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Abstract In this paper, using the combined Lorenz–
diffeomorphism symmetry, we find a general formula for the
quasi-local conserved charge of the covariant gravity theories
in a first order formalism of gravity. We simplify the general
formula for the Lovelock theory of gravity. Afterwards, we
apply the obtained formula on BHT gravity to obtain the
energy and angular momentum of the rotating OTT black
hole solution in the context of this theory.

1 Introduction

The concept of conserved charges is a very important mat-
ter in gravity theories as well as in other physical theories.
As is well known, the concept of conserved charges of grav-
ity theories is related to the concept of the Noether charges
corresponding to the Killing vectors which are admitted by
solutions of a theory. There are several approaches to obtain
the mass and angular momentum of black holes solutions of
different gravity theories [1–18]. According to the Arnowitt,
Deser, and Misner formalism (ADM formalism) [3] one can
obtain the conserved charges of an asymptotically flat space-
time solution of a general theory of relativity, but this is not a
covariant method. The ADM formalism has been extended to
include asymptotically AdS spacetime solution of Einstein
gravity [1,2]. Deser and Tekin have extended this approach.
By this extension one can calculate the energy of asymp-
totically dS or AdS solutions in higher curvature gravity
models and also in a topologically massive gravity model
[4–6]. This method is a covariant formalism; it is known as
the Abbott–Deser–Tekin (ADT) formalism [1,2,4–6]. Thus
the ADT formalism is applicable in the general higher curva-
ture and higher derivative theories of gravity [4–19]. Another
method is the Brown–York formalism [7], which is based on
a quasi-local concept, but this approach also is not covari-
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ant. A general definition of conserved charges in general rel-
ativity and other theories of gravity has been proposed in
[20,21], but this approach is applicable for asymptotically
flat spacetime solutions. This formalism has been extended
to non-covariant theories by Tachikawa [22].

Wontae Kim et al. [8] have proposed a way to calculate
the conserved charges of all non-asymptotically flat solutions
of covariant theories of gravity as well as asymptotically flat
ones, which is based on the concept of the quasi-local con-
served charges. This formalism is established on a metric
formalism of gravity theories and has been extended to non-
covariant theories in [9]. But it is well known that we can
write down the gravity theories in the first order formalism.
In the first order formalism of gravity theories, there are some
theories which are not only diffeomorphism covariant but
also covariant under the local Lorenz gauge transformations.
The authors in Ref. [23] have combined these two symme-
tries in an appropriate way and they obtained a new com-
bined symmetry, the “Lorenz–diffeomorphism symmetry”.
In that paper, the authors have shown that the entropy of black
holes in the covariant theories of gravity is simply a Lorenz–
diffeomorphism Noether charge. Recently, this method was
extended to include non-covariant theories of gravity [26].

Our approach has some similarity with what one can do
in the framework of Poincaré gauge theory [27–32] (see also
[33,34] for recent work on this topic). Poincaré gauge sym-
metry is the symmetry of Poincaré gauge theory. In the frame-
work of this theory the translation and Lorentz symmetry are
local. Here we combine the Lorenz gauge transformation
with a diffeomorphism, then we introduce the total variation
under a Lorenz–diffeomorphism transformation motivated
by work of Jacobson and Mohd [23]. In this case we have a
unique transformation, and using it we can obtain conserved
charges of a covariant theory of gravity in the first order for-
malism.

Our aim in this paper is to find quasi-local conserved
charges of covariant theories of gravity in the first order for-
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malism. For this purpose, we use the Lorenz–diffeomorphism
symmetry. In this method the quasi-local conserved charges
are Lorenz–diffeomorphism Noether charges associated to
the Killing vectors which are admitted by the considered
spacetime. The advantages of this proposal are, first, that the
quasi-local conserved charges are calculated off-shell; sec-
ond, we can calculate these for spacetime solutions which
are not asymptotically flat (or even AdS).

