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Abstract We investigate the properties of inner and outer
horizon thermodynamics of Sen black hole (BH) both inEin-
stein frame (EF) and string frame (SF). We also compute area
(or entropy) product, area (or entropy) sum of the said BH
in EF as well as SF. In the EF, we observe that the area (or
entropy) product is universal, whereas area (or entropy) sum
is not universal. On the other hand, in the SF, area (or entropy)
product and area (or entropy) sum don’t have any universal
behaviour because they all are depends on Arnowitt–Deser–
Misner (ADM) mass parameter. We also verify that the first
law is satisfied at the Cauchy horizon as well as event hori-
zon (EH). In addition, we also compute other thermodynamic
products and sums in the EF as well as in the SF. We further
compute the Smarr mass formula and Christodoulou’s irre-
ducible mass formula for Sen BH. Moreover, we compute
the area bound and entropy bound for both the horizons. The
upper area bound for EH is actually the Penrose like inequal-
ity, which is the first geometric inequality in BHs. Further-
more, we compute the central charges of the left and right
moving sectors of the dual CFT in Sen/CFT correspondence
using thermodynamic relations. These thermodynamic rela-
tions on the multi-horizons give us further understanding the
microscopic nature of BH entropy (both interior and exte-
rior).

1 Introduction

In an un-quantized (classical) general relativity theory any
BH in thermal equilibrium has an entropy and a temperature.
Now it is well known by fact that the entropy is proportional
to the area of the event horizon (EH) i.e. [1–4]

S+ = A+
4

. (1)

where, S+ is the Bekenstein–Hawking entropy (in units in
which G = h̄ = c = k = 1) and A+ is the area of the EH

a e-mails: pppradhan5@rediffmail.com;pppradhan77@gmail.com

(H+). Now this temperature is proportional to the surface
gravity of the H+ i.e.

T+ = κ+
2π

. (2)

where T+ is the Hawking temperature computed at the H+
and κ+ denotes the surface gravity of the BH computed at
the H+.

In terms of these quantities, the first law of BH thermody-
namics could be expressed as

dM = κ+
8π

dA+ + �+dJ + �+dQ. (3)

It can be seen that κ+
8π

is analogous to the temperature of H+
in the same way that A+ is analogous to entropy. It should
be noted that κ+

8π
and A+ are distinct from the temperature

and entropy of the BH. and

�+ = 4π J

MA+
= ∂M

∂ J
(4)

�+ = 1

M

(
Q

2
+ 2πQ3

A+

)
= ∂M

∂Q
. (5)

The above relations are computed on the EH only.
It is now well known fact that certain BH has inner hori-

zon or Cauchy horizon (CH) inside the EH or outer horizon.
Naturally, the question should be arises whether similar rela-
tions do exist in case of CH? It is now well established that
the above relations do hold for CH (H−) as well as EH.
Therefore one may write the inner entropy of the BH which
is proportional to the area of the inner horizon:

S− = A−
4

. (6)

Analogously, the inner Hawking temperature should be cal-
culated via the inner surface gravity of the BH:

T− = κ−
2π

. (7)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-3976-1&domain=pdf
mailto:pppradhan5@rediffmail.com
mailto:pppradhan77@gmail.com


131 Page 2 of 12 Eur. Phys. J. C (2016) 76 :131

Using the above inner properties of the BH, we can write the
inner first law of BH thermodynamics

dM = − κ−
8π

dA− + �−dJ + �−dQ. (8)

where,

�− = 4π J

MA−
= ∂M

∂ J
(9)

�− = 1

M

(
Q

2
+ 2πQ3

A−

)
= ∂M

∂Q
. (10)

Similarly, the second law is also valid for outer horizon
[4] as well as inner horizon which states that

dA± ≥ 0. (11)

It has been suggested that every regular axi-symmetric
and stationary space-time of Einstein–Maxwell gravity with
surrounding matter has a regular CH inside the EH if and only
if both angular momentum J and charge Q do not vanish.
Then the product of the area A± of the horizonsH± for Kerr-
Newman (KN) class of family could be expressed as by the
relation [8]: (see also [9,10])

A+A− = (8π)2
(
J 2 + Q4

4

)
. (12)

which is remarkably independent of the ADM mass (M) of
the space-time. In the limit Q = 0, one obtains the area
product formula for Kerr BH [12].

Again in string theory and M-theory, the product of Killing
horizon areas for certain multi-horizon BHs are also inde-
pendent of the ADM mass. For asymptotically flat BPS
(Bogomol’ni–Prasad–Sommerfield) BHs in four and higher
dimensions, the quantization rule becomes [13–15]: A± =
8π�pl

2(
√
N1 ± √

N2) or

A+A− = (8π�pl
2)2N , N ∈ N, N1 ∈ N, N2 ∈ N.

(13)

where �pl is the Planck length, N1 and N2 are integers for
super-symmetric extremal BHs [11,14–18,20–22].

However, it has been well known fact that CH is an infi-
nite blue-shift region in contrast with EH (infinite red-shift
region). It is also true that CH is a highly unstable due to
the exterior perturbation [23]. Thus there has been indication
towards the relevance of BH CH in comparison with EH.

