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Abstract We study the ultraviolet properties of theories
whose fundamental fields display a confining, Gribov-type,
propagator. These are propagators that exhibit complex poles
and violate positivity, thus precluding a physical propagat-
ing particle interpretation. We show that the properties of this
type of confining propagators do not change the ultraviolet
behavior of the theory, in the sense that no new ultraviolet
primitive divergences are generated, thus securing the renor-
malizability of these confining theories. We illustrate these
properties by studying a variety of models, including bosonic
and fermionic confined degrees of freedom. The more intri-
cate case of super-Yang–Mills with N = 1 supersymmetries
in the Wess–Zumino gauge is taken as example in order to
prove these statements to all orders by means of the algebraic
renormalization set up.

1 Introduction

The quantization of non-abelian gauge theories is still an
open and rich subject for quantum field theorists. A general
framework which takes into account the non-perturbative
phenomena of gluon and quark confinement and of chiral
symmetry breaking is still lacking. Needless to say, these
issues represent a major challenge for our current understand-
ing of non-abelian gauge theories in the non-perturbative
infrared regime.

A successful approach to investigate these topics within
the context of the Euclidean quantum field theory is provided
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by the Gribov framework1. In his seminal work [4], Gri-
bov pointed out that the Faddeev–Popov gauge-fixing pro-
cedure is plagued by the existence of Gribov copies. In a
path-integral formulation this manifests in the fact that the
Faddeev–Popov operator develops zero modes. For example,
in the Landau gauge, ∂μAa

μ = 0, the Faddeev–Popov oper-
ator is given by Mab = −(∂2δab − g f abc Ac

μ∂μ). For suffi-
ciently strong coupling constant, zero modes of this operator
start to appear, rendering ill-defined the Faddeev-Propov pro-
cedure. To deal with this issue, Gribov proposed to restrict the
domain of integration in the path integral to a region in field
space where the eigenvalues of the Faddeev–Popov opera-
tor are strictly positive. This region is known as the Gribov
region �, being defined as

� = {
Aa

μ; ∂μA
a
μ = 0;

Mab = −(∂2δab − g f abc Ac
μ∂μ) > 0

}
. (1)

It is useful to observe here that the inverse of the Faddeev–
Popov operator, (M−1)ab, yields precisely the propagator
G(k, A) of the Faddeev–Popov ghosts in the presence of an
external gauge field Aa

μ [1–4], namely

G(k, A) = 1

(N 2 − 1)
δab〈k|(M−1)ab|k〉. (2)

This property can be employed to implement the restriction to
the Gribov region � by requiring the absence of poles in the
ghost propagator for any non-zero value of the ghost external
momentum k. This requirement is known as the Gribov no-
pole condition. More precisely, following [4], one can always
represent the exact ghost propagator in the presence of an
external gauge field as

1 For reviews on the Gribov issues, see [1–3] and references therein.
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G(k, A) = 1

k2 (1 + σ(k, A)), (3)

where σ(k, A) is the ghost form factor. Using the general
properties of the diagrammatic expansion of quantum field
theory, we can write

G(k) = 〈G(k, A)〉conn = 1

k2 (1 + 〈σ(k, A)〉conn)

= 1

k2

1

(1 − 〈σ(k, A)〉1P I )
(4)

where “conn” stands for the connected set of diagrams and
1P I denotes the 1-particle irreducible ones. It can be shown
that 〈σ(k, A)〉1P I is a decreasing function of k [1–4]. There-
fore, the condition that the ghost propagator has no poles for
any non-zero value of the ghost external momentum can be
expressed as a condition for the maximum value of the ghost
form factor, i.e.

〈σ(0, A)〉1P I = 1. (5)

Equation (5) expresses the no-pole condition. In [5], it has
been shown that an exact closed expression for σ(0, A) can
be obtained, being proportional to the horizon function H(A)

of Zwanziger’s formalism [1]:

σ(0, A) = − g2

V 4(N 2 − 1)

∫
d4 p

(2π)4

∫
d4q

(2π)4 A
ab
μ1

(−p)

×
(
M−1

)bc

pq
Aca

μ (q) = H(A)

4V (N 2 − 1)
. (6)

The no-pole condition (5) is thus equivalent to

〈H(A)〉1P I = V 4(N 2 − 1), (7)

which is called the horizon condition. The relevance of the
horizon function H(A) relies on the fact that the restriction
of the domain of integration in the functional integral to the
Gribov region � can be effectively implemented by adding
to the Yang–Mills action the quantity H(A). More precisely,
it turns out that, in the thermodynamic limit [1,6–8], the
partition function of the theory with the cut-off at the Gribov
region � is given by

Z =
∫

�

DAδ(∂A) det(Mab)e−SYM

=
∫

DAδ(∂A) det(Mab)e−(SYM+γ 4H(A)−γ 4V 4(N2−1)),

(8)

where the massive parameter γ is known as the Gribov
parameter [1–4]. It is not a free parameter, being determined
in a self-consistent way by the horizon condition (7), which
can be rewritten as a stationary condition for the vacuum
energy E , i.e.

∂E
∂γ 2 = 0 ⇒ 〈H(A)〉1P I = V 4(N 2 − 1), (9)

where

Z = e−E . (10)

Although expression (8) is non-local, it can be fully local-
ized by introducing a suitable set of auxiliary fields. The
Faddeev–Popov measure is localized as usual by means of
the Faddeev–Popov ghosts (ca, c̄a) and of the Nakanishi–
Lautrup field ba . Moreover, the horizon function H(A) can
also be put in a local form [1,6–8] by using the auxiliary
fields (ω̄ab

μ , ωab
μ , ϕ̄ab

μ , ϕab
μ ), where (ϕ̄ab

μ , ϕab
μ ) are a pair of

bosonic fields, while (ω̄ab
μ , ωab

μ ) are anti-commuting. The
resulting local action is called the Gribov–Zwanziger action
SGZ [1,6–8], i.e.

Z =
∫

[Dφ]e−SGZ , (11)

where

SGZ = SFP + S0 + Sγ , (12)

with SFP being the Faddeev–Popov action in the Landau
gauge

SFP = 1

4

∫
d4xFa

μνF
a
μν

+
∫

d4x
(
ba∂μA

a
μ + c̄a∂μD

ab
μ cb

)
, (13)

and S0, Sγ given, respectively, by

S0 =
∫

d4x
(
ϕ̄ac

μ (∂νD
ab
ν )ϕbc

μ − ω̄ac
μ (∂νD

ab
ν )ωbc

μ

−g f amb(∂νω̄
ac
μ )(Dmp

ν cp)ϕbc
μ

)
, (14)

Sγ = γ 2
∫

d4x
(
g f abc Aa

μ(ϕbc
μ + ϕ̄bc

μ )
)

− 4γ 4V (N 2 − 1).

(15)

The GZ action (12) displays remarkable properties; it is
renormalizable to all orders and has no extra free parameters
with respect to the original Faddeev–Popov action (13); the
parameter γ is completely determined by the gap equation
(9) and does not renormalize independently. This means that
the UV properties of the theory are not changed by restricting
it to the Gribov region �. Only two renormalization factors
are in fact needed to renormalize the action (12) [1,6–8].

As discussed in [9–23], the GZ action (12) breaks the
standard BRST symmetry of the Faddeev–Popov action in a
soft way, i.e.

sSGZ = γ 2�, (16)

where

�=
∫

d4x
(
−g f abc(Dam

μ cm)(ϕbc
μ +ϕ̄bc

μ )+g f abc Aa
μωbc

μ

)
,

(17)
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and s denotes the standard nilpotent BRST operator, defined
by

s Aa
μ = −Dab

μ cb,

sca = 1

2
g f abccbcc,

sc̄a = ba, sba = 0,

sω̄ab
μ = ϕ̄ab

μ , sϕ̄ab
μ = 0,

sϕab
μ = ωab

μ , sωab
μ = 0. (18)

We notice that the breaking term � is of dimension two in
the quantum fields. As such, it is a soft breaking, which can
be kept under control in the renormalization process [24].

Recently, it has been shown [25] that a non-perturbative
nilpotent extension of the standard BRST operator can be
constructed in such a way that it is an exact symmetry of the
GZ action. In particular, the existence of the soft breaking �

turns out to be a consequence of the Ward identity stemming
from the non-perturbative BRST exact symmetry [25]. Nev-
ertheless, as far as the UV renormalization of the GZ action is
concerned, the standard softly broken BRST symmetry turns
out to be very helpful. In fact, using the tools of the algebraic
renormalization [24], the softly broken identity (16) can be
converted into useful Slavnov–Taylor identities which imply
the all-order UV renormalizability of expression (12); see for
example [10,20–23].