Our paper is organized as follows. In Sect. 2 using the
Lorentz–Lie (L–L) derivative, we obtain the total varia-
tion of the vielbein and the spin connection. In Sect. 3 we
consider the most general Lorenz–diffeomorphism invariant
Lagrangian n-form of a gravity theory and obtain a gen-
eral formula for quasi-local conserved charges. In Sect. 4
we apply our method on the Lovelock theory in arbitrary
dimensions and find a general expression for the conserved
charges of this theory in any dimension. In Sect. 5, using the
provided formalism, we find the energy and angular momen-
tum of the rotating OTT black hole solution of BHT gravity.
Also, we calculate the entropy of this black hole using the
general formula for the Chern–Simons-like theories of grav-
ity [26]. Section 6 is devoted to conclusions and discussions.

2 Lorentz–Lie derivative and total variation

Consider a n-dimensional spacetime. Let eaμ denote the viel-
bein, thus we can write the metric as gμν = ηabeaμe

b
ν where

ηab denotes the Minkowski metric. Under a Lorenz gauge
transformation � ∈ SO(n − 1, 1) the vielbein transforms
as ẽaμ = �a

be
b
μ so that the spacetime metric under this

transformation remains unchanged. In the first order for-
malism, the spin connection is treated as an independent
quantity, like the vielbein, and it is denoted by ωab

μ . Under a
Lorenz gauge transformation the spin connection transforms
as ω̃ = �ω�−1 + �d�−1, so this is not an invariant quan-
tity under the considered transformation but we know that
under general coordinate transformations the spin connection
transforms as a covariant vector. One can define the vielbein
1-form and the spin-connection 1-form as ea = eaμdxμ and
ωab = ωab

μ dxμ, respectively. The Lorentz–Lie (L–L) deriva-
tive of the vielbein 1-form is defined as [23]1

Lξ e
a = £ξ e

a + λabe
b, (1)

where £ξ denotes the ordinary Lie derivative along ξ and λab
generates the Lorenz gauge transformations SO(n−1, 1). In
general, λab is independent from the vielbein and spin connec-
tion and it is a function of spacetime coordinates and of the
diffeomorphism generator ξ . It is straightforward to extend

1 This is known in the literature as the “generalized Lie derivative”
[24,25].

this expression of the L–L derivative for ea to the case for
which we have more than one Lorentz index. Now, the total
variation under a diffeomorphism, which is generated by a
vector field ξ , is considered as a combination of a variation
with respect to the infinitesimal coordinates and the infinites-
imal Lorenz gauge transformation, which is constructed out
of the diffeomorphism generator ξ . Hence, the total variation
of the vielbein and the spin connection are [26]

δξ e
a = Lξ e

a, (2)

δξω
ab = Lξω

ab − dλab, (3)

respectively. The extra term in (3), −dλab, may be the origin
of a non-covariant theory, but here this does not stand in our
way because we only focus on covariant theories.

3 A general formula for the quasi-local conserved
charges

In this section, we try to find a general formula for quasi-local
conserved charges of a covariant theory of gravity in the first
order formalism. As is well known, the curvature 2-form and
the torsion 2-form are defined, respectively, as

Rab = dωab + ωa
c ∧ ωcb,

T a = Dea = dea + ωa
b ∧ eb, (4)

where D denotes the exterior covariant derivative. We con-
sider the following n-form Lorenz–diffeomorphism invariant
Lagrangian of a gravity theory:

L = L(e, T, R, f, h), (5)

where f a and ha are Lorenz–diffeomorphism covariant 1-
form fields. By varying the above Lagrangian with respect to
the fields, we will have

δL = δea ∧ E (e)
a + δωab ∧ E (ω)

ab + δ f a ∧ E ( f )
a

+ δha ∧ E (h)
a + d	(
, δ
). (6)

The equations of motion are E (e)
a = E (ω)

ab = E ( f )
a =

E (h)
a = 0 and 	(
, δ
) is simply the surface term, where


 = {e, ω, f, h}. If this variation is due to a diffeomorphism
which is generated by the vector field ξ then the total varia-
tion of Lagrangian (6) with respect to the diffeomorphism ξ

is

δξ L = δξ e
a ∧ E (e)

a + δξω
ab ∧ E (ω)

ab + δξ f
a ∧ E ( f )

a

+ δξh
a ∧ E (h)

a + d	(
, δξ
). (7)

