + H0

2 cβ−α,

H = H0
1 cβ−α − H0

2 sβ−α, (4)

so that what is here called β−α is independent of the angle β,
which will later be defined from the Yukawas. If the potential
is CP invariant, there is a simple relation for cβ−α [11]:

cos [(β − α)] sin [(β − α)] = −�6v
2

m2
H − m2

h

. (5)

The masses of the scalars are related to the potential
parameters in the Higgs basis as [11]

m2
H± = M2 + v2

2
�3,

m2
A − m2

H± = −v2

2
(�5 − �4),

m2
H + m2

h − m2
A = +v2(�1 + �5),

(m2
H − m2

h)
2 = [m2

A + (�5 − �1)v
2]2 + 4�2

6v
4, (6)

and the couplings to W+W− are igmWCφWWgμν with

ChWW = sβ−α, CHWW = cβ−α, CAWW = 0. (7)

In the decoupling limit [12], where �iv
2 � M2, the exact

relations (6) can be expanded in v2/M2 to obtain

m2
H − m2

A 	 +�5v
2 (decoupling limit),

m2
h 	 +v2�1 − v4

M2

(
�6 + (�5 − �1)

2

4

)
(decoupling limit); (8)

and then approximating sβ−α 	 1 in Eq. (5) gives

⇒ cos [(β − α)] 	 −�6v
2

M2

(
1 + �1v

2

M2

)
+ · · ·

(decoupling limit), (9)

which confirms that, in the decoupling limit, h is mostly H1

and H is mostly H2.
The Yukawa couplings in the Higgs basis for the Higgses,

and the mass eigenstate basis for the {uR, dR, eR, dL , eL},
are

− LY =
(
Q j H̃1K

∗
i j Y

U
i Ui + Qi H1Y

D
i Di + Li H1Y

E
i Ei

)
+Qi H̃2[K †ρU ]i jU j

+Qi H2[ρD]i j D j + Li H2[ρE ]i j E j + h.c., (10)

where Q, L are SU(2) doublets, E,U, D are singlets, SU(2)
indices are implicit (LH1 = ν̄H+

1 + ēH0
1 ), H̃i = iσ2H∗

i , the
generation indices are explicit, and K is the CKM matrix.
The Y matrices are flavour diagonal and equal to the SM
Yukawas:

[Y P ]i j = √
2
mP

j

v
δi j (11)
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as a result of being in the fermion mass eigenstate bases.
The ρP matrices can be flavour-changing. To obtain μ →

eγ without other flavour-changing processes, I neglect all
off-diagonal elements except ρμe 	 ρeμ �= 0. To obtain a
predictive model and make contact with other 2HDM litera-
ture, the diagonal elements follow the pattern of one of the
types of 2HDM which have a discrete symmetry that ensures
flavour conservation:

Model type ρU ρD ρE

Type I YU cot β −Y D tan β −Y E tan β

Type II −YU tan β −Y D tan β −Y E tan β

Type X YU cot β Y D cot β −Y E tan β

Type Y −YU tan β Y D cot β −Y E tan β

(12)

This requires a definition of tan β which is common to
all the fermions. It can for instance be defined from the τ

Yukawa: in the mass eigenstate basis for τR, τL , define Hτ to
be the linear combination of Higgses to which couples the τ ,
and β as the angle in Higgs doublet space between H1 (the
vev) and Hτ :

H⊥ = H̃1 sin β + H̃2 cos β

Hτ = H1 cos β − H2 sin β (13)

Since tan β is defined from the lepton Yukawas, ρE ∝ tan β

in all Types of 2HDM listed above. This is unconventional,
but should include the same predictions provided that tan β

is allowed to range from 1/50 → 50.
From Eq. (10) the couplings to fermions are

− LY = d
1√
2

[
Y D(PR + PL )sβ−α + (ρD PR + ρD†

PL )cβ−α

]
dh

+ d
1√
2

[
Y D(PR+PL )cβ−α−(ρD PR+ρD†

PL )sβ−α

]
dH

+ i√
2
d(ρD PR − ρD†

PL )d A

e
1√
2

[
Y E (PR+PL )sβ−α+(ρE PR+ρE †

PL )cβ−α

]
eh

+ e
1√
2

[
Y E (PR+PL )cβ−α−(ρE PR+ρE †

PL )sβ−α

]

eH + i√
2
e(ρE PR − ρE †

PL )eA

+ u
1√
2

[
YU (PR+PL )sβ−α+(ρU PR+ρU †

PL )cβ−α

]
uh

+ u
1√
2

[
YU (PR+PL )cβ−α−(ρU PR+ρU †

PL )sβ−α

]
uH

− i√
2
u(ρU PR − ρU †

PL )uA

+
{
u

[
KρD PR − ρU †

K PL
]
dH+ + h.c.

}
+

{
ν

[
ρE PR

]
eH+ + h.c.

}
. (14)

This gives Feynman rules of the form −i Fφ,X
i j PX , where

Fh,L
i j = Y P

i j√
2
sβ−α + [ρP†]i j√

2
cβ−α,

Fh,R
i j = Y P

i j√
2
sβ−α + [ρP ]i j√

2
cβ−α

FH,L
i j = Y P

i j√
2
cβ−α − [ρP†]i j√

2
sβ−α,

FH,R
i j = Y P

i j√
2
cβ−α − [ρP ]i j√

2
sβ−α

F A,L
ui u j

= i
[ρU†]i j√

2
,

F A,R
ui u j

= −i
[ρU ]i j√

2

F A,L
i j = −i

[ρP†]i j√
2

,

F A,R
i j = i

[ρP ]i j√
2

, for P ∈ E, D, (15)

where the possible forms for ρP are given in Eq. 12.

2.2 μ → eγ in the 2HDM

The decay μ → eγ can be parametrised by adding the dipole
operator to the Standard Model Lagrangian. In the notation
of Kuno and Okada [13]

Lmeg = −4GF√
2
mμ

(
ARμRσαβeL Fαβ +ALμLσαβeRFαβ

)
,

(16)

which gives

BR(μ → eγ ) = 384π2(|AR |2 + |AL |2) < 5.7 × 10−13

(17)

where the upper bound is from the MEG experiment [14].
(The amplification factor of 384π2 = 3

2 (16π)2 is because
μ → eγ is a 2-body decay, and is compared to the usual
three-body muon decay.). |AR |, |AL | are dimensionless, and
if |AR | = |AL |, then |AX | < 8.6 × 10−9.