We observe that, in the local formulation, the horizon con-
dition (9) takes the form

〈g f abc Aa
μ(x)(ϕbc

μ (x) + ϕ̄bc
μ (x))〉 = 8γ 2(N 2 − 1), (19)

which expresses the condensation of the local dimension two
operator g f abc Aa

μ(ϕbc
μ + ϕ̄bc

μ ). As shown in [9–11], this is
not the only dimension two condensate present in the theory.
The condensation of other dimension two operators, Aa

μA
a
μ

and
(
ϕ̄ab

μ ϕab
μ − ω̄ab

μ ωab
μ

)
, turns out to be energetically favored

[9–11]. The effective action which takes into account the for-
mation of these condensates is known as the Refined-Gribov–
Zwanziger (RGZ) action [9–11], being given by

SRGZ = SGZ+
∫

d4x

(
m2

2
Aa

μA
a
μ−μ2

(
ϕ̄ab

μ ϕab
μ −ω̄ab

μ ωab
μ

))
,

(20)

where the massive parameters (m2, μ2) are not indepen-
dent and have a dynamical origin, being related to the
existence of the dimension two condensates 〈Aa

μA
a
μ〉 and

〈ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ 〉. As the GZ action, also the RGZ action
can be proven to be renormalizable to all orders [9–11], while
displaying the existence of a non-perturbative exact BRST
symmetry [25].

The tree-level gluon propagator obtained from the RGZ
action (20) reads

〈Aa
μ(k)Ab

ν(−k)〉 = δab
(

δμν − kμkν

k2

)
D(k2), (21)

D(k2) = k2 + μ2

k4 + (μ2 + m2)k2 + 2Ng2γ 4 + μ2m2 . (22)

It is worth mentioning that the infrared behavior of the RGZ
gluon propagator (21) and of the corresponding ghost two-
point function turns out to be in remarkable agreement with
the recent numerical lattice simulations obtained on huge
lattices [26–28]. Therefore, a numerical estimate of the non-
perturbative parameters (m, μ, γ ) can be obtained by fitting
the lattice data by means of expression (21); see [28]. This
leads to the presence of complex poles in the gluon propa-
gator (21), as well as to a violation of reflection positivity,
precluding thus a physical particle interpretation. As a conse-
quence, gluons cannot belong to the physical spectrum of the
theory. We see thus that the restriction to the Gribov region
� captures non-trivial aspects of the gluon confinement.

Till now, the RGZ action has allowed for a variety of suc-
cessful applications like: estimate of the masses of the first
glueball states [29,30], yielding results which display the
right mass hierarchy as observed in the available numeri-
cal simulations and whose accuracy is comparable to other
non-perturbative approaches to the glueball spectrum (cf. e.g.
[31] for a review), inclusion of quarks and estimate of the
masses of meson states [32], study of the Casimir energy
[33], finite temperature effects [34–37], study of the con-
finement/deconfinement transition in the presence of Higgs
fields [38,39], analysis of the relevance of the Gribov issue
in supersymmetric theories [40,41].

The feature that we want to explore in the present work
is the fact that both the GZ and the RGZ tree-level propa-
gators hold the key for the good UV behavior of the theory.
More precisely we note that the propagator D(k2) (22) can
be written as

D(k2) = k2 + μ2

k4 + (μ2 + m2)k2 + 2Ng2γ 4 + μ2m2

= 1

k2 + m2 − 2Ng2γ 4
(
k2 + m2

) (
k2 + M2+

) (
k2 + M2−

)

(23)

where

M2± = μ2 + m2

2
± 1

2

√(
μ2 + m2

)2 − 8Ng2γ 4. (24)

The first term in (23) represents the usual propagator of a
massive vector boson. The second term is the contribution
coming from the restriction to the Gribov region. Notice
the negative sign that points to an unphysical contribution
that violates positivity requirements. The important feature
we want to emphasize is the subleading contribution of the
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second term in the UV: it presents a ∼ 1/k4 suppression
with respect to the standard first term, which will always
produce a UV convergent loop contribution in dimension 4.
The renormalization of the RGZ and GZ (corresponding to
μ = m = 0) follows from this important property and, as
already mentioned, it is well known that γ does not renor-
malize independently and thus cannot be considered as an
independent dynamically generated scale.

One is thus led to conjecture that this is a general prop-
erty of theories displaying such confining propagators, with
γ standing for a general mass scale associated with confine-
ment of the fundamental fields; γ must be understood as a
scale determined by other dynamically generated scales of
the theory. More precisely, the second term in (23) cannot
generate any new UV divergences in the theory and therefore
cannot change the renormalization properties of the theory,
which must be the same as with γ = 0. In a diagrammatic
approach, only positive powers of propagators appear, so that
it is clear that the highly suppressed Gribov contribution (cf.
(23), e.g.) will not influence the deep UV behavior of the
theory. Furthermore, it follows that if the theory with γ = 0
does not generate a mass scale, then, since there can be no
divergences proportional to γ , no mass scale will be gener-
ated in the γ �= 0 theory. This in turn means that it is not
possible to assign a dynamical meaning to the parameter γ

in this case, i.e., the only possible solution is to have γ = 0
in these cases. An example of a theory displaying this fea-
ture is N = 4 supersymmetric Yang–Mills which, due to its
conformal character, has vanishing β-function to all orders.
As a consequence of the absence of a scale, it turns out that
γ = 0, meaning that no mass scale associated to the Gribov
copies is generated [41].

In the following sections we will study a variety of exam-
ples that support these claims. In Sect. 2 we discuss the case
of an interacting scalar field theory displaying a confining
propagator. In Sect. 3 we consider the inclusion of con-
fined fermions interacting with the confined scalars through
a Yukawa term. In Sect. 4 we discuss the case of super-Yang–
Mills with N = 1 supersymmetries and show to all orders
via the algebraic renormalization approach that the adoption
of Gribov-type propagators does not produce any new UV
divergences, with the renormalization of the IR parameters
being completely defined by the UV renormalization of the
parameters of the original theory. Section 5 collects our sum-
mary and conclusions.

2 Interacting scalar fields with confining propagators

Consider the theory of a real scalar field φ defined by the
following action in D = 4 euclidean space:

S = Ss + Sint + Sγ (25)

where

Ss =
∫

d4x

[
1

2
φ

(
−∂2 + m2

)
φ

]
(26)

Sint =
∫

d4x

[
1

4
λφ4

]
(27)

Sγ =
∫

d4x

[
1

2
φ

(
γ 4

−∂2

)
φ

]
, (28)

where m2 is the mass of the scalar field in the deconfined
(γ → 0) theory and λ is the quartic coupling. Here, γ is
the confining parameter that shall play a similar role for the
scalars as the Gribov mass does for the confined gluons. Our
claim in this case is that the presence of the IR parameter γ

does not affect the deep UV behavior of the theory at all.
The quadratic part of the total action furnishes the tree-

level confining propagator for the scalar fields:

D(k2) = k2

k4 + m2k2 + γ 4

= 1

k2 + m2 − γ 4
(
k2 + m2

) (
k2 + M2+

) (
k2 + M2−

)

= 1

k2 + m2 − γ 4�(k2) (29)

where we have isolated the confining contribution to the
scalar propagator, γ 4�, with

�(k2) = 1
(
k2 + m2

) (
k2 + M2+

) (
k2 + M2−

) , (30)

which is highly suppressed in the UV: � ∼ 1/k6. The mass
parameters M2± are written in terms of γ and m

M2± = m2

2
± 1

2

√
m4 − 4γ 4, (31)

being complex for large enough γ /m. The complexity of
these IR mass parameters is closely related to positivity vio-
lation and the absence of a physical particle interpretation for
these excitations, in line with confinement.

It is straightforward to see that there are no new UV diver-
gences associated with the term Sγ (28) by looking at the
diagrams of primitive divergences of the theory.