On the other hand, using (4), one can rewrite (2) and (3) as
follows:

δξ e
a = Diξ e

a + iξT
a + (λab − iξω

ab)eb, (8)

δξω
ab = iξ R

ab + D(iξω
ab − λab), (9)
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respectively. Also we have

δξ f
a = Diξ f

a + iξ Df a + (λab − iξω
ab) fb,

δξh
a = Diξh

a + iξ Dha + (λab − iξω
ab)hb, (10)

where iξ denotes the interior product in ξ . By substituting
Eqs. (8)–(10) into Eq. (7), we have

δξ L = d
(
iξ e

a E (e)
a + iξ f

a E ( f )
a + iξh

aE (h)
a

+ (iξω
ab − λab)E (ω)

ab + 	(
, δξ
)
)

+ (λab − iξω
ab)

×
(
DE (ω)

ab + eb ∧ E (e)
a + fb ∧ E ( f )

a + hb ∧ E (h)
a

)

− iξ e
aDE (e)

a − iξ f
a DE ( f )

a − iξh
aDE (h)

a

+ iξ Df a ∧ E ( f )
a + iξ Dha ∧ E (h)

a

+ iξT
a ∧ E (e)

a + iξ R
ab ∧ E (ω)

ab . (11)

As we expect, the last two lines in the above expression can
be rewritten in the following form:

iξ e
a Xa(e, ω, f ) + iξ f

aYa(e, ω, f ) + iξh
a Za(e, ω, f ).

(12)

So, if we require that the Lagrangian be invariant under any
arbitrary diffeomorphism for arbitrary ea , ωab, and f a , then
we must have

DE (ω)
ab + eb ∧ E (e)

a + fb ∧ E ( f )
a = 0,

Xa(
) = 0, Ya(
) = 0, Za(
) = 0; (13)

these equations are Bianchi identities. Considering that the
Lagrangian is a Lorenz–diffeomorphism invariant quantity,
then δξ L = Lξ L = £ξ L = diξ L . Therefore, Eq. (11)
reduces to the following form:

dJ = 0, (14)

where J is an off-shell current density (n − 1)-form and it is
expressed as follows:

J = iξ e
a E (e)

a + iξ f
a E ( f )

a + iξh
aE (h)

a

+ (iξω
ab − λab)E (ω)

ab + 	(
, δξ
) − iξ L . (15)

Since J is a closed form, by virtue of [35], we can write J as
an exact form, that is, J = dK . By varying (15) thus we will
find the following expression for the symplectic current:

�(
, δ
, δξ
) = δ	(
, δξ
) − δξ	(
, δ
)

= d
(
δK − iξ	(
, δ
)

) − iξ e
aδE (e)

a

− iξ f
aδE ( f )

a − iξh
aδE (h)

a

− δea ∧ iξ E
(e)
a − δ f a ∧ iξ E

( f )
a

− δha ∧ iξ E
(h)
a − δωab ∧ iξ E

(ω)
ab

− (iξω
ab − λab)δE (ω)

ab + λabδE (ω)
ab . (16)

The symplectic current is linear with respect to δξ

a , and

the δξ

a become zero when ξ is a Killing vector field. If we

require that ξ be a Killing vector field then � becomes zero.
Therefore, in the first order formalism the ADT conserved
current is defined as

JADT = iξ e
aδE (e)

a + iξ f
aδE ( f )

a + iξ f
aδE ( f )

a

+ (iξω
ab − λab)δE (ω)

ab − λabδE (ω)
ab

+ δea ∧ iξ E
(e)
a + δ f a ∧ iξ E

( f )
a + δha ∧ iξ E

(h)
a

+ δωab ∧ iξ E
(ω)
ab

= d
(
δK − iξ	(
, δ
)

)
. (17)