The decay μ → eγ has been extensively studied in the
2HDM [3,15–27], particularily in connection [29–37] with
the recent LHC [28,38] excess in h → τ±μ∓. Chang, Hou
and Keung [5] (CHK) calculate the contributions to μ → eγ
of neutral Higgs bosons with flavour-changing couplings.
Their calculation can be divided into four classes of dia-
grams, illustrated in Fig. 1: the one-loop diagrams, then three
classes of two-loop diagrams, that is, those with a t-loop, with
a b-loop and with a W -loop. I use their results, and later,
in matching onto SU(2)-invariant operators, assume that the
charged Higgs contribution ensures the SU(2) invariance of
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μ e

γ

φ

F φ
μμ

μ
x

F φ
eμ

μ e

γ

t, b

F φ
eμ

μ e

γ

W

γ, Z φ γ, Z φ

F φ
eμ

Fig. 1 One- and two-loop diagrams contributing to μ → eγ in the 2HDM, in the presence of a flavour-changing Yukawa coupling Fμe (see Eq.
(15))

the results. The results of CHK are referred to as “full-model”
results in the following.

In the appendix is given a translation dictionary between
the notation of CHK and here. The amplitude given by CHK
[5]2 for the one-loop diagram of Fig. 1, with an internal μ, is

−2
√

2GFmμA
1 loop
L

= − emμ

32π2

⎡
⎣ ∑

φ=h,H,A

Fφ,L
μμ Fφ,L

eμ

m2
φ

(
ln

m2
μ

m2
φ

+ 3

2

)⎤
⎦

∗
,

−2
√

2GFmμA
1 loop
R

= − emμ

32π2

⎡
⎣ ∑

φ=h,H,A

Fφ,R
μμ Fφ,R

eμ

m2
φ

(
ln

m2
μ

m2
φ

+ 3

2

)⎤
⎦

∗
. (18)

Notice that these amplitudes are suppressed by two leptonic
Yukawas and an additional muon mass insertion to flip the
chirality. In the decoupling limit, with φ ∈ {H, A} and μ in
the loop, Eq. (18) for AL gives

−2
√

2GFmμA
H,A,1 loop
L

	 − emμ

32π2M2 [ρE ]μe
[
Y E

μμ

�6v
2

2M2 − [ρE ]μμ

2M2 �5v
2
]∗

ln
m2

μ

M2

(19)

where mH 	 mA 	 M was used in the logarithm, and terms
suppressed by more than M−4 were dropped. The result for
AL is obtained by replacing [ρE ]i j → [ρE ]∗i j in the above.
The one-loop diagram with the light Higgs h and a μ (also
in the decoupling limit) gives

2 The constant factors given by Omura et al. [28] differ: − 4
3 for h, H

and − 5
3 for A. However, the constant is irrelevant here because the aim

here is only to reproduce the log in EFT. Also, as noted by Omura et
al., there are doubtful signs and typos/missing terms in the Barr–Zee
formulae in [27], which differ from the formulae here.

−2
√

2GFmμA
h,1 loop
L

	− emμ

32π2m2
h

[ρE ]μe
[
−Y E

μμ

�6v
2

2M2 +2[ρE ]μμ

(
�6v

2

2M2

)2
]∗

× ln
m2

μ

m2
h

. (20)

As noted long ago by Bjorken and Weinberg [39], there are
two-loop diagrams which can be relevant for μ → eγ . Some
examples are illustrated to the right in Fig. 1; a more complete
set of diagrams with broken electroweak symmetry can be
found in [40]. The resulting two-loop contributions to μ →
eγ can be numerically larger than the one-loop contributions,
because the Higgs attaches only once to the lepton line, via
the flavour-changing coupling, and otherwise couples to a
W, b or t loop. The result for the top loop (neglecting the
diagrams with internal Z exchange, see Fig. 1), is

−2
√

2GFmμA
t loop
L

= eα

16π3

1

mt
3Q2

t

×
⎡
⎣ ∑

φ=h,H

Fφ,L
eμ Fφ,L

tt f

(
m2

t

m2
φ

)
+ F A,L

eμ F A,L
tt g

(
m2

t

m2
A

)⎤
⎦

∗

	 eαmt

32π3M2 [ρE ]μe3Q2
t

×
[(

[ρU ]t t + YU
tt

�6v
2

2M2

)
ln2 m2

t

M2 − 2YU
tt �6 f

(
m2

t

m2
h

)]

(21)

where the log2 terms of the approximate equality are the sum
of the heavy H and A contributions, and the third term is due
to the light h. The approximate equality is in the decoupling
limit, so one uses mH 	 mA 	 M in the log, neglects terms
suppressed by v2/M2, and uses the following, which holds
for small z [5]:

f (z) 	 g(z) 	 z

2
ln2 z, h(z) 	 z ln z,

f (z) − g(z) 	 z(ln z + 2). (22)

(The function h will appear in the W -loop contribution.)
The functions f, g andh are given in CHK, are slowly varying
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near z ∼ 1 and at z = m2
W /m2

h 	 0.4 they are f ∼ 0.7, g ∼
0.9 and h ∼ 0.5. The formula for At loop

R is obtained by

replacing FH,L
i j → FH,R

i j in the coefficient of f , and ρF† →
ρF in the coefficient of g. The top-loop amplitude is ∝ mt ,
as expected because a top mass insertion is required both
to have an even number of γ -matrices in the loop, and to
provide the Higgs leg of the dipole operator.