A few examples are drawn in Fig. 1, corresponding,
respectively, to the following momentum integrals:

Fig. 1 Diagrams of primitive divergences in a confining scalar model
at one loop and a representative example at two loops, i.e. (c)
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(a) the one-loop scalar self-energy:

∫
d4 pD(p) =

∫
d4 p

1

p2 + m2 + γ 4
∫

d4 p�(p2)

=
∫

d4 p
1

p2 + m2 + γ 4(UV finite), (32)

(b) the correction to the quartic coupling at one loop:

∫
d4 pD(k − p)D(p) =

∫
d4 p

1

p2 + m2

× 1

(k − p)2 + m2 + γ 4
∫

d4 p�(p2)
1

(k − p)2 + m2

+γ 4
∫

d4 p
1

p2 + m2 �((k − p)2)

+γ 8
∫

d4 p�(p2)�((k − p)2)

=
∫

d4 p
1

p2 + m2

1

(k − p)2 + m2

+O(γ 4, γ 8)(UV finite), (33)

(c) the sunset diagram contributing to the scalar self-energy,
as a representative example at two-loop order:

∫
d4 p

∫
d4qD(k − p − q)D(q)D(p)

=
∫

d4 p
∫

d4q
1

p2 + m2
1

q2 + m2
1

(k − p − q)2 + m2

+ γ 4
∫

d4 p
∫

d4q�(p2)
1

q2 + m2
1

(k − p − q)2 + m2

+ γ 4
∫

d4 p
∫

d4q
1

p2 + m2 �(q2)
1

(k − p − q)2 + m2

+ γ 4
∫

d4 p
∫

d4q
1

p2 + m2
1

q2 + m2 �((k − p − q)2)

+O(γ 8) =
∫

d4 p
1

p2 + m2
1

q2 + m2
1

(k − p − q)2 + m2

+O(γ 4, γ 8, γ 12)(UV finite). (34)

In all examples above, the appearance of a general form for
the contributions of the confining scale with increasingly UV
convergent momentum integrals is clear. It is straightforward
to realize then that this pattern will spread throughout all
orders of the diagrammatic expansion, so that we are led to
infer that contributions proportional to γ cannot give rise to
new primitive divergences, besides the ones coming from Ss
(26) alone, i.e. the original theory.

3 Confined fermions and scalars with Yukawa
interaction

The same reasoning can be applied when Dirac fermions are
added to the theory, with an Yukawa coupling and a fermionic

Gribov-type term rendering the fermionic excitations also
confined.

We consider here the theory in the absence of scalar con-
densates. In this case, the full action reads

S = Ss + S f + Sint + Sγ,� (35)

where

Ss =
∫

d4x

(
1

2
φ

(
−∂2 + m2

)
φ

)
(36)

S f =
∫

d4xψ̄ (∂/ + M) ψ (37)

Sint =
∫

d4x

(
gφψ̄ψ + 1

4
λφ4

)
(38)

Sγ,� =
∫

d4x

(
1

2
φ

(
γ 4

−∂2

)
φ + ψ̄

(
�3

−∂2

)
ψ

)
(39)

where M is the mass of the original fermion field (i.e. for
� → 0) and g is the Yukawa coupling. In the fermionic
sector the IR mass scale analogous to the Gribov parameter
is �.

Analogously to the purely scalar case, it is easily seen
that there are no UV divergences associated to the whole
term Sγ,� (39). The scalar excitations display the confining
propagator of the last section, (29), while for the confining
fermion propagator, we have

S(k2) = ik/ + M + �3

k2

k2 + (M + �3

k2 )2
= ik/ + M

k2 + M2

+�3 (k2 + M2)k2 − (ik/ + M)(2Mk2 + �3)

(k6 + (Mk2 + �3)2)(k2 + M2)

= ik/ + M

k2 + M2 + �3�(k2), (40)

Again, the isolated confining contribution to the propagator
is highly suppressed in the UV with respect to the standard
massive Dirac term (∼1/k):

�(k) = (k2 + M2)k2 − (ik/ + M)(2Mk2 + �3)

(k6 + (Mk2 + �3)2)(k2 + M2)
∼ 1/k4,

(41)

and we anticipate that the primitive divergences of the theory
with confined propagators will be exactly the ones coming
from Ss (36), S f (37) and Sint (38) alone, since any contri-
bution proportional to γ or � will be strongly suppressed in
the UV.

At one-loop order, besides the diagrams already analyzed
in the previous section, new diagrams contributing to primi-
tive divergences appear, due to the presence of fermion lines
(dashed ones):

It should be noticed that the Yukawa coupling breaks the
discrete symmetry φ �→ −φ originally present in the scalar
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Fig. 2 One-loop diagrams containing fermion (dashed) lines for the fermion and scalar selfenergies and cubic, quartic and Yukawa couplings,
respectively

sector, generating at the quantum level a cubic scalar interac-
tion. This means that the renormalizable version of this theory
requires a counterterm for the cubic scalar interaction, even if
the physical value of this coupling is set to zero. In the case of
a pseudoscalar Yukawa coupling (i.e. gφψ̄ψ �→ gφψ̄γ 5ψ),
parity symmetry guarantees that the cubic terms vanish iden-
tically. We emphasize, however, that our statement concern-
ing the UV properties of Gribov-type confining propaga-
tors remains valid in any case, as will be made explicit
below via the whole set of primitive divergences at one-loop
order.

In order to investigate the influence of the confining propa-
gators in the UV regime, we may isolate the free fermion and
scalar propagators from the confining contributions, namely

�(k)
UV∼ 1/k4 and �(k2)

UV∼ 1/k6, being both highly sup-
pressed in the UV. Writing down explicitly the momentum
integrals in the corresponding expressions for the one-loop
diagrams in Fig. 2, we have, respectively:

(a) the one-loop fermion self-energy:

∫
d4 pD(k − p)S(p)

=
∫

d4 p
1

(k − p)2 + m2

i p/ + M

p2 + M2

+γ 4
∫

d4 p�((k − p)2)
i p/ + M

p2 + M2

+�3
∫

d4 p
1

(k − p)2 + m2 �(p)

+γ 4�3
∫

d4 p�((k − p)2)�(p)

=
∫

d4 p
ip/ + M

p2 + M2

1

(k − p)2 + m2

+O(γ 4, �3, γ 4�3)(UV finite), (42)

(b) the fermion loop contributing to the scalar self-energy:

∫
d4 p Tr[S(p)S(k − p)] =

∫
d4 pTr

[ i p/ + M

p2 + M2

i(k/ − p/) + M

(k − p)2 + M2

]
+ O(�3, �6)(UV finite), (43)

(c) the triangular diagram contributing to the scalar cubic
interaction:

∫
d4 p Tr[S(p)S(p − k)S(p − k − k′)]

=
∫

d4 pTr

[
i p/ + M

p2 + M2

i(p/ − k/) + M

(p − k)2 + M2

i(p/ − k/ − k/′) + M

(p − k − k′)2 + M2

]

+O(�3, �6, �9)(UV finite), (44)

(d) the fermion-loop correction to the φ4 vertex:

∫
d4 p Tr

[S(p)S(p − k)S(p − k − k′)S(p − k − k′ − k′′)
]

=
∫

d4 pTr

[
i p/ + M

p2 + M2

i(p/ − k/) + M

(p − k)2 + M2

i(p/ − k/ − k/′) + M

(p − k − k′)2 + M2

× i(p/ − k/ − k/′ − k/′′) + M

(p − k − k′ − k′′)2 + M2

]

+O(�3, �6, �9, �12)(UV finite), (45)

(e) the modification of the Yukawa coupling:

∫
d4 p

[
S(p)D(p − k)S(p − k − k′)

]

=
∫

d4 pTr

[
i p/ + M

p2 + M2

1

(p − k)2 + m2

i(p/ − k/ − k/′) + M

(p − k − k′)2 + M2

]

+O(γ 4, �3, �6, γ 4�3, γ 4�6)(UV finite). (46)

As already occurred for the confining scalar theory in the
previous section, the highly suppressed UV behavior of the

confining pieces �(k)
UV∼ 1/k4 and �(k2)

UV∼ 1/k6 enforces
the convergence of all terms proportional to the new massive
parameters introduced (γ and �). The divergent integrals in
all diagrams above are exactly the ones coming from the
original action, i.e. Ss + S f + Sint (cf. (35)). In the theory
including the confining quadratic non-local terms in Sγ,� ,
the absence of new primitive divergences then guarantees
that the parameters γ and � can be consistently related to
dynamically generated scales and do not affect the UV regime
of the theory.