Thus in this work, we wish to examine the above men-
tioned thermodynamical feature of the rotating charged BHs

in heterotic string theory [24].1 We have discussed both the
situations in Einstein frame (EF) as well as in String frame
(SF). The fact that string theory is the leading candidate to
unify gravity to other fundamental forces in nature. For this
reason, we have chosen the low energy heterotic string the-
oretical BH. The special characteristics of this string BH is
that they are qualitatively different from those BH that appear
in ordinary Einstein general theory of relativity [5,24]. Most
of these solutions are characterized by one or more charges
associated with Yang–Mills fields or the anti-symmetric ten-
sor gauge field. Furthermore, this low energy heterotic string
BH carries a finite amount of charge, angular momentum and
magnetic dipole moment. It could be produced by twisting
method and starting from a rotating BH having no charge,
i.e. the Kerr BH. So, sometimes it is called twisted Kerr BH
or Kerr-Sen BH [5].

We prove that in the EF, the area product formula and
the entropy product formula are universal, whereas area sum
and entropy sum are not universal. Again in the SF, area
product, entropy product, area sum and entropy sum formula
don’t have any universal nature because they all are depends
on ADM mass parameter. We also observe that every BH
thermodynamic quantities (e.g. area, entropy, temperature,
surface gravity etc.), other than the mass (M), the angular
momentum (J ) and the charge (Q), can form a quadratic
equation whose roots are contained the three basic param-
eter M, J, Q. We further examine that the four laws of BH
mechanics is satisfied at the inner horizon as well as EH.
Moreover in EF, we compute the area bound and entropy
bound for both the horizons. The upper area bound for EH
is actually the Penrose like inequality, which is the first geo-
metric inequality in BHs [27].

The paper is organized as follows. Section 2 describes the
properties of Sen BH in EF and deals with various thermody-
namic products. In this section, there are three subsections. In
Sect. 2.1, we have discussed the Smarr formula for Sen BH.
In Sect. 2.2, we have derived the Christodoulou–Ruffini mass
formula for Sen BH. Finally in Sect. 2.3, we have discussed
the four laws of BH thermodynamics. In Sect. 3, we com-
puted various thermodynamic products for Sen BH in String
frame. Finally, in Sect. 4 we concluded our discussions.

2 Sen BH in EF

An exact rotating charged BH solution in four dimension
heterotic string theory represented by the metric [24] in EF

1 The Sen’s [24] solutions were later generalized by Sen [25] and
also Cvetic and Youm [13]. Since those times one standard class for
many investigations of string theory BHs were the four charge solu-
tions parametrized by four boost angles. The Sen 1992 solutions [24]
correspond to the special case where three of the four boost angles were
taken to vanish. The present manuscript is a special case, where three
parameters are taken to vanish.
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ds2 = −
(

1 − 2mr cosh2 α

ρ2

)
dt2

− 4amr cosh2 α sin2 θ

ρ2 dtdφ

+ ρ2

�
dr2 + ρ2dθ2 + ϒ

ρ2 sin2 θdφ2 (14)

where

ρ2 = r2 + a2 cos2 θ + 2mr sinh2 α (15)

� = r2 − 2mr + a2 (16)

ϒ = (r2 + a2 + 2mr sinh2 α)2 − �a2 sin2 θ (17)

The Maxwell field, dilaton, and anti-symmetric tensor are

A = mr sinh 2α√
2ρ2

(dt − a sin2 θdφ) (18)

e−2φ = ρ2

r2 + a2 cos2 θ
(19)

Btφ = 2mar sinh2 α sin2 θ

ρ2 (20)

The above metric describes a BH solution with mass M ,
charge Q, angular momentum J , and magnetic dipole
moment μ is given by

M = m

2
(1 + cosh 2α) (21)

Q = m√
2

sinh 2α (22)

J = ma

2
(1 + cosh 2α) (23)

μ = 1√
2
ma sinh 2α (24)

Since we shall analyze various thermodynamic products of
this BH, for this purpose it will be more convenient to write
m, a and α in terms of the independent physical parameters
M , J and Q inverting the relations given in Eq. (24). Thus
we find

m = M − Q2

2M
(25)

sinh 2α = 2
√

2QM

(2M2 − Q2)
(26)

a = J

M
(27)

This is the well known Sen BH solution [24] which was
discovered by Sen in 1992.

There are two horizons for Sen BH namely EH (H+) or
outer horizon and CH (H−) or inner horizon. Their radius
can be determined by solving the following metric function
as

� ≡ �(r) = r2 −
(

2M − Q2

M

)
r + a2 = 0. (28)

which gives

r± =
(
M − Q2

2M

)
±

√(
M − Q2

2M

)2

− a2. (29)

Here r+ is called EH and r− is called CH. It may be noted
that r+ > r−. Interestingly, the solution of the Eq. (28) gives

r+ + r− = 2M − Q2

M
and r+r− = a2. (30)

This indicates that the sum and product of the horizon radii
depends on the mass parameter.