Ab-quark loop should be described by the same formula as
the top loop (again neglecting the Z -exchange diagrams), but
the A-exchange contribution will subtract from H -exchange,
because of the sign difference in the couplings of A to bs and
ts (see Eq. (15)):

−2
√

2GFmμA
b loop
L = eα

16π3

3Q2
b

mb

×
⎡
⎣ ∑

φ=h,H

Fφ,L
eμ Fφ,L

bb f (
m2

b

m2
φ

) + F A,L
eμ F A,L

bb g(
m2

b

m2
A

)

⎤
⎦

∗

	 eαmb

64π3M2 3Q2
bρ

E
μe

×
[

v2

M2

(
Y D
bb�6 − ρD

bb�5

)
ln2 m2

b

M2 − v2

m2
h

×
(
Y D
bb�6 − ρD

bb
�2

6v
2

M2

)
ln2(

m2
b

m2
h

)

]
(23)

where the approximate equality is in the decoupling limit, and
uses the approximations of Eq. (22). The last term is the light
Higgs contribution. Notice that the O(1/M2) contributions
of H and A cancelled against each other in the decoupling
limit. The formula for AR is obtained by replacing FH,L

i j →
FH,R
i j in the coefficient of f , and ρF† → ρF in the coefficient

of g.
Finally, there is a two-loop contribution involving a W -

loop; the third diagram of Fig. 1 is one of the many that con-
tribute. In the CP-conserving 2HDM considered here, A does
not couple to the W or the Goldstones, so it cannot appear
in these diagrams. CHK compute separately the diagrams
with either photon or Z exchange between the lepton and
W (see Fig. 1). The Z -mediated amplitude is proportional
to 1 − 4 sin2 θW and estimated by CHK to be about 10 % of
the photon-mediated amplitude, so only the γ -amplitude is
considered here. The H and h contributions individually are

−2
√

2GFmμA
W loop
L = ± eα

32π3

�6v

M2

ρE
μe√
2

×
(

3 f (zφ) + 5g(zφ) + 3

4
[g(zφ) + h(zφ)]

+ f (zφ) − g(zφ)

2zφ

)
(24)

where zφ = m2
W /m2

φ , and - is for φ = H , +is for φ = h. The
sum of the contributions, in the decoupling limit, is

−2
√

2GFmμA
W loop
L 	 − eα

64π3

�6v

M2

ρE
μe√
2

×
[(

m2
W

M2 ln
m2

W

M2

(
35

4
ln

m2
W

M2 + 3

2

)
+ ln

m2
W

M2 + 2

)

−2

(
3 f (zh) + 5g(zh) + 3

4
[g(zh) + h(zh)

+ f (zh) − g(zh)

2zh

])]
(25)

where the limiting forms of Eq. (22) were used. The first line
of the approximate equality is the contribution of H , and
the last line is the contribution of h where zh = m2

W /m2
h ,

and the parentheses term evaluates to ∼ 7. The heavy H
exchanged between the lepton line and a Goldstone loop gen-
erates an O(log /M2) term, which is carefully discussed by
CHK, because the 1/M2 suppression arises from the decou-
pling limit of cβ−α , given in Eq. (9). CHK take the mixing
angle cβ−α as a free parameter, so one refers to this term as
a “non-decoupling” contribution.

2.2.1 The relative importance of the O(1/M2)

and O(1/M4) terms

Since EFT is an expansion in the operator dimension, it is
interesting to see under what conditions the O(1/M2) terms
give a good approximation to the full answer. These terms
should arise in a relatively simple EFT using dimension-
six operators; a more extended EFT would be required to
reproduce the O(1/M4) terms. So this section compares the
magnitude of the O(1/M2) and O(1/M4) terms in the four
classes of diagrams (one-, b-, t- and W -loop classes), with
little attention to signs and 2s.

For the one-loop diagrams, Eqs. (19,20) give the ratio of
the O(1/M4) parts to the O(1/M2) part as(

v2

M2

)

×
2[ρE ]μμ�2

6+[
Y E

μμ�6−[ρE ]μμ�5
]
(1 + ln

m2
h

M2 / ln
m2

μ

m2
h
)

2Y E
μμ�6

(26)

where I used v2/m2
h 	 4. Recall that, in this paper,

tan β is defined referring to the leptons, see Eq. (13), so
[ρE ]μμ/[Y E ]μμ ≡ tan β. Therefore, the O(1/M2) parts are
larger than the O(1/M4) contributions, provided that3

3 There is an O(1/M4) term from the heavy Higgs exchange dia-
grams that benefits from an additional log enhancement—it runs from
M → mμ rather than from mh → mμ like the O(1/M2) light Higgs
contribution. However, this is insignificant, because M/mh � mh/mμ.
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�6 tan β
v2

M2 < 1, tan β
�5

4�6

v2

M2 < 1

⇒ O
(

1

M2

)
> O

(
1

M4

)
(27)

If 1/50 < tan β < 50, v2/M2 < 0.01, and �5 ∼ �6 < 1,
then the O(1/M2) terms give the correct order of magnitude,
but the O(1/M4) terms can be required to get two significant
figures for large tan β.

For the top loop, the ratio of O(1/M4) over the O(1/M2)

terms is(
v2

M2

)
YU
tt �6

[ρU ]t t − YU
tt �6/ ln2 m2

t
M2

(28)

where f (m
2
t

m2
h
) 	 1 was used. This shows that the O(1/M2)

terms are always larger (neglecting the possible cancel-

lation of [ρU ]t t ln2 m2
t

M2 against �6), however, in 2HDMs
where the top couples mostly to the SM Higgs such that

[ρU ]t t ln2 m2
t

M2 � �6, the dimension-eight contribution is

only suppressed by m2
t

M2 ln2 m2
t

M2 which is 	 .2 for m2
t

M2 = 0.01.
So the dimension-eight contribution can be numerically rel-
evant in some areas of parameter space.

For the b-loop, the ratio ofO(1/M4) overO(1/M2) terms
is(

v2

M2

)

×

[
4�6ρ

D†
bb +

(
Y D
bb − ρD

bb
�5
�6

)(
1 + ln2 m2

h
M2 / ln2(

m2
b

m2
h

)]
4Y D

bb

(29)

So the O(1/M2) parts are larger than the O(1/M4) contri-
butions, provided that

�5

4�6

ρD
bb

Y D
bb

v2

M2 < 1, �6
ρD
bb

Y D
bb

v2

M2 < 1 ⇒ O(
1

M2 ) > O(
1

M4 )

(30)

where
ρD
bb

Y D
bb

∼ 35 in 2HDMs where ρD
bb 	 1. As in the case

of the one-loop contribution, the logarithm multiplying the
O(1/M4) heavy Higgs exchange diagrams runs from M →
mb rather than from mh → mb, which could give a factor 2.

For the W -loop, the ratio of O(1/M4) over O(1/M2)

terms is

m2
W

M2 ln
m2

W
M2

(
35
4 ln

m2
W

M2 − 3
2

)

ln
m2

W
M2 − 12

∼ m2
W

M2 ln2 m2
W

M2 (31)

where the estimate neglects cancellations and shows that the
O(1/M4) contribution is only mildly suppressed, because
z ln2 z does not decrease rapidly.