Realizing that any diagrammatic expression at higher
loops will involve higher powers of the propagators, it
becomes straightforward to envision the generalization of
our claim in the full diagrammatic expansion of this general
Yukawa theory. Therefore, given the renormalizability of the
original theory, one concludes that the resulting action with
confining, Gribov-type propagators is renormalizable and the
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IR confining parameters in both fermionic and bosonic sec-
tors do not display an independent renormalization, being
thus consistent with dynamically generated mass scales.

4 N = 1 super-Yang–Mills in Wess–Zumino gauge
within the Gribov–Zwanziger approach

Let us now investigate a more intricate theory with confining
propagators, including gauge interactions as well as Majo-
rana fermions. We consider here Yang–Mills theory in D = 4
space-time dimensions with N = 1 supersymmetry in the
presence of the Gribov horizon. We shall use this (most com-
plicated) example to prove, to all orders in the loop expansion,
our claim concerning the good UV behavior of Gribov-type
propagators. The IR parameters introduced will be shown to
have renormalization parameters that are completely deter-
mined by the renormalization of the original theory.

This theory has already been put forward and investigated
in Ref. [40]. There the extension of the Gribov–Zwanziger
framework to N = 1 Super-Yang–Mills (SYM) theories
quantized in the Wess–Zumino gauge by imposing the Lan-
dau gauge condition was presented. The resulting effective
action is

SN=1
SGZ = SN=1

SYM +Q
∫

d4x
(
ča∂μA

a
μ + ω̃ac

μ (−∂νD
ab
ν )ϕbc

μ

)

+Sγ + SG . (47)

Here, the operator Q stands for the generalized BRST oper-
ator which encodes both gauge and supersymmetry transfor-
mations2; Sγ is the horizon term in its local form, Eq. (15),
namely

Sγ = γ 2
∫

d4x
(
g f abc Aa

μ(ϕbc
μ + ϕ̃bc

μ )
)

− 4γ 4V (N 2 − 1);
(48)

and the term SG is given by

SG = −1

2
M3

∫
d4x

(
λ̄aα δαβ

∂2 λaβ
)

, (49)

which also has a new massive constant M . This quantum
action takes into account the existence of Gribov copies in the
path-integral quantization of the theory. It encodes the restric-
tion to the first Gribov horizon while keeping full compat-

2 For a detailed construction of the operator Q we refer to Appendix A.
Notice also that the notation adopted here has few differences with
respect to the one employed in the Introduction. In particular, the anti-
ghost field is now denoted by ča instead of c̄a , while the fields (ϕ̃ab

μ , ω̃ab
μ )

correspond to the auxiliary Zwanziger fields (ϕ̄ab
μ , ω̄ab

μ ), respectively.
The meaning of this new notation is also clarified in Appendix A.

ibility with non-perturbative supersymmetric features, such
as the exactly vanishing vacuum energy.

Even though this non-perturbative framework has been
constructed through the introduction of two massive param-
eters γ, M , which are not present in the classical action,
those new parameters are determined in a dynamical, self-
consistent way via two non-perturbative conditions: (i) the
Gribov gap equation, which fixes γ by imposing the positiv-
ity of the Faddeev–Popov operator and eliminating a large
set of Gribov copies from the functional integral, and (ii)
the vanishing of the vacuum energy, which determines the
parameter M , which plays the role of a supersymmetric coun-
terpart of the Gribov parameter γ , guaranteeing a consistent
non-perturbative fermion sector. Interestingly, the appear-
ance of the dynamical fermionic scale M has been shown to
be directly related to the formation of a gluino condensate, a
well-known non-perturbative property of N = 1 SYM the-
ories. For further details, the reader is referred to Ref. [40].
A brief summary of the notation adopted may also be found
in Appendix B.

The propagators of the theory (47) can be straightfor-
wardly shown to be of the Gribov type. The gauge field prop-
agator is

〈Aa
μ(p)Ab

ν(−p)〉 = δab
(

δμν − pμ pν

p2

)
p2

p4 + 2Ng2γ 4 ,

(50)

which, apart from the more complicated tensorial structure,
is equivalent to the Gribov scalar propagator studied above in
Sect. 2. The gauge field propagator in this Gribov-extended
N = 1 SYM theory displays thus a confining contribution
that is suppressed by an extra 1/p4 factor in the UV as com-
pared to the free term.

For gluino fields we have

〈λ̄aα(p)λbβ(−p)〉 = i pμ(γμ)αβ + m(p2)δαβ

p2 + m2(p2)
δab, (51)

〈λaρ(p)λbβ(−p)〉 = −
(
i pμ(γμ)αβ + m(p2)δαβ

)

p2 + m2(p2)
δabCαρ,

(52)

〈λ̄aα(p)λ̄bτ (−p)〉 =
(
i pμ(γμ)αβ + m(p2)δαβ

)

p2 + m2(p2)
δabCβτ ,

(53)

where Cαβ is the charge conjugation matrix and

m(p2) = M3

p2 . (54)

The presence of three two-point correlation functions involv-
ing gluino fields is a result of the lack of charge conserva-
tion for Majorana fermions. One verifies, however, that all of
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them have the form of Gribov propagators with M playing an
analogous role to the Gribov parameter in the gluino sector.
In particular, one can easily check that the same structure
observed for the Gribov fermion propagator in the previous
section (cf. Eq. (40)) is found here:

〈λ̄aα(k)λbβ(−k)〉 = ik/ + M3

k2

k2 + M6

k4

= ik/

k2 + M3�λ(k
2), (55)

where the isolated confining contribution �λ to the gluino
propagator is again highly suppressed in the UV with respect
to the leading term (∼1/k):

�λ(k
2) = k4 − ik/M3

(k6 + M6)k2

UV∼ 1/k4. (56)

The same reasoning applied in the scalar and Yukawa the-
ories above may be followed here in order to prove that the
UV regime of the theory remains the same even after the
inclusion of non-local confining terms in the propagators.
One may compute the one-loop primitive divergences and
show that the confining parameters γ, M will not affect the
UV divergent pieces, due to the high suppression observed
in the Gribov-type propagators. We shall, however, use this
most complicated theory analyzed in the current section to
present an all-order algebraic proof of renormalizability and
of the fact that the confining parameters γ, M do not display
independent renormalization.

The non-local action (47) is, however, not helpful in the
algebraic renormalization procedure. Fortunately we are able
to write its local form with the insertion of auxiliary fields.

The whole action which describes our model can then be
written in its local form as

S = SSYM + Sg f + SGZ + Slocal
G

=
∫

d4x

{
1

4
Fa

μνF
a
μν + 1

2
λ̄aα(γμ)αβD

ab
μ λbβ + 1

2
DaDa

+ba∂μA
a
μ + ča

[
∂μD

ab
μ cb − ε̄α(γμ)αβ∂μλa β

]

+ϕ̃ac
μ ∂νD

ab
ν ϕbc

μ − ω̃ac
μ ∂νD

ab
ν ωbc

μ

−g f abc(∂νω̃
ad
μ )(Dbk

ν ck)ϕcd
μ

+g f abc(∂νω̃
ad
μ )(ε̄α(γν)αβλβb)ϕcd

μ

+γ 2g f abc Aa
μ(ϕbc

μ + ϕ̃bc
μ ) − γ 44(N 2

c − 1)

+ζ̂ aα(∂2 − μ2)ζ aα − θ̂aα(∂2

−μ2)θaα − M3/2(λ̄aαθaα + θ̂aαλaα)

}
, (57)

where the set of auxiliary fields (θ̂aα, θaα, ζ̂ aα, ζ aα) has
an analogous role to the set of auxiliary localizing fields
(ϕ̃a

μ, ϕa
μ, ω̃a

μ, ωa
μ) introduced by Zwanziger in GZ model, i.e.

it allows one to describe the non-local gluino term (49) in a
local fashion.

Applying the algebraic renormalization procedure to the
local action (57) above we are able to prove that: (i) the
Gribov-extended SYM theory is renormalizable; and (ii) the
massive parameters γ, M introduced in the infrared action do
not renormalize independently, meaning that they are con-
sistent with dynamically generated mass scales, produced by
nonperturbative interactions in the original theory. All details
of the proof may be found in Appendix A.

