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Abstract We revisit the rare leptonic decay Bs → μ+μ−
in the two-Higgs doublet models (2HDMs) with a softly bro-
ken Z2 symmetry, namely type-I, type-II, type-X and type-Y
2HDMs. We have derived the relevant full one-loop Wilson
coefficients of the four 2HDMs from the recent calculation
in the aligned 2HDM by Li, Lu and Pich, which could be
mapped to all the four 2HDMs for both large and small tan β.
It is found that a new term associated with the soft Z2 symme-
try breaking parameter M can be enhanced by tan2 β in the
type-II 2HDM, which has not been considered in the litera-
ture. Imposing both theoretical and experimental constraints,
we have renewed the bounds on the parameter spaces of the
four 2HDMs. Different from our previous paper, however, we
find that all the four 2HDMs give sizable and similar contri-
butions to B(Bs → μ+μ−) within the stringently restricted
parameter spaces, but very tiny as regards the mass-eigenstate
rate asymmetryA��; this makes it unfeasible to discriminate
the four types of 2HDM with the correlations between the
observables in Bs → μ+μ− decay.

1 Introduction

The discovery [1,2] of a new boson with a mass close to
125 GeV has been well anticipated as the standard model
Higgs boson [3–6] and provided the first experimental evi-
dence of the Higgs mechanism [7–9]. It is a great triumph, but
not an end, of the giant campaign for Higgs hunting in the
development of particle physics. Although the subsequent
more precise measurements [10–14] at the LHC have shown
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the properties of the Higgs boson are well consistent with
the predictions of the standard model (SM), the precision of
the current experimental data still leave open the possibil-
ity of an extended Higgs sector [15,16]. Among many new
physics scenarios beyond the SM, the two Higgs doublet
models (2HDM) [17–19] are the simplest extensions of the
SM.

In the 2HDMs, an additional Higgs doublet is introduced
to the SM Higgs sector, which could result in rich phenom-
ena, in collider physics [20–29], flavor physics [30–37], neu-
trino physics [38], dark matter [39–41], and cosmology [42,
43]. However, unlike the SM, unwanted tree-level flavor-
changing neutral current (FCNC) interactions in the 2HDM
are not forbidden by the Glashow–Illiopoulos–Maiani (GIM)
mechanism. Besides some other solutions [44–48], this issue
is usually addressed by the natural flavor conservation (NFC)
hypothesis through imposing a discrete Z2 symmetry [49].
According to different Z2 charge assignments, there are four
types of the NFC 2HDM, referred to as the type-I, type-II,
type-X and type-Y 2HDM, respectively. Of course, there are
new parameters in the 2HDMs to be determined or excluded
by the measurements of electroweak processes. To this end,
B-meson decays are usually employed to constrain their
parameter spaces.

Among the rare B-meson decays, the leptonic processes
Bq → μ+μ− (q = d, or s) are of special inter-
est [50,51]. They suffer from very few hadronic uncer-
tainties and are induced by FCNC transitions, which make
them sensitive probes to the effects of physics beyond
the SM, especially models with a non-standard Higgs sec-
tor [52–56]. Recently, the next-to-leading order (NLO) elec-
troweak corrections and the next-to-next-to-leading order
(NNLO) QCD corrections [57–59] in the SM have been
calculated. On the BSM side, a full one-loop calculation
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in the aligned 2HDM (A2HDM) has been performed in
Ref. [60].

Motivated by this progress, in this paper we perform a
detailed study of the Bs → μ+μ− decay within the 2HDMs
with Z2 symmetry. At present, this process is calculated in
the type-II 2HDM in large tan β limit only [61–63]. Using
the Higgs base correspondence between the A2HDM and
the 2HDMs, we will derive the relevant full one-loop Wilson
coefficients of the four variant 2HDMs contributing to the
Bs → μ+μ− decay from the recent A2HDM results [60]
without the large tan β approximation. We also investigate
the possibility to discriminate the four different types of
2HDM in the light of the recent collider and flavor physics
data, as an update of our previous work [64]. We combine the
constraints from Bs,d → μ+μ−, Bs,d–B̄s,d mixing, B → τν