From Eq. (29) one can see that the horizon disappears
unless

a ≤
(
M − Q2

2M

)
. (31)

Thus the extremal limit of the Sen BH corresponds to

a =
(
M − Q2

2M

)
. (32)

and the horizon for extremal Sen BH is situated at

rex = r+ = r− = a =
(
M − Q2

2M

)
. (33)

Now we would like to compute various thermodynamic
quantities of the Sen BH. The area [2,3] of both the horizon
(H±) in EF is

A± =
∫ 2π

0

∫ π

0

√
gθθgφφdθdφ (34)

= 8πM

⎡
⎣(

M − Q2

2M

)
±

√(
M − Q2

2M

)2

− a2

⎤
⎦ .

(35)

The angular velocity of H± computed at the horizon is given
by

�± = J

2M2

[(
M − Q2

2M

)
±

√(
M − Q2

2M

)2 − a2

] . (36)

The semi-classical Bekenstein–Hawking entropy of H±
reads

S± = 2πM

⎡
⎣

(
M − Q2

2M

)
±

√(
M − Q2

2M

)2

− a2

⎤
⎦ .

(37)
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The surface gravity [24] of H± is given by

κ± = ±
√

(2M2 − Q2)2 − 4J 2

2M[(2M2 − Q2) ± √
(2M2 − Q2)2 − 4J 2] .

(38)

and

κ+ > κ− (39)

and the BH temperature or Hawking temperature ofH± reads
as

T± = ±
√

(2M2 − Q2)2 − 4J 2

4πM[(2M2 − Q2) ± √
(2M2 − Q2)2 − 4J 2] .

(40)

It should be noted that T+ > T−.
The Komar [26] energy for H± is given by

E± = ±
√

(2M2 − Q2)2 − 4J 2. (41)

Finally, the horizon Killing vector field may be defined
for H± as

χ±a = (∂t )
a + �±(∂φ)a . (42)

Now we shall see that every BH thermodynamic quan-
tities (e.g. area, entropy, temperature, surface gravity etc.),
other than the mass (M), the angular momentum (J ) and
the charge (Q), which is also defined on H± can form a
quadratic equation of thermodynamic quantities like horizon
radii (r±).

Firstly, we compute the “product” and “sum” of the inner
horizon area and outer horizon area as

A−A+ = (8π J )2. (43)

and

A− + A+ = 8π(2M2 − Q2). (44)

Interestingly, the area sum and the area product might be
satisfied the following quadratic equation:

A2 − 8π(2M2 − Q2)A + (8π J )2 = 0. (45)

With the help of the above Eqs. (43) and (44), we can easily
see that the “area product” is universal, while the “area sum”
is not universal for Sen BH in EF because it depends on the
BH mass or ADM mass parameter. For completeness, we
further compute the area minus and area division, which is
given by

A± − A∓ = 8πMT±A±. (46)

and

A+
A−

= r+
r−

= �−
�+

= −T−
T+

. (47)

Again, the sum of area inverse is found to be

1

A+
+ 1

A−
= 2M2 − Q2

8π J 2 . (48)

and the minus of area inverse is computed to be

1

A±
− 1

A∓
= ∓

√
(2M2 − Q2)2 − 4J 2

8π J 2 . (49)

It indicates that they all are mass dependent relations.
Likewise, the “entropy product” and “entropy sum” ofH±

becomes:

S−S+ = (2π J )2. (50)

and

S− + S+ = 2π(2M2 − Q2). (51)

The quadratic equation of entropy becomes

S2 − 2π(2M2 − Q2)S + (2π J )2 = 0. (52)

It indicates that “entropy product” is independent of mass
and “entropy sum” depends on the BH mass.

Using Eq. (47), one can derive another important relations:

T+S+ + T−S− = 0. (53)

and

�+
T+

+ �−
T−

= 0. (54)

The above important thermodynamic products of multi hori-
zons may be used to determine the classical BH entropy in
terms of Cardy formula, therefore giving some evidence for a
BH/CFT description of the corresponding microstates [18]. It
has been also shown that from the above Eq. (53), the central
charge being the same for two horizon BHs. Explicit calcu-
lation of the central charges cL = cR = 12J using Cardy
formula has been done in Appendix B. Using thermodynam-
ical relations, we derive the dimensionless temperature of
microscopic CFT, which is perfect agreement with the ones
derived from hidden conformal symmetry in the low fre-
quency scattering off the BH [19].

Based on these above relations, we would like to compute
the entropy bound of H± which is exactly Penrose-like in-
equality for event horizon. From the Eq. (31), we obtain Kerr
like bound for Sen BH:

M4 − Q2M2 + Q4 − 4J 2

4
≥ 0. (55)

or

M2 ≥ J + Q2

2
. (56)

Since r+ ≥ r− thus S+ ≥ S− ≥ 0. Then the entropy product
(50) gives:
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S+ ≥ √
S+S− = 2π J ≥ S−. (57)

and the entropy sum gives:

2π(2M2 − Q2) = S+ + S− ≥ S+ ≥ S+ + S−
2

= π
(

2M2 − Q2
)

≥ S−. (58)

Thus the entropy bound for H+:

π(2M2 − Q2) ≤ S+ ≤ 2π(2M2 − Q2). (59)

and the entropy bound for H−:

0 ≤ S− ≤ 2π J. (60)

From this bound, we can derive area bound which could be
found in the latter section. It should be noted that in the limit
Q = 0, we obtain the Kerr entropy bound [28].