The final results for the renormalization factors related to
the confining parameters M, γ may be read from the renor-
malization of external sources conveniently introduced in the
algebraic procedure (cf. Appendix A). The renormalization
of the sources M and M̃ give us the renormalization factor of
the Gribov parameter γ 2, while the renormalization of V and
V̂ give us the renormalization of M3/2, when every source
assumes its physical value stated at (64). We have

ZM̃ = ZM = Zγ 2 = Z−1/2
g Z−1/4

A ,

ZV̂ = ZV = ZM3/2 = Z−1/2
λ , (58)

which clearly prove that the renormalization of the infrared
parameters M, γ is fixed by the renormalization factor of
the original SYM theory: the renormalization of the gauge
coupling, Zg , the wave function renormalization of the gauge
field, ZA, and the wave function renormalization of the gluing
field, Zλ.

Therefore we conclude that this action is indeed a suit-
able nonperturbative infrared action for N = 1 SYM theo-
ries, reducing consistently to the ultraviolet original action.
Moreover, even in this very intricate non-Abelian gauge the-
ory with matter fields, the good UV behavior in the presence
of confining propagators of the Gribov type shows up at all
orders.

5 Conclusion

In this paper we have studied the UV behavior of quantum
field theory models in which the two-point correlation func-
tions of the elementary fields are described by confining prop-
agators of the Gribov type.

Relying on the decompositions (29), (40), we have been
able to show that the UV divergent behavior of the Feyn-
man diagrams is not affected by the infrared parameters, e.g.
(γ, �), encoded in the aforementioned confining propaga-
tors.

From this property, it follows that no new UV divergences
in the infrared parameters can arise. Stated otherwise, the
only UV divergences affecting the 1PI Green’s functions of
the theory are those present when the infrared parameters are
set to zero. As a consequence, the infrared parameters do not
renormalize independently, as explicitly shown in the case of
N = 1 supersymmetric Yang–Mills theory.
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In particular, in the case of a generic non-Abelian theory,
the implementation of the restriction of the domain of inte-
gration to the Gribov region � has no consequences on the
UV renormalization properties of the theory.

In conclusion, the main result of the present work can
be stated as follows: given a multiplicatively renormalizable
Faddeev–Popov action, adding a Gribov horizon term in both
gluon and matter sectors will not affect the ultraviolet prop-
erties of the theory at all. The resulting action remains mul-
tiplicatively renormalizable, with the same counterterms as
the original theory. Moreover, the IR parameters originated
by the horizon terms do not renormalize independently, being
thus consistent with dynamically generated mass scales.
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Appendix A: Algebraic renormalization ofN = 1
super-Yang–Mills in Wess–Zumino gauge within the
Gribov–Zwanziger approach

Construction of a complete invariant action

In order to prove the renormalizability of the action (57) intro-
duced in Sect. 4, we follow the procedure already employed
in [7,10,21–23,40] and embed the action (57) into a more
general one displaying a huge set of symmetries and Ward
identities. In the present case, it turns out that the action (57)
can be recovered as a particular case of the following expres-
sion:

�0 = SN=1
SYM + Sg f + Sinv

GZ + Sconf
gluino. (59)

Let us proceed by specifying the various terms appearing
in the action (59). The first term, SN=1

SYM , is the N = 1
Euclidean Super Yang–Mills action with Majorana fermions
in the Wess–Zumino gauge, without matter fields, namely,

SN=1
SYM =

∫
d4x

[
1

4
Fa

μνF
a
μν + 1

2
λ̄aα(γμ)αβD

ab
μ λbβ + 1

2
DaDa

]
,

(60)

with Dab
μ = δab∂μ − g f abc Ac

μ denoting the covariant
derivative in the adjoint representation of the SU(N ); λα

being a four component Majorana spinor; and Da stand-
ing for dimension two auxiliary fields needed in order to
close the algebra of the N = 1 supersymmetry. Also, λ̄ =
λT C with C being the charge conjugation matrix, which is
defined together with the Euclidean gamma matrices γμ in
Appendix B.

The second term in Eq. (59) is the gauge-fixing term in
the Landau gauge, given by

Sg f =
∫

d4x
[
ča

(
∂μDab

μ cb − ε̄α(γμ)αβ ∂μλa β
)

+ ba ∂μAaμ
]
.

(61)

In this term, ba is the Lagrange multiplier enforcing the
Landau gauge condition, ∂μAa

μ = 0, while (ca, ča) are the
Faddeev–Popov ghost fields and ε̄ = εT C is a constant ghost.
As we shall see later, the constant ghost ε̄ is needed to encode
the supersymmetric transformations into a unique general-
ized BRST operator.

The third term of Eq. (59) corresponds to the local and
invariant Gribov–Zwanziger term3 being given by

Sinv
GZ =

∫
d4x

{
ϕ̃acμ ∂νD

ab
ν ϕbc

μ − ω̃ac
μ ∂νD

ab
ν ωbc

μ

−g f abc(∂νω̃ad
μ )

(
Dbk

ν ck − ε̄α(γν)αβλβb
)

ϕcd
μ

−Nab
μνD

ac
μ ω̃cb

ν + Mab
μν

[
−Dac

μ ϕ̃cb
ν

+g f adc
(
Ddl

μ cl − ε̄α(γμ)αβλdβ
)

ω̃cb
ν

]
− M̃ab

μνD
ac
μ ϕcb

ν

+Ñab
μν

[
Dac

μ ωcb
ν − g f adc

(
Ddl

μ cl − ε̄α(γμ)αβλdβ
)

ϕcb
ν

]

−M̃ab
μνM

ab
μν + Ñab

μνN
ab
μν

}
. (62)

In the expression above, (M̃ab
μν, M

ab
μν, Ñ

ab
μν, N

ab
μν) are external

sources which will be set equal to their physical values after
the renormalization procedure, i.e. after removing the UV
divergencies.

Finally, the fourth and last term of the action (59) is the
local and invariant confining term for the gluino sector. This
term is the analogous of the GZ term (62). It can be seen as
the supersymmetric counterpart of expression (62). It reads

3 This term contains little modifications compared to the original non-
supersymmetric formulation in order to accommodate both SUSY and
BRST invariances.
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Sconf
gluino =

∫
d4x

{
ζ̂ aα∂2ζ aα − θ̂aα ∂2θaα − V̂ ab αβ λ̄aαθbβ

+Û ab αβ

[
−g f adccd λ̄cαθbβ + 1

2
ε̄γ (σμν)γαF

a
μνθ

b
β

−ε̄γ (γ5)γαD
aθbβ + εγ (γμ)γ ηε̄

ηλ̄aα∂μζ b
β

]

−V abαβ θ̂bβλaα +Uabαβ

[
−ζ̂ b

β λaα + g f adcθ̂bβc
dλcα

−1

2
θ̂bβ(σμν)αγ εγ Fa

μν + θ̂bβ(γ5)αγ εγDa
]}

. (63)

Analogously to the term (62), this term depends on the exter-
nal sources (V̂ ab αβ, V ab αβ, Û ab αβ,Uab αβ). As already
mentioned, the original action (57) can be re-obtained from
expression (59) when the external sources attain the follow-
ing physical values:

Mab
μν |phys = M̃ab

μν |phys = γ 2δabδμν,

Nab
μν |phys = Ñ ab

μν |phys = 0;

V abαβ |phys = V̂ abαβ |phys = −M3/2δabδαβ,

Uabαβ |phys = Û abαβ |phys = 0, (64)

with

S = �0

∣∣∣
phys

. (65)

We see thus that the action (57) is a particular case of
the more general expression (59). Therefore, we will turn
our attention to the action (59), keeping in mind that we
can always go back to the action (57) by taking the limit
(64).