So in summary, provided that

�6 ∼ �5,
v2

M2 cot β < 1,
v2

M2 tan β < 1 (32)

in all four types of 2HDM, the O(1/M2) terms give the
correct order of magnitude, but the O(1/M4) terms can be
required to get two significant figures in some areas of param-
eter space.

2.2.2 The relative size of the four classes of diagram

The previous section suggested that it would be reasonable to
use an EFT with dimension-six operators. So the next ques-
tion is to determine the loop order to which the matching and
running should be performed in the EFT, in order to repro-
duce the numerically dominant O(1/M2) terms. So below,
the magnitudes of the O(1/M2) terms of the four classes of
diagrams are compared.

The O(1/M2) part of the one-loop contribution arises
from h exchange:

2
√

2GFmμA
h,1 loop
L ∼ emμ

πM2 [ρE ]μeY E
μμ�6 (33)

where v2/m2
h 	 4, and 1

16π
ln

m2
μ

m2
h

= 0.998 	 1.

Normalising the O(1/M2) part of the two-loop diagrams
to Eq. (33) gives

t loop ∼ αm2
t

32π2m2
μ

3Q2
t

�6

[
[ρU ]t t ln2 m2

t

M2 − �6)

]
, (34)

b loop ∼ αm2
b

16π2m2
μ

3Q2
b ln2(

m2
b

m2
h

), (35)

W loop ∼ α

64π2

m2
t

m2
μ

[
ln

m2
W

M2 − 12

]
(36)

where f (m2
t /m

2
h) 	 1 was used. Since α

64π2
m2
t

m2
μ

	 32, this

reproduces the well-known dominance of the top and W -
loops. Interestingly, only the top loop can be enhanced (or
suppressed) by the angle β—the relative magnitude of the
other terms is mostly controlled by Standard Model param-
eters.

The two-loop top and b contributions contain log2 terms,
which should arise at second order in the one-loop RGEs
of dimension-six operators. However, there are significant
terms of the top and W contributions without a log, which
presumably arise in two-loop matching. The log term of the
W amplitude should be generated by two-loop RGEs. So we
see that a two-loop analysis would be required to reproduce
the dominant O(1/M2) terms.
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3 The EFT version

The aim of this section is to obtain, in EFT, the “lead-
ing” O([α log]n/M2) parts of the μ → eγ amplitude.
Appendix B discusses where some other parts of the full-
model calculation would arise. EFT is transparently reviewed
in [1,2], and the EFT construction here attempts to follow
the recipe given there. For simplicity, the EFT has only three
scales: the heavy Higgs scale M , the weak scalemW (taken 	
mZ ,mh,mt ) and a low scale mμ (taken 	 mb). Between M
andmW , the theory and operators are SU (3)×SU (2)×U (1)

invariant; below mW , they are SU (3) ×U (1) invariant.
The EFT constructed here contains dimension-six oper-

ators, which should reproduce the O(1/M2) terms of the
μ → eγ amplitude. In Eqs. (39)–(42) the dimension-six,
SU(2)-invariant operators required above mW are listed.
Equation (47) gives some additional SU(3)×U(1)-invariant,
dimension-six operators which are required below mW (but
which would have been of dimension eight in the SU(2)-
invariant formulation appropriate above mW ). As expected,
the operator basis below mW should include all four-fermion
operators that are of dimension six in a QED×QCD-invariant
theory. If instead the basis is restricted to SU(2)-invariant
“Buchmuller–Wyler” operators, one cannot obtain all the
O([α log]n/M2) terms of the μ → eγ amplitude (only the
top loop is included).

The EFT studied here is at “lowest order” in the loop
expansion: tree-level matching of operator coefficients, and
one-loop RGEs. This should reproduce the O(αn logn)
terms4 in the amplitude. I do not calculate the two-loop
matching, or the two-loop RGEs, which would allow one to
reproduce the dimension-six contributions of the top and W .

3.1 Setting up the EFT calculation

The aim of this top-down EFT calculation is to reproduce the
amplitude for μ → eγ in the 2HDM. So the first step is to
match out the heavy Higgses H and A at the “New Physics
scale” M . The H± are neglected because the full-model cal-
culation (to which the EFT is compared) includes only neu-
tral Higgses. Presumably the H± contribution ensures SU(2)
invariance. The 2HDM from above M is matched onto the
(unbroken) Standard Model, with its full particle content, and
a selection of SU (3)×SU (2)×U (1)-invariant dimension-six
operators. A list of possible operators was given by Buch-
muller and Wyler [3], and slightly reduced in [4]. Here,
only those operators which are required to reproduce the
O(1/M2) part of the μ → eγ amplitude are selected. In

4 Since the dipole operator has only two fermion legs but an external
photon, the anomalous dimension mixing four-fermion operators into
the dipole is ∝ 1/e. So in counting powers of α log, sometimes one
should multiply by e.

matching out, the operator coefficients of the effective the-
ory are assigned so as to reproduce the tree-level Green’s
functions of the full theory, at zero external momentum.

The second step is to run the operator coefficients down to
the scale mW . This running should be performed with elec-
troweak RGEs, which are given in [6,41]. However, since
CHK separate photon and Z diagrams, and only the photon
contributions were retained in the previous section, the run-
ning from M → mW is performed with the RGEs of QED.
The operator coefficients evolve [42] with scale μ as

μ
∂

∂μ
�C = αem

4π
�C� (37)

where the operator coefficients have been organised into a
row vector �C , and αem

4π
� is the anomalous dimension matrix.

The algorithm to calculate � is given, for instance, in [43].
For a square �, this equation can be perturbatively solved to
give the components of the vector �C(μ) at a lower scale μ:

CA(M)

×
(

δAB− α(μ)

4π
[�]AB ln

M

μ
+ α2(μ)

32π2 [��]AB ln2 M

μ
+· · ·

)
= CB(μ) (38)

At mW , the W, Z , h and t should be matched out. The
theory below mW should be QED and QCD for all the SM
fermions except the top, augmented by a complete set of
QED × QCD-invariant dimension-six operators. For sim-
plicity, I consider only QED for the b, μ and e, plus those
dimension-six operators required in matching onto the tree-
level Green’s functions of the SU(2)-invariant EFT from
above mW .