Similarly, we can obtain the “product of surface gravity”
and “sum of surface gravity” of H± is

κ−κ+ = − (2M2 − Q2)2 − 4J 2

(4JM)2 . (61)

and

κ− + κ+ = − (2M2 − Q2)2 − 4J 2

4MJ 2 . (62)

It suggests that surface gravity product and surface gravity
sum are not universal. It may be noted that surface gravity
satisfied the following quadratic equation.

κ2 −
(

4J 2 − (2M2 − Q2)2

4MJ 2

)
κ

+
(

4J 2 − (2M2 − Q2)2

4MJ 2

)
= 0. (63)

Similarly, one can obtain “surface temperature product”
and “surface temperature sum” of H± as follows

T−T+ = − (2M2 − Q2)2 − 4J 2

(8π JM)2 . (64)

and

T− + T+ = − (2M2 − Q2)2 − 4J 2

8πMJ 2 . (65)

It seems that these products and sum are not universal.
Finally, “Komar energy product” and “Komar energy

sum” of H± for Sen BH is given by

E+E− = (2S+T+)(2S−T−)

= −[(2M2 − Q2)2 − 4J 2]. (66)

and

E+ + E− = (2S+T+) + (2S−T−) = 0. (67)

The above calculation suggests that the product of the area
and entropy of H± are proportional to the square of the spin
parameter J . Surface gravity product, surface temperature
product and Komar energy product depends on ADM mass.
Thus, we may conclude that they are not universal except the
area product and entropy product. In appendix A, we have
computed various thermodynamic parameters for KN BH,
Kerr BH in comparison with Sen BH. Now we are going to
derive the Smarr formula for Sen BH.

2.1 Smarr formula for Sen BH

It is well known that for KN BH the area of the outer [7] and
inner horizons are

A± = 4π
(

2M2 − Q2 ± 2
√
M4 − J 2 − M2Q2

)
. (68)

Indeed, it is constant over the H±. Similarly, we can eval-
uate the area of H± for Sen BH reads

A± = 8πM

⎡
⎣

(
M − Q2

2M

)
±

√(
M − Q2

2M

)2

− a2

⎤
⎦ .

(69)

Inverting the above relation one can compute the BH mass
or ADM mass can be expressed in terms of area of both the
horizon.

M2 = A±
16π

+ 4π J 2

A±
+ Q2

2
. (70)

It is remarkable that the mass can be expressed as in terms
of both area of H+ and H−. Now we will see what happens
with the mass differential? It could be also expressed as three
physical invariants of both H+ and H−,

dM = �±dA± + �±dJ + �±dQ. (71)

where

�± = ∂M

∂A±
= 1

M

(
1

32π
− 2π J 2

A2±

)

�± = ∂M

∂ J
= 4π J

MA±
= a

2Mr±

�± = ∂M

∂Q
= Q

M
. (72)

where

�± = Effective surface tension forH+ and H−

�± = Angular velocity forH±

�± = Electromagnetic potentials for H±
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The effective surface tension can be rewritten as

�± = 1

M

(
1

32π
− 2π J 2

A2±

)
(73)

= 1

32πM

(
1 − 64π2 J 2

A2±

)

= 1

32πM

(
1 − a2

r2±

)

= r± − M

32πMr±
= κ±

8π
(74)

where κ± is the surface gravity of H± as previously defined.
Thus the mass can be expressed in terms of these quantities

both for H± as a simple bilinear form

M = 2�±A± + 2J�± + 2Q�±. (75)

This has been derived from the homogenous function of
degree 1

2 in (A±, J, Q). Remarkably, �±, �± and �± are
constant on the H+ and H− for any stationary, axially sym-
metric space-time.

Since the dM is a total perfect differential, one may choose
freely any path of integration in (A±, J, Q) space. Thus one
could define surface energy Es,± for H±

Es,± =
∫ A±

0
�(Ã±, 0, 0)dÃ±; (76)

the rotational energy for H± can be defined by

Er,± =
∫ J

0
�±(A±, J̃ , 0)d J̃ , A± fixed; (77)

and the electromagnetic energy for H± is

Eem,± =
∫ Q

0
�(A±, J, Q̃)dQ̃, A±, J fixed; (78)

Therefore, we may rewrite the Eq. (75) as

M = ± κ±
4π

A± + 2J�± + 2Q�±. (79)

or

M − 2J�± − 2Q�± = ± κ±
4π

A±. (80)

or

M − 2J�± − 2�±Q = ±T±
2
A±. (81)

or

M

2
= ±T±S± + J�± + Q�±. (82)

This could be recognized as a generalized Smarr–Gibbs–
Duhem relation on H± for Sen BH.