The advantage of working with the most general action
(59) is that it is left invariant by both SUSY and BRST trans-
formations, which can be embedded into a unique general-
ized BRST operator; see [40,42],

Q = s + εαδα, (66)

where s is the usual BRST operator and δα are the SUSY
generators, with εα being the constant ghost. More precisely,
it turns out that

Q�0 = 0, (67)

where the action of the operator Q on the fields and external
sources is defined as

QAa
μ = −Dab

μ cb + ε̄α(γμ)αβλaβ

Qλaα = g f abccbλcα − 1

2
(σμν)

αβεβF
a
μν + (γ5)

αβεβD
a

QDa = g f abccbDc + ε̄α(γμ)αβ(γ5)
βηDab

μ λbη

Qca = 1
2g f

abccbcc − ε̄α(γμ)αβεβ Aa
μ

Qc̄a = ba

Qba = ∇ c̄a

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(68)

Qϕab
μ = ωab

μ

Qωab
μ = ∇ϕab

μ

Qω̃ab
μ = ϕ̃ab

μ

Qϕ̃ab
μ = ∇ω̃ab

μ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

QMab
μν = Nab

μν

QNab
μν = ∇Mab

μν

QÑab
μν = M̃ab

μν

QM̃ab
μν = ∇ Ñ ab

μν

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (69)

Qζ aα = θaα

Qθaα = ∇ζ aα

Qθ̂aα = ζ̂ aα

Qζ̂ aα = ∇ θ̂aα

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

QUab αβ = V ab αβ

QVab αβ = ∇Uab αβ

QÛab αβ = V̂ ab αβ

QV̂ ab αβ = ∇Û ab αβ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (70)

The operator Q has the pleasant property that its square
gives the generator of the translations [40,42], i.e. where Q2

is defined as the translation operator

Q2 ≡ ∇ = ε̄α(γμ)αβεβ∂μ. (71)

Notice that the transformations QAa
μ, Qλaβ , QDa , and Qca

are non-linear in the quantum fields, meaning that they have
to be treated as composite operators. Therefore, following the
algebraic renormalization procedure [24], we introduce them
into the starting action coupled to suitable external sources
(Ka

μ, La, T a,Yaα):

Ssources =
∫

d4x
[−Q(Ka

μA
a
μ) + Q(Laca)

−Q(T aDa) + Q(Yaαλaα)
]
, (72)

with the following transformations:

QKa
μ = �a

μ

Q�a
μ = ∇Ka

μ

⎫
⎬

⎭
,

QLa = �a

Q�a = ∇La

⎫
⎬

⎭
,

QTa = Ja

QJa = ∇T a

⎫
⎬

⎭
,

QYaα = Xaα

QXaα = ∇Yaα

⎫
⎬

⎭
. (73)

Finally, for the complete starting invariant action suitable
to study the symmetry content and renormalizability of the
theory, we have
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� = �0 + Ssources =
∫

d4x

{
1

4
Fa

μνF
a
μν

+1

2
λ̄a α(γμ)αβ Dab

μ λb β + 1

2
DaDa + ba∂μA

a
μ

+ča
[
∂μD

ab
μ cb − ε̄α(γμ)αβ∂μλa β

]

+ϕ̃a
i ∂μD

ab
μ ϕb

i − ω̃a
i ∂μD

ab
μ ωb

i

−g f abc(∂μω̃a
i )

[
(Dbd

μ cd) − ε̄α(γμ)αβλbβ
]
ϕc
i

−Na
μi D

ab
μ ω̃b

i − Ma
μi

[
Dab

μ ϕ̃b
i

−g f abc(Dbd
μ cd)ω̃c

i + g f abcε̄α(γμ)αβλbβω̃c
i

]

−M̃a
μi D

ab
μ ϕb

i + Ñ a
μi

[
Dab

μ ωb
i − g f abc(Dbd

μ cd)ϕc
i

+g f abcε̄α(γμ)αβλbβϕc
i

]
− M̃a

μi M
a
μi + Ñ a

μi N
a
μi

+ζ̂ I ∂2ζI − θ̂ I ∂2θI + V̂ Iaα λ̄aαθI

−Û Iaα
[
g f abccbλ̄cαθI − λ̄aα∇ζI − 1

2
ε̄γ (σμν)γαF

a
μνθI

+ε̄γ (γ5)γαD
aθI

]
+ V Iaα θ̂Iλ

a
α

+U Iaα
[
−ζ̂Iλ

a
α + g f abcθ̂I c

bλcα

−1

2
θ̂I (σμν)αγ εγ Fa

μν + θ̂I (γ5)αγ εγDa
]

−�a
μA

a
μ − Ka

μ

[
Dab

μ cb − ε̄α(γμ)αβλaβ
]

+ �aca

+La
[g

2
f abccbcc − ε̄α(γμ)αβεβ Aa

μ

]
− JaDa

+T a
[
g f abccbDc + ε̄α(γμ)αβ(γ5)

βηDab
μ λbη

]
+ Xaαλaα

+Yaα
[
g f abccbλcα − 1

2
(σμν)αβF

a
μνε

β + (γ5)αβεβDa
]}

,

(74)

where, following [7,10,21–23,40], we have introduced the
composite-index notation:

(
ϕab

μ , ϕ̃ab
μ , ωab

μ , ω̃ab
μ

)
→ (

ϕa
i , ϕ̃a

i , ωa
i , ω̃

a
i

)
,

(
Mab

μν, M̃
ab
μν, N

ab
μν, Ñ

ab
μν

)
→

(
Ma

μi , M̃
a
μi , N

a
μi , Ñ

a
μi

)
(75)

and
(
θaα , θ̂aα , ζ aα , ζ̂ aα

)
→

(
θI , θ̂I , ζI , ζ̂I

)
,

(
V ab αβ, V̂ ab αβ,Uab αβ, Û ab αβ

)

→
(
V Iaα, V̂ Iaα,U Iaα, Û Iaα

)
, (76)

with

(a, μ) ≡ i, j, k, l, . . . ∈ {1, . . . , 4(N 2 − 1)},
(a, α) ≡ I, J, K , L , . . . ∈ {1, . . . , 4(N 2 − 1)}. (77)

A summary of all indices used here can be found in
Appendix B, where we also display the quantum numbers,
i.e. mass dimensions and charges of all fields and sources of
the model; see Tables 1 and 2. According to those Tables, the
fields and sources denoted with a (˜) have charge q f equal
to (−1), while the fields and sources denoted with a (ˆ) have
charge q f ′ equal to (−1). That is why in Sect. 4, a slightly
different notation with respect to that used in the Introduction
has been adopted.

Symmetry content of the model

It turns out that the complete action (74) displays a huge set
of Ward identities, which we enlist below:

Ward identities

• The Slavnov–Taylor identity:

S(�) = 0, (78)

with

S(�) ≡
∫

d4x

{(
δ�

δAa
μ

+ �a
μ

)
δ�

δKa
μ

+
(

δ�

δλaα
+ Xaα

)
δ�

δYaα
+

(
δ�

δca
+ �a

)
δ�

δLa

+
(

δ�

δDa
+ Ja

)
δ�

δT a
+ ba

δ�

δča
+ ωa

i
δ�

δϕa
i

+ ϕ̃a
i

δ�

δω̃a
i

+ζ̂ I δ�

δθ̂ I
+ θ I δ�

δζ I
+ V Iaα δ�

δU Iaα
+ V̂ Iaα δ�

δÛ Iaα

+Na
μi

δ�

δMa
μi

+ M̃a
μi

δ�

δ Ñ a
μi

+ (∇U Iaα)
δ�

δV Iaα

+(∇Û Iaα)
δ�

δV̂ Iaα
+ (∇Ma

μi )
δ�

δNa
μi

+ (∇ Ñ a
μi )

δ�

δM̃a
μi

+(∇Ka
μ)

δ�

δ�a
μ

+ (∇Yaα)
δ�

δXaα
+ (∇T a)

δ�

δ Ja

+(∇La)
δ�

δ�a
+ (∇ ča)

δ�

δba
+ (∇ϕa

i )
δ�

δωa
i

+(∇ω̃a
i )

δ�

δϕ̃a
i

+ (∇ θ̂ I )
δ�

δζ̂ I
+ (∇ζ I )

δ�

δθ I

}
. (79)

• The gauge-fixing condition and anti-ghost equation:

δ�

δba
= ∂μA

a
μ, Ǧa(�) ≡

(
δ

δča
+ ∂μ

δ

δKa
μ

)

� = 0.