We know that the relation between the ADT conserved cur-
rent and the ADT conserved charge is JADT = dQADT, so
the ADT conserved charge is given by

QADT = δK − iξ	(e, ω; δe, δω). (18)

Now, we consider an one-parameter path in the solution
space. For this purpose, suppose that the 
(Q) are a col-
lection of fields which solve the equations of motion of the
considered theory, where Q is a free parameter in the solu-
tion space of the equations of motion. Now, we replace Q by
sQ, where 0 ≤ s ≤ 1 is a parameter. By expanding 
(sQ)

in terms of s we have 
(sQ) = 
(0)+
′(0)s+· · · , where
the prime denotes differentiation with respect to s. Then, by
substituting 
 = 
(sQ) and δ
 = 
′(0) into Eq. (18), we
can define the quasi-local conserved charge associated to the
Killing vector field ξ as [8,9]

Q(ξ) = c
∫ 1

0
ds

∫

�

QADT(e, ω|s), (19)

where c is a normalization factor and � is a time-like (n−2)-
surface, also, s = 0 and s = 1 correspond to the background
solution and the solution of interest, respectively. Therefore,
integration over s is just integration over a one-parameter
path in the solution space. By substituting (18) into (19),
we obtain the following expression for the conserved charge
associated to the Killing vector field ξ :

Q(ξ) = c
∫

�

(
K − iξ

∫ 1

0
ds	(e, ω|s)

)
, (20)

where K = Ks=1(ξ) − Ks=0(ξ). In this way, we find
an expression for the conserved charge which is does not
depend on the (n−2)-surface �. So, we can choose � every-
where and then we obtain the conserved charges of space-
times which are not asymptotically flat, nor even AdS.

As we have mentioned in introduction, our approach has
some similarity with the framework of Poincaré gauge theory
[27–32] (see also [36–38], where the authors have studied the
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conserved charges in the framework of Poincaré gauge the-
ory). The difference between this approach and the Poincaré
gauge theory is that we combined the Lorenz gauge transfor-
mation with a diffeomorphism and introduced the total varia-
tion under a Lorenz–diffeomorphism transformation. In this
way, we have a unique transformation and using it we can
obtain the conserved charges of a covariant theory of gravity
in the first order formalism. This method provides a deriva-
tion of the entropy formula for black hole solutions in gravity
theories defined by a Chern–Simons gravitational action in
3D [26]. It was pointed out in Ref. [23] that the derivation
of the classical Wald formula for the entropy is problematic
in the first order formalism using the spin connection. But
by introduction the Lorentz–Lie derivative, according to our
approach one can overcome this difficulty.

4 Quasi-local conserved charges of the Lovelock gravity

In this section, we apply the above procedure to the Lovelock
theory in arbitrary dimensions and we will find a general
expression for the conserved charges of this theory in any
dimension. This theory was first proposed by Lovelock [39];
it has the same degrees of freedom as general relativity and
it is ghost-free. The Lovelock Lagrangian is given by [40]

L(e, R) =
[n/2]∑
p=0

αpL
(p), (21)

where

L(p) =εa1···an Ra1a2 ∧ · · · ∧ Ra2p−1a2p ∧ ea2p+1 ∧ · · · ∧ ean .

(22)

In the above Lagrangian, the αp are arbitrary dimension-
ful coupling constants and [x] denotes the integer part of x .
Because the procedure which leads to Eq. (20) is linear in L ,
we consider L(p).

After some calculations, for the Lagrangian Eq. (21), we
find

E (e)
an = ∂L(p)

∂ean
, E (ω)

a1a2
= D

∂L(p)

∂Ra1a2
, (23)

	(p)(e, ω; δω) = δωa1a2 ∧ ∂L(p)

∂Ra1a2
, (24)

where

∂L(p)

∂ean
= (n − 2p)εa1···an ean−1 ∧ · · · ∧ ea2p+1

∧Ra1a2 · · · ∧ Ra2p−1a2p ,

∂L(p)