2.2 Irreducible mass product for Sen BH

In this section, we will derive Christodoulou and Ruffini [29]
mass formula for Sen BH. Christodoulou had shown that the
irreducible mass Mirr of a Kerr BH is related to the surface
area A of the BH by the following formula

M2
irr = A

16π
. (83)

It is now well known that this formula is valid for both the
horizons. Thus we can define it for H±:

M2
irr,± = A±

16π
= Mr±

2
. (84)

where ‘+’ sign indicates for H+ and ‘−’ indicates for H−.
Likewise, the area and angular velocity may be expressed

in terms of Mirr,±:

A± = 16π(Mirr,±)2. (85)

and

�± = a

4(Mirr,±)2 . (86)

Interestingly, the product of the irreducible mass of H± for
Sen BH is universal.

Mirr,+Mirr,− = J

2
. (87)

The Christodoulou–Ruffini mass formula for Sen BH and for
both the horizon (H±) reads as:

M2 =
(
Mirr,± + Q2

4Mirr,±

)
+ J 2

4(Mirr,±)2 . (88)

Based on the above relations, we would like to compute the
area bound and irreducible mass bound for Sen BH followed
by the previous section. Since r+ ≥ r−, one obtains A+ ≥
A− ≥ 0. Therefore the area product gives:

A+ ≥ √
A+A− = 8π J ≥ A−. (89)

and the area sum gives:

8π(2M2 − Q2) = A+ + A− ≥ A+ ≥ A+ + A−
2

= 4π(2M2 − Q2) ≥ A−. (90)

Thus the area bound for H+:

4π(2M2 − Q2) ≤ A+ ≤ 8π(2M2 − Q2). (91)

and the area bound for H−:

0 ≤ A− ≤ 8π J. (92)

From this area bound, we get irreducible mass bound for Sen
BH: for H+:
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√
2M2 − Q2

2
≤ Mirr,+ ≤

√
2M2 − Q2

√
2

. (93)

and for H−:

0 ≤ Mirr,− ≤
√

J

2
. (94)

Equation (93) is nothing but the Penrose inequality, which is
the first geometric inequality for BHs [27].

2.3 The four Laws of BH thermodynamics on H±

Let us quickly examine the four laws of BH thermodynamics
for Sen BH. For KN BH, Bardeen et al. [4] formulated the
black hole thermodynamics for the EH which is analogous to
the classical laws of thermodynamics. We derive here same
for Sen BH both on the EH as well as CH. We have already
been derived the surface gravity in the previous section given
by the Eqs. (38) and (40). Using this two equations we can
easily say that the surface gravity and the surface temperature
are constant on the H± and therefore, it is remarkable that
the Zeroth law of BH thermodynamics holds for CH as well
as EH.

– The Zeroth Law: The surface gravity, κ± of a stationary
black hole is constant over the EH as well as CH.
Quite similarly, the first law of BH thermodynamics is
also satisfied not only at the outer horizon but also at the
inner horizon.

– The first law: Any perturbation of a stationary BHs, the
change of mass (change of energy) is related to change
of mass, angular momentum, and electric charge by:

dM = ± κ±
8π

dA± + �±dJ + �±dQ. (95)

It can be seen that κ±
8π

is analogous to the temperature of
H± in the same way that A± is analogous to entropy. It
should be noted that κ±

8π
and A± are quite distinct from

the temperature and entropy of the BH.
Again, the second law of BH thermodynamics is also
satisfied both on the inner horizon and outer horizon.

– The second law: The area A± of both EH and CH never
decreases, i.e.

dA± = 4A±
r± − r∓

(dM − �±.dJ − �±dQ) ≥ 0 (96)

or

dMirr,± = 2Mirr,±
r± − r∓

(dM − �±.dJ − �±dQ) ≥ 0 (97)

The change in irreducible mass of both EH and CH can
never be negative. It follows immediately that

dM > �±.dJ + �±dQ (98)

For the extremal Sen BH(r+ = r−), we have T+ = T− =
0 = κ+ = κ−. Therefore the third law becomes:

– The third law: It is impossible by any mechanism, no
matter how idealized, to reduce, κ± the surface gravity of
both EH and CH to zero by a finite number of operations.

Thus we have checked that the four laws of BH mechanics
satisfied on CH as well as EH.

So far all the computations have been carried out for Sen
BH in EF. Now we will see in next section, what happens for
these computations for Sen BH in SF?