Finally, the operator coefficients are run down to mμ,
where the dipole coefficient can be used to calculate the
μ → eγ amplitude. In principle, the RGEs of QED and
QCD should be used. However, QCD is neglected because it
is not included in the full-model calculation of CHK.

3.2 Matching at M and one-loop running to mW

The operator for μ → eγ is given in Eq. (16). It is convenient
to rescale the coefficient as

2
√

2GFmμA
i j
R (eiσ

αβ PRe j )Fαβ

= Y E
μμ

M2 C
i j
D,R(Li H1σ

αβ PRE j )Fαβ ≡ Y E
μμ

M2 C
i j
D,RO

i j
D,R

(39)

so that the dimensionful operator coefficient is suppressed by
the heavy Higgs scale M . Above mW , there is a hypercharge
dipole and an SU(2) dipole; here only the linear combination
corresponding to the photon dipole is used, because only the
QED part of the SU(2) running is included. To obtain the
O([α log]n/M2) parts of the μ → eγ amplitude, only three
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μ−
R e−

L

tR tL

H2

ρU
tt

ρE
eμ

μ−
R e−

L

H1

H1H2

H1

ρE
eμ

Λ6

Fig. 2 The left diagram generates the dimension-six (Q3Ut )(LeEμ)

operator, by matching out the heavy doublet Higgs H2 (dashed line). The
right diagram generates the dimension-six H†

1 H1(LeH1Eμ) operator

additional operators from the pruned Buchmuller–Wyler list
are required between M and mW :

Oeμt t
LEQU = (L

A
e Eμ)εAB(Q

B
t Ut ),

Oμett
LEQU = (L

A
μEe)εAB(Q

B
t Ut ), (40)

Oeμt t
T,LEQU = (L

A
e σμνEμ)εAB(Q

B
t σμνUt )

Oμett
T,LEQU = (L

A
μσμνEe)εAB(Q

B
t σμνUt ), (41)

Oeμ
eH = H†

1 H1LeH1Eμ,

Oμe
eH = H†

1 H1LμH1Ee, (42)

where σ is the anti-symmetric tensor i
2 [γ, γ ], and ε pro-

vides an SU(2) contraction. These operators appear in the
Lagrangian as

δL = −
∑

operators

Ci jmn
Z

M2 Oi jmn
Z + h.c. (43)

so the coefficientsC are dimensionless, and the four-fermion
operators are normalised such that the Feynman rule is
−iC/M2.

The last pair of operators, Eq. (42) will give the flavour-
changing light Higgs interaction required for the one-loop,
b-loop and W -loop amplitudes. As can be seen from the right
diagram of Fig. 2, matching at the scale M of the tree-level
Green’s functions of the full theory onto those of the SM +
dimension-six operators gives coefficients

Ceμ
eH

M2 = −[ρE ]eμ�6

M2 ,
Cμe
eH

M2 = −[ρE ]μe�6

M2 . (44)

The running of these coefficients between M and mW is
neglected, because it is not required to reproduce the CHK
results.

The first four operators of the list above will generate the
top loop contribution. Matching at M via the diagram given
on the left in Fig. 2 gives coefficients for the scalar LEQU

operators,

Ceμt t
LEQU

M2 =−[ρE ]eμ[ρU†]t t
M2 ,

Cμett
LEQU

M2 =−[ρE ]∗μe[ρU†]t t
M2 ,

(45)

where the negative sign is from the scalar propagator. Then,
between the scales M and mt , the RGEs of QED mix the
scalar operator Oeμt t

LEQU to the tensor Oeμt t
T,LEQU , and the ten-

sor to the dipole, such that the coefficient of Oeμ
D,L is

− mμ

Ceμ
D,L

M2 = −Ceμt t
LEQU

M2

eα

128π3 [(2Qt )(8NcQtmt )] log2 M

mt

= eα

32π3M2 3Q2
t mt [ρE ]eμ[ρU†]t t log2 m2

t

M2

(46)

where in the brackets after the first equality is the prod-
uct of the scalar→tensor and tensor→dipole elements of
the anomalous dimension matrix �. This agrees with the
O(1/M2) part of Eq. (21) that is generated by heavy Higgs
exchange.

3.3 Matching at mW and one-loop running to mμ

At the weak scale 	 mW , the h,W and t should be matched
out of the theory, onto a basis of dimension-six operators.
These operators should respect the gauge symmetries below
mW , which, in the absence of the h,W and Z , are QCD and
QED. So there is no reason to impose SU(2) on the operator
basis below mW .

1. If the matching is performed at tree or one loop, then
matching out the top leaves only the contribution to the
dipole operator given in Eq. (46). The top-loop contri-
bution with a light Higgs, which is O(1/M2), could be
included by matching at two-loop.

2. In matching out the Higgs h, the one-loop, and b-loop
O(1/M2)-contributions can be obtained by matching
onto the scalar and tensor operators:

Oeμbb
S = (ePRμ)(bPRb), Oμebb

S = (μPRe)(bPRb),

Oeμbb
T = (eσ PRμ)(bσ PRb),

Oμebb
T = (μσ PRe)(bσ PRb),

Oeμμμ
S = (ePRμ)(μPRμ), Oμeμμ

S =(μPRe)(μPRμ),

Oeμμμ
T = (eσ PRμ)(μσ PRμ),

Oμeμμ
T = (μσ PRe)(μσ PRμ). (47)

If SU (2) were imposed, these operators would be of
dimension eight (for instance, the first operator could be

123



Eur. Phys. J. C (2016) 76 :258 Page 9 of 14 258

written as (8)Oeμbb
LEQD = (LeHEμ)(Q3HDb)). However,

they are of dimension six in the QCD×QED-invariant
EFT below mW , and they are required in the 2HDM
to correctly reproduce the O(αn logn /M2) terms that
dimension-six, one-loop EFT should obtain. The oper-
ators of Eq. (47) are not included in the EFT analysis of
μ → eγ performed by Pruna and Signer [6], who make
the restriction to dimension-six SU(2)-invariant opera-
tors.
From the diagrams illustrated in Fig. 3, one obtains

Ceμμμ
S

M2 = [Y E ]μμ[ρE ]eμ�6v
2/2

m2
hM

2

Cμeμμ
S

M2 = [Y E ]μμ[ρE ]μe�6v
2/2

m2
hM

2
, (48)

Ceμbb
S

M2 = [Y D]bb[ρE ]eμ�6v
2/2

m2
hM

2

Cμebb
S

M2 = [Y D]bb[ρE ]μe�6v
2/2

m2
hM

2
, (49)

so the coefficients are O(1/M2) because v2/m2
h 	 4.