∂Ra1a2
= pεa1a2···an Ra3a4 ∧ · · · ∧ Ra2p−1a2p

∧ea2p+1 ∧ · · · ∧ ean . (25)

By substituting Eqs. (22), (23), and (24) into Eq. (15), we
can read off K (p) as follows:

K (p) = (iξω
a1a2 − λa1a2)

∂L(p)

∂Ra1a2
. (26)

Now, we can calculate the contribution of the p-term in the
conserved charge Q(p)(ξ) using Eq. (19) and then the con-
served charge is Q(ξ) = ∑[n/2]

p=0 αpQ(p)(ξ). Thus what we
found here is an off-shell quasi-local conserved charge and it
is exactly the ADT charge for any solution with any asymp-
totical behavior which admits the Killing vector field ξ . Also,
as we mentioned and deduced earlier, we can calculate this
charge on any time-like codimension-2 surface.

5 Application to the BHT gravity

5.1 BHT gravity and its conserved charges

Bergshoeff–Hohm–Townsend (BHT) gravity is a covariant
gravity theory in three dimensions [41]. In three dimensions,
it is convenient to define a dualized spin connection and a
dualized curvature 2-form as

ωa = 1

2
εabcω

bc, Ra = 1

2
εabc R

bc, (27)

respectively, where εabc is the Levi-Civita symbol in 3D. The
Lagrangian of BHT gravity is given by (for instance, see [42])

L = −σea ∧ Ra + �0

6
εabce

a ∧ eb ∧ ec

+ 1

m2

(
f a ∧ Ra + εabce

a ∧ f b ∧ f c
)

+ ha ∧ Ta,

(28)

where σ , m, and �0 are the sign, the mass parameter, and
the cosmological parameter, respectively. The equations of
motion of BHT gravity are

E (e)
a = −σ Ra + �0

2
εabce

b ∧ ec + Dha

− 1

2m2 εabc f
b ∧ f c = 0

E (ω)
a = −σTa − 1

m2 Dfa + εabce
b ∧ hc = 0

E ( f )
a = − 1

m2

(
Ra + εabce

b ∧ f c
)

= 0

Eh
a = Ta = 0, (29)

where D denotes the exterior covariant derivative, and the
surface term of this theory is

	(
, δ
) = −σδωa ∧ ea − 1

m2 δωa ∧ fa + δea ∧ ha .

(30)
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It is obvious that this theory is torsion-free. One can solve
the equations of motion (29) and find

ha = − 1

m2C
a, f a = −Sa . (31)

In the above equations Sμν = Rμν − 1
4gμνR is the 3D

Schouten tensor and Cμν = √−gεναβ∇αSβ
μ is the Cotton

tensor, where Rμν and R are, respectively, the Ricci tensor
and the Ricci scalar. One can calculate Eq. (15) to find K (ξ)

for the BHT gravity:

K (ξ)=−σ(iξω
a − χa

ξ )ea − 1

m2 (iξω
a − χa

ξ ) fa+iξ e
aha,

(32)

where χa
ξ is the dual of the generator of the Lorenz gauge

transformations λabξ ,

χa
ξ = 1

2
εabcλ

bc
ξ . (33)

By substituting Eqs. (30) and (33) into Eq. (18) we find

QADT(ξ) = iξ e
aδha + iξh

aδea − σ iξ e
aδωa

− 1

m2 iξ f
aδωa − σ(iξω

a − χa
ξ )δea

− 1

m2 (iξω
a − χa

ξ )δ fa . (34)

Since λab = eσ [a£ξ e
b]
σ so χa

ξ is given as [26]

χa
ξ = iξω

a − 1

2
εabce

νb(iξT
c)ν + 1

2
εabce

b
μe

c
ν∇μξν, (35)

and because the BHT gravity is torsion-free, we have

iξω
a − χa

ξ = −1

2
εabce

b
μe

c
ν∇μξν. (36)

By substituting Eq. (36) into Eq. (19), one can find the con-
served charge of a considered solution associated to a Killing
vector ξ .