3 Sen BH in SF

This frame sometimes used because in this frame the physical
degrees of freedom move along the geodesics of the metric
[6]. Therefore the corresponding metric in the SF and the EF
are conformally related by the following relation

Gab = e2φgab. (99)

where Gab are the covariant components of the metric in the
SF, gab are the components of the metric in the EF and φ

is the dilation field. For contravariant components they are
related by

Gab = e−2φgab. (100)

The dilation field is given by

e2φ = r2 + a2 cos2 θ

ρ2 . (101)

For simplicity, we denote

χ = r2 + a2 cos2 θ. (102)

First, we need to write the metric for Sen BH in SF [5],
which is given by

ds2 = − χ

ρ2

(
1 − 2mr cosh2 α

ρ2

)
dt2

−4amrχ cosh2 α sin2 θ

ρ4 dtdφ + χ

�
dr2 + χdθ2

+ χ

ρ4 ϒ sin2 θdφ2 (103)
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Since the action in SF is different from EF therefore the
conserved quantities are also different. Now we define this
conserved quantities (mass, charge, angular momentum) in
SF are M, Q and J respectively. Then the horizon radii in
SF becomes

rSF± =
(
M − Q2

2M
)

±
√(

M − Q2

2M
)2

− a2. (104)

Here the spin parameter a = J
M .

Now the area of both the horizons (H±) in SF is given by

A±SF = 4π
[
rSF± (rSF± + b) + a2

]

×
⎡
⎣1 − brSF±

a
√
rSF± (rSF± + b)

× tan−1 a√
rSF± (rSF± + b)

⎤
⎦ . (105)

where, b = Q2

M , Gθθ = χ and Gφφ = χ

ρ4 ϒ sin2 θ . Similarly,

we can compute the entropy for both the horizons (H±) in
the SF:

S±SF = π
[
rSF± (rSF± + b) + a2

]

×
⎡
⎣1 − rSF± b

a
√
rSF± (rSF± + b)

× tan−1 a√
rSF± (rSF± + b)

⎤
⎦ . (106)

Now we turn to the most interesting case that is the “Area
product” for Sen BH in SF:

A+SFA−SF = (8πJ )2

×
⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

×
⎡
⎣1 − brSF−

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦ . (107)

Interestingly, it seems that the product of horizon area of
H± in SF for Sen BH is not universal. This is one of the
key result of the work. The result in the SF is quite differ-
ent from the EF due to the fact that the action in SF is quite
different from the EF, therefore the corresponding conserved
quantities should be different. Actually, when the M , J and
Q are computed in EF the action should be Einstein-Hilbert
type andwhere the ADM formulas have been used, whereas

when the action is written in SF, the corresponding quantities
are very likely to be different. Therefore the parameters M ,
J in particular could no longer be identified with the con-
served charges associated with the time-translation and the
rotational symmetry.

But if we expand the function of tan−1x as

tan−1x = x − x3

3
+ x5

5
− x7

7
+ · · · . (108)

then we find the the area of both the horizons (H±) as

A±SF = 8πM(rSF± )2

(rSF± + b)

⎡
⎣1 + b

3(rSF± + b)

(
a

rSF±

)2

− b

5(rSF± + b)2

(
a

rSF±

)4

+ O
(

a

rSF±

)6
⎤
⎦ .

It follows from the above equation it is very difficult to find
the exact mass parameter in terms of the area of H± in SF.
Therefore due to same reasons it is also quite difficult to find
the Hawking temperature from the mass differential. So one
way we could find the Hawking temperature in SF by using
the formula as used Sen in [24]:

T SF = κSF

2π
=

limr→rSF±
√
Grr∂r

√−Gtt

2π
|θ=0. (109)

which gives on the H±

T SF± = 2(rSF± − M) + b

4π
[
rSF± (rSF± + b) + a2

] . (110)

Similarly, we could find the angular velocity by using the
formula

�SF =
−Gtφ +

√
G2

tφ − GφφGtt

Gφφ

. (111)

On the horizon the angular velocity could be written as

�SF± = − Gtφ

Gφφ

= 2aMrSF±[
rSF± (rSF± + b) + a2

]2 . (112)

Now we can write the first law of thermodynamics in the SF
as

dM = ±T SF± dSSF± + �SF± dJ + · · · (113)

Now it implies that the BH temperature, angular velocity and
probably electric potentials (since charge is different) in SF
are quite different from EF because the action and metric
are different as we have discussed previously. This is why
the area (or entropy) product relation in two frames are quite
distinct.
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We also note that the sum of horizon area in SF reads

A+SF + A−SF = 8πMr+SF

×
⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

+ 8πMr−SF

⎡
⎣1 − brSF−

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦ .

(114)

Like-wise, the entropy product and entropy sum for Sen
BH in SF is

S+SFS−SF = (2πJ )2

×
⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

×
⎡
⎣1 − brSF−

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦ (115)

and

S+SF + S−SF = 2πMr+SF

×
⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

+ 2πMr−SF

⎡
⎣1 − brSF−

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦

(116)

It also implies that the entropy product and entropy sum for
H± in SF of Sen BH are not universal.

For completeness, we also compute the irreducible mass
of Sen BH for H± in SF reads

Mirr,±SF

=
√√√√√MrSF±

2

⎡
⎣1 − brSF±

a
√
rSF± (rSF± + b)

tan−1 a√
rSF± (rSF± + b)

⎤
⎦.