Then, between the scales mW and mμ, the RGEs of QED

mix the scalar operator Oeμbb
S to the tensor Oeμbb

T , which
mixes to the dipole, exactly as in the previously discussed
case of tops. So with the anomalous dimensions as in
Eq. (46), the dipole coefficient

−mμ

Ceμ
D,L

M2 = −Ceμbb
S

M2

eαmb

32π3 3Q2
b log2 m2

μ

m2
h

= − eαmb

64π3M2 3Q2
b
[Y D]bb[ρE ]eμ�6v

2

m2
h

log2 m2
μ

m2
h

(50)

is generated, in agreement with the O(1/M2) part of the
b-loop contribution to μ → eγ , given in Eq. (23).
In matching out the Higgs h, the flavour-changing oper-
ator Oeμ

eH can also generate the dimension-six oper-

ator Oeμbb
LEDQ = (LeEμ)(DbQb) with coefficient ∝

ρE
μe�6v

2/(m2
hM

2). However, this operator is not use-
ful for generating μ → eγ via one-loop RGEs, because
there is no tensor operator for it to mix to, on the way
to the dipole. The reason that there is no tensor is that
σ and σγ5 are related: σμν = i

2εμναβσαβγ5, which
implies that (eσαβγ5μ)(bσαβγ5b) = (eσμνμ)(bσμνb)
or (eσαβ PLμ)(bσαβ PRb) = 0.
The scalar operator with three muons, Oeμμμ

S , mixes
directly to the dipole via a penguin diagram, so the coef-
ficient of Oeμ

D,L is

xx

μ−
R e−

L

b−R b−L
Y D

bb

ρE
eμΛ6/M2

xx

μ−
R e−

L

μ−
R μ−

L

Y E
μμ

ρE
eμΛ6/M2

Fig. 3 The right diagram generates the QCD×QED-invariant,
dimension-six operator (ePRμ)(μPRμ), by matching out the light
Higgs h (dotted line), which has a SU(2)-invariant dimension-six LFV
vertex represented by the grey circle. The free Higgs legs attach to
the vev. The left diagram generates a similar operator (bPRb)(ePRμ)

involving b quarks

−mμ

Ceμ
D,L

M2 = Cμeμμ
S

α

16π2

[−1

e

]
log

mh

mμ

= emμ

64π2M2

[Y E ]μμ[ρE ]μe�6v
2

m2
h

log
m2

μ

m2
h

(51)

where in the brackets are the scalar→dipole element of
the anomalous dimension matrix �. This agrees with the
O(1/M2) part of the one-loop, light Higgs diagrams; see
Eq. (20).

3. In matching out the W at tree or one-loop, none of
the W -loop contribution to μ → eγ is included,
because the light Higgs part arises in two-loop match-
ing. In the full-model result of Eq. (25), there is also
an O(1/M2) heavy Higgs part, but it is only enhanced
by one log and presumably arises in the two-loop
RGEs.

4 Discussion

The CP-conserving 2HDM studied here is a minimal exten-
sion of the Standard Model—it has only one LFV coupling
[ρE ]μe 	 [ρE ]eμ (see Eq. 14), the magnitude of the other
new flavoured couplings is controlled by the single param-
eter tan β, defined in Eq. (13), and the only new mass scale
is the heavy doublet mass M , taken � 10v. The one- and
two-loop contributions to μ → eγ of the neutral Higgses
were calculated by Chang et al. [5], and their result, in
the decoupling limit, is given in Eqs. (20), (19), (21), (23)
and (25).

Section 3 tries to reproduce the amplitude for μ → eγ , in
a simple EFT with three scales: M,mW ,mμ. At the scale M ,
the heavy Higgses were “matched out” onto dimension-six,
SU(2)-invariant operators. Between M and mW , the operator
coefficients should run according to electroweak RGEs, but
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I used those of QED (because I compare only to the photon
diagrams of [5]). At mW , the W, Z , h and t are matched
out, so below mW is an EFT containing all Standard Model
fermions but the top, interacting via QCD, QED, and various
four-fermion operators. Finally the operator coefficients run
to mμ according to the RGEs of QED.

There were three issues in reproducing the amplitude for
μ → eγ in EFT:

1. In order to obtain the O(1/M2) terms of the full-model
calculation, the operator basis below the weak scale
needed to include QED×QCD-invariant four-fermion
operators which are dimension six, but would have been
dimension eight in the SU(2)-invariant basis appropriate
above mW .5

This was the case for the one-loop contribution of the
light Higgs to μ → eγ : the light Higgs has a flavour-
changing dimension six interaction H†

1 H1LeH1Eμ. At
mh , the light Higgs can be matched onto the operator
v2(ePRμ)(μPRμ) = (LeHEμ)(LμHEμ) with coeffi-
cient 1/(M2m2

h), as illustrated on the right in Fig. 3. Then,
in QED running down to mμ, this operator mixes to the
dipole by a penguin diagram obtained by closing a muon
loop, inserting a mass and attaching a photon. So the con-
tribution to μ → eγ is ∝ v2/(M2m2

h) log(m2
μ/v2) ∼

log(m2
μ/v2)/M2.

However, although the coefficients of (ePRμ)(μPRμ)

and (ePRμ)(bPRb) are formally O(1/M2), they are also
small, because proportional to light fermion Yukawa cou-
plings. As discussed in Sect. 2.2.2, they do not give
a numerically relevant contribution to μ → eγ in
the decoupling limit of the 2HDM. So although these
extra operators are required below mW to obtain all the
O(1/M2) terms, they are not necessary for getting a rea-
sonable approximation to the answer.6

2. There are two-loop contributions involving a top or W -
loop, initially discussed by Bjorken and Weinberg [3],
and illustrated in Fig. 1. As discussed in Sect. 2.2.2, these
always dominate the one-loop contribution to μ → eγ in
the decoupling limit. This disorder in the loop expansion
occurs because the one-loop contribution is suppressed