(80)
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• The equations of motion of the auxiliary fields:

F̃a
i (�)≡

(
δ

δϕ̃a
i

+ ∂μ

δ

δM̃a
μi

− g f abcMb
μi

δ

δ�c
μ

)

� = 0,

(81)

Wa
i (�) ≡

[
δ

δωa
i

+ ∂μ

δ

δNa
μi

−g f abc
(

δ

δbc
ω̃b
i + δ

δ�c
μ

Ñ b
μi

)]

� = 0,

(82)

W̃a
i (�) ≡

[
δ

δω̃a
i

+ ∂μ

δ

δ Ñ a
μi

−g f abc
(

Mb
μi

δ

δKc
μ

− Nb
μi

δ

δ�c
μ

)]

� = 0,

(83)

Fa
i (�) ≡

[
δ

δϕa
i

+ ∂μ

δ

δMa
μi

− g f abc

×
(

δ

δbc
ϕ̃b
i + δ

δ�c
μ

M̃b
μi + δ

δčb
ω̃c
i − Ñ c

μi
δ

δKb
μ

)]

� = 0,

(84)

T̂ I (�) ≡
(

δ

δθ̂I
−U Iaα δ

δYaα

)
�

= −∂2θ I + V Iaα λaα, (85)

T I (�) ≡
[

δ

δθI
−

(
δ

δYa

)T

β

Cβ
α Û Iaα

]

�

= ∂2θ̂ I − λ̄aα V̂ Iaα, (86)

δ�

δζI
= ∂2ζ̂ I − ∇(Û Iaα λ̄aα), (87)

δ�

δζ̂I
= ∂2ζ I −U Iaα λaα, (88)

δ�

δDa
= −Da − Ja + g f abccbT c − Yaα(γ5)αβ εβ

+Û Iaα ε̄β(γ5)
βα θI −U Iaα θ̂I (γ5)

αβ εβ. (89)

• The identities in the external BRST sources:

δ�

δ�a
μ

= Aa
μ,

δ�

δ�a
= ca,

δ�

δ Ja
= −Da,

δ�

δXaα
= λaα. (90)

• The U ( f = 4(N 2 − 1)) invariance:

Lab
μν(�) ≡ −

∫
d4x

(

ϕ̃ca
μ

δ

δϕ̃cb
ν

− ϕcb
ν

δ

δϕca
μ

+ω̃ca
μ

δ

δω̃cb
ν

− ωcb
ν

δ

δωca
μ

+ M̃ca
σμ

δ

δM̃cb
σν

−Mcb
σν

δ

δMca
σμ

+ Ñ ca
σμ

δ

δ Ñ cb
σν

− Ncb
σν

δ

δNca
σμ

)

� = 0. (91)

The trace of this symmetry defines a q f charge and the
composite index (a, μ) ≡ i, j, k, l, . . ..

• The U ( f ′ = 4(N 2 − 1)) invariance:

L′ab β
α (�) ≡

∫
d4x

(
ζ aα

δ

δζ b
β

− ζ̄ b
β

δ

δζ̄ aα
+ θaα

δ

δθbβ

−θ̄bβ
δ

δθ̄aα
+ Ṽ ca

γα

δ

δṼ cb β

γ

−V cb β

γ

δ

δV ca α
γ

+ Ũ ca
γα

δ

δŨ cb β

γ

−Ucb β

γ

δ

δUca α
γ

)
� = 0. (92)

The trace of this symmetry defines a q f ′ charge and the
composite index (a, α) ≡ I, J, K , L , . . . .

• The ghost equation:

Ga(�) ≡
∫

d4x

[
δ

δca
+ g f abc

(
čb

δ

δbc
+ ϕb

i
δ

δωc
i

+ω̃b
i

δ

δϕ̃c
i

+ Ñ b
μi

δ

δM̃c
μi

+ Mb
μi

δ

δNc
μi

+Û Ibα δ

δV̂ I cα
−U Ibα δ

δV Icα

)]
� =

∫
d4x

×
[
g f abc

(
Kb

μAcμ − Lbcc + T bDa − Ybαλcα

)
− �a

]
.

(93)

• The equation of the source T a :

ϒa(�) ≡
(

δ

δT a
+ δ

δλaα
(γ5)αβ εβ + g f abccb

δ

δDc

+g f abcT b δ

δLc

)
� = 3g f abcε̄α(γμ)αβεβT b Ac

μ

+∇T b − g f abccb J c − εβ(γ5)βαX
aα

−ε̄α(γμ)αη(γ5)
ηβεβ

(
∂μc̄

a + Ka
μ

)
. (94)

Let us also remark that some of the identities enlisted
above are linearly broken, i.e. they display a breaking
term which is linear in the quantum fields. Such a break-
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ing is a classical breaking, not affected by the renormal-
ization process [24].

Discrete symmetries

Besides the Ward identities of the previous section, the action
(74) is left invariant by two useful discrete symmetries. First,
let x4 → −x4 (the same is possible for x2 → −x2). In this
case we can transform the γ matrices as

γ4 → −γ4, γk → γk, k = 1, 2, 3. (95)

Notice that the anti-commutation relation {γμ, γν} = 2δμν

remains unchanged by the transformations above, while

γ5 → −γ5,

C → −C, σ4k → −σ4k,

σkl → σkl , k, l = 1, 2, 3. (96)

Thus, given the transformations above, the action � is
left invariant by the following transformation of fields and
sources:
(
Aa

4,D, T, J, Mab
4ν , M̃ab

4ν , Nab
4ν , Ñ ab

4ν , Ka
4 ,�a

4

)
→

−
(
Aa

4,D, T, J, Mab
4ν , M̃ab

4ν , Nab
4ν , Ñ ab

4ν , Ka
4 ,�a

4

)
,

(
λ̄, ε̄, θ̂ , ζ̂ ,Y, X

)
→ −i

(
λ̄, ε̄, θ̂ , ζ̂ ,Y, X

)
,

(λ, ε, θ, ζ ) → +i (λ, ε, θ, ζ ) . (97)

Finally, let x1 → −x1 (or x3 → −x3). In this case we
have

γ1 → −γ1, γk → γk, k = 2, 3, 4. (98)

Also here the anti-commutation relation between the γ matri-
ces remains unchanged, while

γ5 → −γ5, C → C, σ1k → −σ1k, σkl → σkl ,

k, l = 2, 3, 4. (99)

Again, the action � turns out to be left invariant by the fol-
lowing set of transformations:
(
Aa

1,D, T, J, Mab
1ν , M̃ab

1ν , Nab
1ν , Ñ ab

1ν , Ka
1 ,�a

1

)
→

−
(
Aa

1,D, T, J, Mab
1ν , M̃ab

1ν , Nab
1ν , Ñ ab

1ν , Ka
1 ,�a

1

)
. (100)

Algebraic characterization of the most general invariant
counterterm

In order to determine the most general invariant countert-
erm which can be freely added to each order, we follow the
algebraic renormalization framework [24] and perturb the
complete action � by adding an integrated local polynomial
in the fields and sources with dimension four and vanish-
ing ghost number, �count, and we require that the perturbed
action, (� + η�count), where η is an infinitesimal expansion
parameter, obeys the same Ward identities fulfilled by � to
the first order in the parameter η,. This gives the following
constraints for the counterterm �count:

B�(�count) = 0,
δ

δba
�count = 0, Ǧa(�count) = 0, Ga(�count) = 0, Fa

i (�count) = 0,

F̃a
i (�count) = 0, Wa

i (�count) = 0, W̃a
i (�count) = 0, T I (�count) = 0, T̂ I (�count) = 0,

δ

δζI
�count = 0,

δ

δζ̂I
�count = 0,

δ

δDa
�count = 0,

δ

δ�a
μ

�count = 0
δ

δ�a
�count = 0,

δ

δ Ja
�count = 0,

δ

δXaα
�count = 0, Li j (�count) = 0, L′I

J (�count) = 0, ϒa(�count) = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(101)

where B� is the linearized Slavnov–Taylor operator,

B� =
∫

d4x

{(
δ�

δAa
μ

+ �a
μ

)
δ

δKa
μ

+ δ�

δKa
μ

δ

δAa
μ

+
(

δ�

δλaα
+ Xaα

)
δ

δYaα
+ δ�

δYaα

δ

δλaα

+
(

δ�

δca
+ �a

)
δ

δLa
+ δ�

δLa

δ

δca
+

(
δ�

δDa
+ Ja

)
δ

δT a

+ δ�

δT a

δ

δDa
+ ba

δ

δča
+ ωa

i
δ

δϕa
i

+ ϕ̃a
i

δ

δω̃a
i

+ ζ̂ I δ

δθ̂ I

+θ I δ

δζ I
+ V Iaα δ

δU Iaα
+ V̂ Iaα δ

δÛ Iaα
+ Na

μi
δ

δMa
μi

+M̃a
μi

δ

δ Ñ a
μi

+ (∇U Iaα)
δ

δV Iaα
+ (∇Û Iaα)

δ

δV̂ Iaα

+(∇Ma
μi )

δ

δNa
μi

+ (∇ Ñ a
μi )

δ

δM̃a
μi

+ (∇Ka
μ)

δ

δ�a
μ
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+(∇Yaα)
δ

δXaα
+ (∇T a)

δ

δ Ja
+ (∇La)

δ

δ�a

+(∇ϕa
i )

δ

δωa
i

+ (∇ω̃a
i )

δ

δϕ̃a
i

+ (∇ θ̂ I )
δ

δζ̂ I
+ (∇ζ I )

δ

δθ I

}
.