(117)

For our record, we find the irreducible mass product in SF:

Mirr,+SFMirr,−SF = J
2

×
√√√√√

⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

×
√√√√√

⎡
⎣1 − rSF− b

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦. (118)

and the sum of irreducible mass is

Mirr,+SF + Mirr,−SF =
√
MrSF+

2

×
√√√√√

⎡
⎣1 − brSF+

a
√
rSF+ (rSF+ + b)

tan−1 a√
rSF+ (rSF+ + b)

⎤
⎦

+
√
MrSF−

2

√√√√√
⎡
⎣1 − brSF−

a
√
rSF− (rSF− + b)

tan−1 a√
rSF− (rSF− + b)

⎤
⎦.

(119)

It seems that they both are not universal. It is obvious because
irreducible mass depends on area. It is true that area product,
entropy product and irreducible mass product gives same
result because they are identical. For our record we computed
them separately.

4 Discussion

In this work, we have examined various thermodynamic
products for rotating charged black hole solution in four
dimensional heterotic string theory. We have considered both
EF and SF. In the EF, we have shown that the “area product”
and “entropy product” are universal, while the “area sum” and
the“entropy sum” are not! In the SF, we have shown that the
“area product”, “entropy product”,“area sum” and “entropy
sum” do not manifested any universal character because they
all are depends on ADM mass parameter. We also showed
that every BH thermodynamical variable, other than the mass
(M), the angular momentum (J ) and the charge (Q) parame-
ter, can form a quadratic equation whose roots are contained
the three basic parameters M, J, Q. For completeness, we
have derived the Smarr mass formula and Christodoulou’s
irreducible mass formula for Sen BH in the EF. Finally, we
showed that the four laws of BH mechanics satisfied on both
the horizons H±.

Based on the thermodynamic relations, we also derived the
area bound and entropy bound for all the horizons. Further-
more, we calculated the irreducible mass bound for this type
of BH. These formulas are expected to be useful to under-
standing the microscopic nature of BH entropy (both exterior
and interior). Again, the entropy products of inner horizon
and outer horizons could be used to determine whether the
classical BH entropy could be written as a Cardy formula
(see Appendix B), giving some evidence for a holographic
description of BH/CFT correspondence [22]. The above ther-
modynamic properties including the Hawking temperature
and area of both the horizons may therefore be expected to
play a crucial role to understanding the BH entropy at the
microscopic level.
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There has been compelling evidence by astrophysically
that BH’s have EH [30] and it is also true that the EH’s are
thermodynamically stable with respect to axi-symmetric per-
turbations [31,32]. Whereas there is no strong or weak evi-
dence that BH’s have CH by astrophysically but analytically
has strong evidence that BH’s possesses CH in addition with
EH, and it is also well known by fact that CH is thermody-
namically unstable by axi-symmetric perturbations [33]. So
still now it is unclear to us whether the CH thermodynamic
results have a real astrophysical significance just as the event
horizon does [30]. So, it will be a little bit help us to under-
standing the interior physics of Sen BH to clarify what the

inner thermodynamics physically means. It may quite plau-
sible that this interior physics could help us to understanding
the interior BH entropy.
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Appendix A

Parameter KN BH Kerr BH Sen BH

r±: M ± √
M2 − a2 − Q2 M ± √

M2 − a2 M − Q2

2M ±
√

(M − Q2

2M )2 − a2

∑
ri : 2M 2M 2M − Q2

M∏
ri : a2 + Q2 a2 a2

A±: 4π(r2± + a2) 4π(2M2 ± 2
√
M4 − J 2) 8πMr±∑Ai : 8π(2M2 − Q2) 16πM2 8π(2M2 − Q2)∏Ai : (8π)2(J 2 + Q4

4 ) (8π J )2 (8π J )2

S±: π(r2± + a2) π(r2± + a2) 2πMr±∑Si : 2π(2M2 − Q2) 4πM2 2π(2M2 − Q2)∏Si : (2π)2(J 2 + Q4

4 ) (2π J )2 (2π J )2

κ±: r±−r∓
2(r2±+a2)

r±−r∓
2(r2±+a2)

r±−r∓
4Mr±∑

κi :
4M(a2+Q2−M2)

(4J 2+Q4)
a2−M2

a J
4J 2−(2M2−Q2)2

4MJ 2∏
κi :

a2+Q2−M2

4M2(a2+Q2)
a2−M2

4J 2
4J 2−(2M2−Q2)2

(4MJ )2

T±: r±−r∓
4π(r2±+a2)

r±−r∓
4π(r2±+a2)

±
√

(2M2−Q2)2−4J 2

4πM[(2M2−Q2)±
√

(2M2−Q2)2−4J 2]∑
Ti :

a2+Q2−M2

2πM(a2+Q2)
a2−M2

2πa J
4J 2−(2M2−Q2)2

8πMJ 2∏
Ti : a2+Q2−M2

(4πM)2(a2+Q2)
a2−M2

(4π J )2
4J 2−(2M2−Q2)2

(8π JM)2

Mirr,±:
√

A±
16π

√
A±
16π

√
A±
16π∑

M2
irr,±: M2 M2 M2 − Q2

2

∏
Mirr,±:

√
J 2+ Q4

4
4

J
2

J
2

�±: a
2Mr±−Q2

a
2Mr±

a
2Mr±∑

�i :
2a(2M2−Q2)