5 It is reasonable to use a basis of QED×QCD-invariant four-fermion
operators below mW , because the EFT recipe [1,2] says that one should
use a complete basis of operators consistent with the symmetries of the
theory—which, below mW , is QED×QCD (but not SU(2)).
6 This distinction is maybe related to a study in B physics [7], which
gave the restrictions on the coefficients of QED × QCD operators
below mW , obtained by assuming that New Physics can be described
above the weak scale by SU(2)-invariant, dimension-six operators. The
authors conclude that operators of the structure (QHD)(QHD) can
be neglected—perhaps because the operator H†

1 H1QH1D, was not
included abovemW (this operator is included in [8]), or perhaps because
the Yukawa suppression makes these operators irrelevant.

by the square of the muon Yukawa coupling, whereas the
two-loop diagrams are proportional to the square of the
gauge coupling or of the top Yukawa. In the EFT, two-
loop matching and running would be required to repro-
duce the W -loop, and part of the top loop.
This “disorder” is partly a feature of the dipole opera-
tor, and partly of the 2HDM. The dipole operator has a
Higgs leg, and at one loop, that Higgs can attach to the
fermion line, or to the boson line, if the boson of the
loop has a dimension-three coupling to the Higgs (such
as the μ∗H∗

u LE interaction in supersymmetry). How-
ever, at two loops, there are many more possibilities for
attaching the external Higgs leg with an O(1) coupling.
In some models, it might be possible to have O(1) cou-
pling of the external Higgs leg to the fermion or boson of
the one-loop diagram. However, in the case of the 2HDM,
there are no new fermions so the fermion of the one-loop
diagram is at best a τ . The boson is a Higgs without
dimension-three interactions, so the one-loop diagram is
suppressed by small Yukawa couplings. This issue could
be addressed by running and matching at two-loop,7 as
is done for b → sγ [43].

3. Section 2.2.1 checked that the O(1/M2) terms in the
amplitude are larger than the O(1/M4) terms, so a
parametrisation in terms of dimension-six operators
should work. However, dimension-eight operators can
be enhanced by logs and factors of tan β, so that it may
be necessary to include them for numerical accuracy.
It is convenient to neglect dimension-eight operators, and
they are expected to be suppressed by ∼ z = v2/M2.
However, if dimension-eight operators are log-enhanced
in running, and dimension-six operators only contribute
in matching, then dimension eight are only suppressed
by z logn(z). This was the case in the 2HDM for the
two-loop contributions of the W s and bs. Since the high
scale is not so high in the 2HDM, (e.g. v/M 	 1/10),
z = v2/M2 	 0.01, but z log2(z) 	 .2.
There is also the inevitable ignorance, in EFT, as regards
the magnitude of operator coefficients in the full theory.
This uncertainty is parametrised by tan β in the 2HDM.
To justify neglecting the dimension-eight operators, the
restrictions cot β, tan β < v2/M2 had to be imposed.
However, since flavour physics is about the hierarchy of

7 The canonical EFT recipe says that one should match at loop order j ,
and compute RGEs to loop order j + 1, so as to reproduce all terms up
to order αn logn− j . However, the dipole operator can only be generated
with loops, so “leading order” matching, for the dipole, is at one loop
rather than at tree. It is therefore debatable [44] whether j-loop RGEs
should be combined with matching at order j or j − 1 for the dipole.
In order to reproduce the numerically significant parts of the μ → eγ
amplitude in the 2HDM, it seems one should run and match at the same
order, that is, at two loops.
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couplings, it may not be sensible to assume that all New
Physics couplings are O(1) at the New Physics scale.

This exercise located the “Barr–Zee” diagrams (see the
right two diagrams of Fig. 1) in an EFT description.

1. The top loop with heavy Higgses contributes at second
order in the one-loop RGEs for dimension-six operators,
as sketched in Fig. 4, so it is included in the EFT used
here. (There is also a dimension-eight contribution.) The
top loop with the light Higgs would appear in two-loop
matching at mW .

2. The W -loop with heavy Higgs contributes in two-loop
RGEs of dimension-six operators, and at second order in
the one-loop RGEs for dimension-eight operators. The
W -loop with the light Higgs would contribute in two-loop
matching at mW . As a result, none of the W contribution
is included in the EFT used here.

3. The b-loop contribution is small in the decoupling limit.
The light Higgs contribution, which appears at second
order in the one-loop RGEs for dimension-six opera-
tors below mW , is suppressed by the square of the SM
Yukawa coupling of the b. The heavy Higgs contribu-
tion, which could be tan β enhanced, however, only con-
tributes at dimension eight, via second order terms in
the one-loop RGEs. This is because the tensor oper-
ator (ψ1σ PLψ2)(ψ3σ PRψ4) vanishes, so the SU(2)-
invariant dimension-six scalar operator that can be con-
structed with leptons and down quarks, (QD)(EL), can-
not mix via RGEs to a tensor and then the dipole.

5 Summary

This paper used Effective Field Theory (EFT) to calculate the
amplitude for μ → eγ in the decoupling limit of a 2 Higgs
Doublet Model (2HDM) of Type III. A “leading order” EFT
was used, with one-loop running, tree matching, dimension-
six operators, and three scales (the heavy doublet mass M ,
the electroweak scalemW , andmμ). Comparing this EFT to a
calculation performed in the 2HDM showed two things: first,
that this EFT reproduces (as it should) the O([α log]n/M2)

terms of the full-model calculation,provided that the operator
basis below mW is constructed with dimension-six SU (3) ×
U (1) invariant operators (some of which could be dimension
eight in an SU(2)-invariant construction). Secondly, to obtain
the numerically dominant contributions to μ → eγ in the
2HDM, two-loop RGEs and two-loop matching are required,
but the enlarged operator basis below the weak scale is not.

The 2HDM also illustrates that higher dimensional oper-
ators may be numerically relevant, because they can be
enhanced by unknown large couplings of the high-scale
model (e.g. tan β), or by logarithms.
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Appendix A: Translating between notations

To present the results of CHK, a translation dictionary
between their notation and the notation here is useful. CHK
give the Lagrangian as

L = −t
mt

v

[
�

φ∗
t t PR + �

φ
t t PL

]
tφ − e

√
memμ

v

×
[
�φR

eμ PR + �φL
eμ PL

]
μ + gmW cos θφW

+W−φ,

(52)

where we recall mt
v

= YU
tt√
2

. Defining �
φ∗
t t = �

φR
tt , �

φ
t t =

�
φL
tt gives

�
φX
i j = v√

mim j
FφX
i j cos θφ =

⎧⎨
⎩
cβ−α φ = H
sβ−α φ = h

0 φ = A
(53)

CHK give their two-loop amplitudes AL ,R in a different nor-
malisation from Eq. (17); the relation is

−AKO
L ,R = eα

64π3

√
me

mμ

(
ACHK
L ,R

)∗
(54)

where the negative sign is because Kuno–Okada subtract
their dipole operator from the SM Lagrangian, and the her-
mitian conjugate is because Kuno–Okada write an operator
that mediates μ+ → e+γ , and CHK compute amplitudes for
μ− → e−γ .