(102)

In particular, thanks to the property B�B� = ∇, the general
solution of the constraintB��count = 0, i.e. the first equation
of (101), can be written as

�count = a0 SSYM + B��(−1), (103)

where a0 is a free parameter and �(−1) is an integrated poly-
nomial in the fields and sources of dimension 3, ghost number
−1, and q f = q f ′ = 0. Taking into account the remaining
constraints and the discrete symmetries (97) and (100), the
most general expression for �(−1) turns out to be

�(−1) =
∫

d4x

{
− a0

2
DaT a + a1

[
(∂μč

a + Ka
μ)Aa

μ

+Ma
μi D

ab
μ ω̃b

i + (∂μω̃a
i )D

ab
μ ϕb

i + Ñ a
μi M

a
μi + Ñ a

μi D
ab
μ ϕb

i

]

+a2

(
Yaα − Û Ia

βCαβθI −U Iaαθ̂I

)
λaα

+
(a0

2
− a2

) (
Yaα − Û Ia

βCαβθI −U Iaαθ̂I

)
(γ5)αγ εγ T a

}
.

(104)

with a1, a2 free parameters. We see therefore that �count

depends on three arbitrary coefficients, i.e. (a0, a1, a2).

Renormalization factors

In order to complete the analysis of the algebraic renormal-
ization, we still need to show that the counterterm �count can
be reabsorbed into the starting action � through a redefini-
tion of the fields {φ}, the sources {S}, and the parameters
{p} = {g, ε}, namely,

�(φ, S, g) + η�count(φ, S, p) = �(φ0, S0, p0) + O(η2),

(105)

where (φ0, S0, p0) are the so-called bare quantities, defined
through the renormalization factors as

φ0 = Z1/2
φ φ, S0 = ZS S, p0 = Z p p, (106)

where

Z1/2
φ = 1 + η

zφ
2

+ O(η2), ZS = 1 + η zS + O(η2),

Z p = 1 + ηz p + O(η2), (107)

with the {z} being linear combinations of the coefficients
(a0, a1, a2). Moreover, in the present case, a little care has to
be taken due to the potential mixing of quantities which have
the same quantum numbers; see also [40,42]. In fact, as can
be checked from Tables 1 and 2, one notices that the field
λaα and the combination γ5εT a have the same dimension
and quantum numbers as well as the field Da and the combi-
nation (Ya − Û IaCθI −U Ia θ̂I )γ5ε. As a consequence, these
quantities can mix at quantum level, a well-known property
of renormalization theory. This feature can be properly taken
into account by writing the renormalization of the fields λ

and D as

Table 1 The quantum numbers of fields

A λ D c č b ϕ ϕ̃ ω ω̃ ζ ζ̂ θ θ̂ ε ε̄

Dimension 1 3
2 2 1 1 2 1 1 2 0 0 2 1 1 1

2
1
2

Ghost # 0 0 0 1 −1 0 0 0 1 −1 −1 1 0 0 1 1

Charge-q f 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0

Charge-q f ′ 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0

Nature C A C A A C C C A A C C A A C C

Table 2 The quantum numbers of external sources

U Û V V̂ M M̃ N Ñ K � L � T J Y X

Dimension 1
2

1
2

3
2

3
2 2 2 3 1 2 3 2 3 1 2 3

2
5
2

Ghost # −1 −1 0 0 0 0 1 −1 −1 0 −2 −1 −1 0 −1 0

Charge-q f 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0

Charge-q f ′ 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

Nature A A C C C C A A A C C A A C C A
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λaα
0 = Z1/2

λ λaα + η z1 T
a(γ5)

αβεβ + O(η2) (108)

and

Da
0 = Z1/2

D Da + η z2

(
Yaα − Û Ia

βCαβθI −U Iaαθ̂I

)

(γ5)αγ εγ + O(η2), (109)

while the remaining fields, sources, and parameters still obey
(106).

By direct inspection of Eq. (105), we find

Z1/2
A = 1 + η

(a0

2
+ a1

)
+ O(η2),

Z1/2
λ = 1 + η

(a0

2
− a2

)
+ O(η2),

Zg = 1 − η
a0

2
+ O(η2). (110)

All other remaining renormalization factors can be expressed
in terms of the tree independent quantities (ZA, Zλ, Zg),
namely

Z1/2
D = 1,

Z1/2
ϕ̄ = Z1/2

ϕ = Z1/2
c = Z1/2

č = ZK = Z−1/2
g Z−1/4

A ,

Z1/2
ω̄ = Z−1

g ,

Z1/2
ω = Z−1/2

A

Z1/2
θ = Z1/2

θ̂
= 1,

Z1/2
ζ = Z−1/2

ζ̂
= Z1/2

g Z−1/4
A . (111)

In particular, from Eq. (64), it follows that the renormaliza-
tion of the sources M and M̃ gives us the renormalization
factor of the Gribov parameter γ 2, while the renormalization
of V and V̂ yields the renormalization of M3/2, i.e.

Zγ 2 = ZM̃ = ZM = Z−1/2
g Z−1/4

A ,

ZM3/2 = ZV̂ = ZV = Z−1/2
λ . (112)

The other sources renormalize as

ZN = Z� = Z−1/2
A ,

ZN̄ = Z−1
g ,

ZU = ZÛ = ZY = Z−1/2
g Z1/4

A Z−1/2
λ ,

ZL = Z1/2
A ,

ZT = Z� = Z1/2
g Z1/4

A ,

ZX = Z−1/2
λ ,

Z J = 1. (113)

Finally, the renormalization factor of the supersymmetric
ghost parameter ε is

Zε = Z1/2
g Z−1/4

A , (114)

while we also have

z1 = −z2 = −a0

2
+ a2. (115)

This concludes the proof of the algebraic renormalizability
of the model.

Appendix B: Notations and conventions in Euclidean
space-time

Units: h̄ = c = 1.
Euclidean metric: δμν = diag(+,+,+,+).
Wick rotations: x0 → −i x4 ⇒ ∂0 → +i∂4, A0 → +i A4.
Gamma matrices:

γ4 =
(

0 1
1 0

)
, γk = −i

(
0 σk

−σk 0

)
.

Pauli matrices:

σ4 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
.

The gamma matrices obey the following relations:

γμ = γ †
μ, (116)

{γμ, γν} = 2δμν. (117)

We also define the matrix γ5 as

γ5 = γ4γ1γ2γ3 =
(
1 0
0 −1

)
,

with the following properties:

{γ5, γμ} = 0, (γ5)
2 = 1, γ

†
5 = γ5. (118)

The charge conjugation matrix is

C = γ4γ2 = i

(
σ2 0
0 −σ2

)
, (119)

with

C−1 = −C = CT , C−1γμC = −γ T
μ . (120)

The matrices σμν are defined as

(σμν)
β
α ≡ 1

2
[γμ, γν] β

α (121)

and have the property σ †
μν = −σμν .

Majorana fermions:
The Majorana condition reads

λC = λ = Cλ̄T ⇐⇒ λ̄ = λT C, (122)

leading to the following relations:
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λ̄γμε = ε̄γμλ and λ̄γμγ5ε = −ε̄γμγ5λ. (123)

Fierz identity in Euclidean space-time:

ε1ε̄2 = 1

4
(ε̄2ε1)1 + 1

4
(ε̄2γ5ε1)γ5 + 1

4
(ε̄2γμε1)γμ

−1

4
(ε̄2γμγ5ε1)γμγ5 − 1

8
(ε̄2σμνε1)σμν. (124)

Indices notations: We display here a summary of the indices
used in Appendix A

• The Lorentz indices: μ, ν, ρ, σ, λ ∈ {1, 2, 3, 4};

• The spinor indices: α, β, γ, δ, η ∈ {1, 2, 3, 4};

• The SU (N ) group indices: a, b, c, d, e ∈ {1, . . . , N 2 −
1};

• The composite index (a, μ): i, j, k, l ∈ {1, . . . , f =
4(N 2 − 1)};

• The composite index (a, α): I, J, K , L ∈ {1, . . . , f ′ =
4(N 2 − 1)}.

Table of quantum numbers: We display above, in Tables 1
and 2, the quantum numbers of the fields and sources appear-
ing in the action (74). Notice that by “nature” we mean “C”
for commuting (or bosonic) and “A” for anti-commuting (or
fermionic).
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