4J 2+Q4
1
a

2M2−Q2

2aM2∏
�i : a2

4J 2+Q4
1

4M2
1

4M2

E±: ±√
M2 − a2 − Q2 ±√

M2 − a2 ±√
(2M2 − Q2)2 − 4J 2∑

Ei : 0 0 0∏
Ei : −(M2 − a2 − Q2) −(M2 − a2) −[(2M2 − Q2)2 − 4J 2]

r+ = r−: M2 = a2 + Q2 M2 = a2 a = M − Q2

2M
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Appendix B

Here we shall derive the central charges cL and cR of the
left and right moving sectors of the dual CFT in Sen/CFT
correspondence. We shall prove that the central charges of
the left and right moving sectors are same i.e. cL = cR for Sen
BH. Also we shall derive the dimensionless temperature of
microscopic CFT from the above thermodynamic relations.
Furthermore using Cardy formula, we shall derive the left
and right moving entropies in 2D CFT.

In terms of r+ and r−, we can write the ADM mass and
spin parameter as

M = 1

4

[
(r+ + r−) +

√
(r+ + r−)2 + 8Q2

]

and a = √
r+r− . (120)

Now the angular momentum can be written as

J =
√
r+r−
4

[
(r+ + r−) +

√
(r+ + r−)2 + 8Q2

]
. (121)

Moreover using r+ and r−, we can write the entropy,
Hawking temperature, angular velocity and electric poten-
tial for H+:

S+ = πr+
2

[
(r+ + r−) +

√
(r+ + r−)2 + 8Q2

]
. (122)

T+ = r+ − r−
2πr+

[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
] . (123)

�+ = 2
√
r+r−

r+
[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
] . (124)

φ+ = 4Q[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
] . (125)

Finally, using the symmetry of r±, one can obtain the follow-
ing relations for the thermodynamic quantities at H−:

T− = −T+|r+↔r− , S− = S+|r+↔r− ,

�− = �+|r+↔r− ,�− = �+|r+↔r− . (126)

The first law of BH thermodynamics can be rewritten as in
terms of left and right moving modes of dual CFT:

dM

2
= TLdSL + �LdJ + �LdQ. (127)

= TRdSR + �RdJ + �RdQ. (128)

with the definitions βR,L = β+ ± β−, β± = 1
T± , �R,L =

β+�+±β−�−
2βR,L , �R,L = β+�+±β−�−

2βR,L and SR,L = (S+∓S−)
2 .

Using the above relations, we find

TL = 1

2π
[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
] ,

TR = r+ − r−
2π(r+ + r−)

[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
]

SL = π(r+ + r−)

4

[
(r+ + r−) +

√
(r+ + r−)2 + 8Q2

]
,

SR = π(r+ − r−)

4

[
(r+ + r−) +

√
(r+ + r−)2 + 8Q2

]

�L = 0,

�R = 2
√
r+r−

(r+ + r−)
[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
]

�L = 2Q[
(r+ + r−) + √

(r+ + r−)2 + 8Q2
] ,

�R = 2Q[
(r− + r+) + √

(r− + r+)2 + 8Q2
] . (129)

Using Eqs. (127, 128) and setting dQ = 0, we obtain the
first law of left and right sectors:

dJ = TL
�R − �L

dSL − TR
�R − �L

dSR . (130)

This gives the dimensionless temperature of the left and right
moving sectors of the dual CFT correspondence and are given
by

T J
L ,R = TL ,R

�R − �L
. (131)

which is exactly the microscopic temperature of the CFT and
found to be for Sen BH

T J
L ,R = r+ ± r−

4π
√
r+r−

. (132)

Now we find the central charges [22] in left and right moving
sectors of the Sen/CFT correspondence via the Cardy formula
reads

SJ
L ,R = π2

3
cJL ,RT

J
L ,R . (133)

Therefore the central charges of dual CFT should be

cJL = cJR = 12J. (134)

which is exactly same as Kerr BH [34] and KN BH [22]. This
observation tells us that Sen BH is dual to a cL = cR = 12J
2D CFT at temperature (TL , TR) for each value of M and J .
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In the extremal limit r+ = r−, the above expressions
reduce to

TL = 1

4π

[
r+ +

√
r2+ + 2Q2

] , TR = 0

SL = πr+
[
r+ +

√
r2+ + 2Q2

]
, SR = 0

�L = 0, �R = 1

2

[
r+ +

√
r2+ + 2Q2

]

�L = �R = Q[
r+ +

√
r2+ + 2Q2

] . (135)

T J
L = 1

2π
, T J

R = 0. (136)

this left moving temperature is actually Frolov–Thorn tem-
perature, and finally the central charge for extremal Sen BH:

cJL = 12J. (137)

Therefore, we obtain the microscopic entropy via the Cardy
formula in chiral dual CFT:

Smicro = π2

3
cJLT

J
L = 2π J. (138)

which is perfectly agreement with macroscopic Bekenstein–
Hawking entropy of the extreme Sen BH.
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