5.2 Rotating OTT black hole solution

The BHT gravity admits the AdS3 spacetime as a unique
maximally symmetric background when

σ = 1, m2 = 1

2l2
, �0 = − 1

2l2
, (37)

where l is the AdS3 spacetime radius. Equations (36) are
known as the BHT conditions. The rotating Oliva–Tempo–
Tronsoco (OTT) black hole spacetime solves the equations
of motion of BHT gravity when the BHT conditions are sat-
isfied. The rotating OTT black hole is defined by the metric
[43–45]

ds2 = −N (r)2F(r)2dt2 + F(r)−2dr2

+ r2 (
dφ + Nφ(r)dt

)2
, (38)

where

F(r) = H(r)

r

√
H(r)2

l2
+ b

2
H(r)(1+η)+ b2l2

16
(1−η)2−μη,

N (r) = 1 + bl2

4H(r)
(1 − η),

Nφ(r) = l

2r2

√
1 − η2 (μ − bH(r)) ,

H(r) =
√
r2 − μl2

2
(1 − η) − b2l4

16
(1 − η)2. (39)

The metric (38) depends on three free parameters, μ, b, and
η. This metric reduces to the static OTT black hole metric
when η = 1 and for b = 0, it represents the rotating BTZ
black hole [46].

We can choose a dreibein

e0 = N (r)F(r)dt, e1 = F(r)−1dr,

e2 = r
(
dφ + Nφ(r)dt

)
. (40)

It should be noted here that the Cotton tensor vanishes for
this solution.

Now, we take the AdS3 spacetime as a background solu-
tion using the following dreibeins:

ē0 = r

l
dt, ē1 = l

r
dr, ē2 = rdφ, (41)

i.e. the AdS3 spacetime corresponds to s = 0. We take the
integration surface � as a circle with a radius at infinity. It
can be shown that Eq. (34) on � reduces to

QADT(ξ) =
{
−2iξ ēaδω

a
φ+2l2(iξ ω̄

a−χ̄a
ξ )δSaφ

}
dφ, (42)

for the rotating OTT black hole solution.
The energy corresponds to the Killing vector ξt = ∂t . For

this Killing vector on the background, Eq. (36) becomes

iξ(t) ω̄
a − χ̄a

ξ(t)
= 1

l2
eaφ. (43)

By substituting Eqs. (41) and (43) into Eq. (42), we have

QADT(ξ) = 2r

{
1

l
δω0

φ + δS2
φ

}
dφ, (44)

and by integrating over a one-parameter path on the solution
space, we find
∫ 1

0
QADT(ξ)ds = 2r

{
1

l

[
ω0

φ(s=1) − ω0
φ(s=0)

]

+
[
S2
φ(s=1) − S2

φ(s=0)

]}
dφ, (45)

123



187 Page 6 of 7 Eur. Phys. J. C (2016) 76 :187

where s = 1 corresponds to the rotating OTT black hole
solution. By expanding ω0

φ(s=1) and S2
φ(s=1) about infinity,

we have

ω0
φ(s=1) = ω0

φ(s=0) + bl

4
(1+η)− l

16r

[
b2l2(1+η2)+8μ

]

+O(r−2),

S2
φ(s=1) = S2

φ(s=0) − b

4
(1 + η) − b2l2

16r
(1 − η2)

+O(r−2); (46)

therefore Eq. (45) becomes

∫ 1

0
QADT(∂t )ds = −

{
μ + 1

4
b2l2 + O(r−1)

}
dφ. (47)

By substituting Eq. (47) into Eq. (19) and by taking r → ∞,
we find the energy of the rotating OTT black hole,

E = 1

4

(
μ + 1

4
b2l2

)
. (48)

In this subsection, we choose the normalization factor in (19)
as c = − 1

8π
. Now, we take ξ(φ) = ∂φ and it is straightforward

to show that

iξ(φ)
ω̄a − χ̄a

ξ(φ)
= eat . (49)

In this case, Eq. (42) reduces to

QADT(ξ) = −2r
{
δω2

φ + lδS0
φ

}
dφ. (50)