Appendix B: Finding the remaining terms in an EFT
calculation

This appendix discusses where to find, in an EFT, the missing
parts Eqs. (20), (19), (21), (23) and (25).

B.1. The full-model one-loop contribution

All the terms in Eqs. (20) and (19) are log-enhanced, so they
should arise in the one-loop RGEs, however, most of the
terms are O(1/M4). This is because they arise in matching
onto the operator Oeμμμ

S , which would be of dimension eight
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q q

+... →
σ

σ

q q

→

σ

σ

μ e μ e μ e

q

Fig. 4 Obtaining the Barr–Zee diagrams at second order in the one-
loop RGEs: the scalar operator (grey circle of the left diagram) is mixed
to the tensor (grey circle of the next diagram) via photon exchange

between the leptons and quarks (only one of the four diagrams is drawn).
Then the quark loop of the tensor operator is closed to mix it to the dipole

if SU(2) was imposed: v2Oeμμμ
S = (LeHEμ)(LμHEμ).

For instance, in matching at the scale M , the two diagrams
illustrated on the left in Fig. 5 will contribute to the coefficient
of the dimension-eight operator:

(8)Ceμμμ

M4 ∼ [ρE ]eμ�5[ρE ]μμ

M4 ,
[ρE ]μe�6[Y E ]μμ

M4 (55)

The operator Oeμμμ
S can then mix via a penguin to the dipole

operator.
Then there is also a light Higgs contribution to the same

operator at O(1/M4), which can nonetheless by relatively
enhanced by tan β with respect to the O(1/M2) term. The
corresponding diagram contracts two of the diagrams illus-
trated on the right in Fig. 2, so it has four external H1 lines.

B.2. The top loop

The two-loop contribution of H and A is log2 enhanced,
so it arises in the one-loop RGEs. In addition to the previ-
ously discussed dimension-six term, that can be suppressed
by cot β, the third diagram of Fig. 5 matches onto either

of two dimension-eight operators H†
1 H1(L

A
e Eμ)εAB(Q

B
t Ut )

and (LeH1Eμ)(Qt H̃1Ut ). The second arises when the H1

contracted with H2 is an external leg. In both cases, the coef-

ficient is of order

(8)Ceμt t

M4 ∼ [ρE ]eμ�6[YU ]t t
M4 (56)

and such a term appears in the full-model calculation of Eq.
(21).

The top-loop contribution of the light h, which can con-
tribute a significant part of the μ → eγ amplitude, is a two-
loop matching contribution at the weak scale.

B.3. The b-loop

The b-loop differs from the top loop, in that the heavy Higgs
only contribute at O(1/M4), because there is no dimension-
six scalar operator for bs that can mix to a tensor. Match-
ing out the heavy Higgs onto the dimension-eight operator
(LμH1Ee)(Q3H1Db) would give

(8)Ceμbb

M4 ∼ [ρE ]eμ�5[ρD]bb
M4 ,

[ρE ]μe�6[Y D]bb
M4 (57)

then between the scales M and mb, the RGEs of QED mix
the dimension-eight scalar operator (LeH1Eμ)(QbH1Db)

to the dimension-eight tensor (LeH1σ
μνEμ)(QbH1σμνDb)

and the tensor to the dimension-eight dipole, which repro-
duces that heavy Higgs part of Eq. (23).

μ−
R e−

L

μ−
R μ−

L

H1

H1H2

H2

ρE
μμ

ρE
eμ

Λ5

μ−
R e−

L

μ−
R μ−

L

H1

H1H2

H1

Y E
μμ

ρE
eμ

Λ6

μ−
R e−

L

tR tL

H1

H1H2

H1

Y U
tt

ρE
eμ

Λ6

μ−
R e−

L

W

WH2

H2

H1 H1

H1

ρE
eμ

Λ6

Fig. 5 The left pair of diagrams generate the dimension eight
(LμH1Eμ)(LeH1Eμ) operator, by matching out the heavy doublet
Higgs H2 (dashed line). The third diagram generates a dimension-eight

relative of the (Q3Ut )(LeEμ) operator; see Eq. (56). The last diagram
gives a eμWWHHH interaction by matching out a heavy doublet
Higgs H2
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As in the one-loop contribution, there is an O(1/M4)

term in the light Higgs exchange amplitude, which can be
tanβ enhanced, and arises due to two appearances of the
dimension-six OeH , with indices eμ and bb.

B.4. The W loop

Despite the fact that the W -loop can give the dominant con-
tribution to μ → eγ in the 2HDM, none of it was obtained in
a one-loop EFT calculation using dimension-six operators.

The heavy Higgs part has terms of O(log/M2), O(log2/

M4), and O(log/M4). Consider here the first two: CHK refer
to the dimension-six part as a “non-decoupling” contribution,
because they take the mixing angle cβ−α as a free parameter,
rather than using the decoupling limit dependence given in
Eq. (9). They say this contribution arises from Goldstone
loops, so in EFT it could be generated by matching out the
heavy doublet onto Oeμ

eH , followed by the mixing of Oeμ
eH to

the dipole operator in two-loop RGEs.
Consider now the O(log2/M4) terms, which should arise

at second order in the 1-loop RGEs of dimension-eight
operators. These could be generated by tree matching onto
(DμH1)

†(DμH1)LH1E as in the last diagram of Fig. 5
(notice this operator is symmetric on interchange of the
Lorentz indices of the W ), then mixing in the one-loop RGEs
of QED to a tensor operator such as [(DμH1)

†(DνH1) −
(DνH1)

†(DμH1)](LH1σ
μνE), which could then mix to a

dimension-eight dipole (H†
1 H1)(LH1τ

aσμνE)Wa,μν .
Finally, there is the light Higgs contribution, which is

O(1/M2), and arises in two-loop matching at the weak scale.
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