By expanding ω2
φ(s=1) and S0

φ(s=1) about infinity, we obtain

ω2
φ(s=1) = ω2

φ(s=0)−
bl

4

√
1−η2+ l

16r

[
b2l2(1−η)+8μ

]

×
√

1 − η2 + O(r−2),

S0
φ(s=1) = S0

φ(s=0) + b

4

√
1 − η2

+ b2l2

16r
(1 + η)

√
1 − η2 + O(r−2). (51)

In a similar way to the energy, we can find the angular
momentum of the rotating OTT black hole as

j = l
√

1 − η2E . (52)

Now, we want to find the entropy of the rotating OTT black
hole. The BHT gravity is a Chern–Simons-like theory of
gravity. In Ref. [26], we have found a general formula for
the Chern–Simons-like theories of gravity. Using the for-
mula for the entropy of black hole solutions in a generalized
massive gravity theory obtained in [26], and noticing that
generalized massive gravity reduces to BHT gravity when
the mass parameter of the Lorenz Chern–Simons term tends

to infinity, one can calculate the entropy of the black hole
solutions of the BHT gravity by the following formula:

S = 1

4

∫ 2π

0(r=rh)

dφ√
gφφ

(
gφφ − 1

m2 Sφφ

)
, (53)

where rh is the radius of the Killing horizon. The Killing
horizon of the OTT black hole is located at rh = r+ and r+
is given by [47]

r+ = l

√
1 + η

2

(
−bl

2
√

η +
√

μ + 1

4
b2l2

)
. (54)

By some calculations, one can show that

Sφφ = −1

2

(
H2

l2
+ b

2
H(1 + η) + μ

2
(1 − η)

−b2l2

16
(1 + η)2 + b2l2

4

)
. (55)

By substituting the above component of the Schouten ten-
sor into Eq. (53), the entropy of an OTT black hole can be
obtained:

S = 2πl

√
(1 + η)E

2
. (56)

Fortunately our obtained results (48), (52), and (56) for
the energy, angular momentum, and entropy, respectively,
exactly match with the results of Ref. [47]. So these calcula-
tions indicate that our method for calculations of conserved
charges for these types of black hole solutions works as well.

6 Conclusion

There are several approaches to obtain the mass and angu-
lar momentum of black holes for higher curvature theories
[1–18]. The authors of [8] have obtained the quasi-local
conserved charges for black holes in any diffeomorphically
invariant theory of gravity. By considering an appropriate
variation of the metric, they have established a one-to-one
correspondence between the ADT approach and the linear
Noether expressions.

In this paper we have found quasi-local conserved charges
of covariant theories of gravity in the first order formalism.
In the first order formalism of gravity, one can use the con-
cept of the combined Lorenz–diffeomorphism symmetry to
obtain the conserved charges of a gravity theory. Using this,
we have found a general formula (20) for the quasi-local
conserved charges in the first order formalism. In this way,
we can calculate the conserved charges of any solution of
a gravity theory which is not an asymptotically AdS or flat
spacetime. Then we have simplified the resulting formula for
the Lovelock theory of gravity. Using the provided formalism
we found the energy and angular momentum of the rotating
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OTT black hole solution of BHT gravity. Then we calculated
the entropy of the rotating OTT black hole using the general
formula for the Chern–Simons-like theories of gravity [26].
Our results for the energy, the angular momentum, and the
entropy exactly coincide on the results for these quantities
which were presented in Ref. [47].
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47. M. Blagojević, B. Cvetković, Phys. Rev. D 93, 044018 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1310.8309

	Quasi-local conserved charges in Lorenz–diffeomorphism covariant theory of gravity
	Abstract 
	1 Introduction
	2 Lorentz–Lie derivative and total variation
	3 A general formula for the quasi-local conserved charges
	4 Quasi-local conserved charges of the Lovelock gravity
	5 Application to the BHT gravity
	5.1 BHT gravity and its conserved charges
	5.2 Rotating OTT black hole solution

	6 Conclusion
	Acknowledgments
	References