and B̄ → Xsγ [65,66], with the experimental data from the
direct search for Higgs bosons at LEP [67], Tevatron [68,69]
and LHC [70,71], and the constraints from perturbativity,
tree-level vacuum stability and perturbative unitary. For the
Bs → μ+μ− decay, the correlations between its branch-
ing ratio and the mass-eigenstate rate asymmetry A�� are
also reevaluated with the constrained parameter space of the
2HDMs obtained in this paper. We have found that A�� can
slightly deviate from the SM prediction in the type-II 2HDM
only, and that the ratio of time-integrated B(Bs → μ+μ−)

gets similar contributions from the four 2HDMs; this makes
it very hard to discriminate the four types of 2HDMs with the
correlation between A�� and B(Bs → μ+μ−) as suggested
in our previous work [64].

The paper is organized as follows. In Sect. 2, we give a
brief overview of the Bs → μ+μ− decay. In Sect. 3, full one-
loop contributions from the 2HDMs with Z2 symmetry are
derived explicitly. In Sect. 4, we give our detailed numerical
results and discussions. We conclude in Sect. 5. The relevant
theoretical formulas are recapitulated in the Appendix.

2 Bs → µ+µ− in the SM

In the SM, the leptonic decays Bq → μ+μ− (q = d or s)
arise from the W box and Z penguin diagrams. Generally,
these decays can be described by the low-energy effective
Hamiltonian

Heff = −GF√
2

αe

πs2
W

VtbV
∗
tq(C10O10 + CSOS + CPOP ),

(2.1)

where αe denotes the QED fine-structure constant and Vi j
the CKM matrix elements. The semi-leptonic operators are
defined as

O10 = (q̄γμPLb)(μ̄γ μγ5μ),

OS = mμmb

m2
W

(q̄ PRb)(μ̄μ),

OP = mμmb

m2
W

(q̄ PRb)(μ̄γ5μ). (2.2)

In the SM, the contributions from the scalar operatorsOS and
OP are highly suppressed (the corresponding Wilson coeffi-
cients are given in Eq. (A.1)), but C10 will play the dominant
role. Its explicit expressions up to the NLO QCD corrections
can be found in Refs. [72–74]. Recently, calculations of the
NLO EW [58] and NNLO QCD [59] corrections have also
been completed [57]. This progress will be incorporated into
our calculations.

With the effective Hamiltonian Eq. (2.1), the branching
ratio of Bq → μ+μ− reads

B(Bq → μ+μ−) = τBqG
4
Fm

4
W

8π5
|VtbV ∗

tq |2 f 2
BqmBqm

2
μ

×
√
√
√
√1 − 4m2

μ

m2
Bq

(|P|2 + |S|2), (2.3)

where mBq , τBq and fBq denote the mass, mean lifetime, and
decay constant of Bq meson, respectively. The short-distance
contributions S and P are defined as

P = C10 +
m2

Bq

2m2
W

(
mb

mb + mq

)

CP ,

S =
√
√
√
√1 − 4m2

μ

m2
Bq

m2
Bq

2m2
W

(
mb

mb + mq

)

CS . (2.4)

As discussed in the following section, there is no BSM phase
in the 2HDMs with Z2 symmetry. Therefore, we only con-
sider the case that both S and P are real in this paper.

As pointed out in Ref. [75], the measured branching ratio
of Bq → μ+μ− should be the time-integrated one, denoted
by B(Bq → μ+μ−). In order to compare with the exper-
imental measurements, the sizable effect of Bs–B̄s oscilla-
tions should be taken into account [75,76], and one has

B(Bs → μ+μ−) =
(

1 + A�� ys
1 − y2

s

)

B(Bs → μ+μ−),

B(Bd → μ+μ−) ≈ B(Bd → μ+μ−), (2.5)

where the mass-eigenstate rate asymmetry A�� can be
expressed as

A�� = |P|2 − |S|2
|P|2 + |S|2 . (2.6)

The observable A�� is independent of the branching ratio
of Bs → μ+μ− and provides complementary information
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on the short-distance structure of this decay. In the SM,
A�� = +1.

Following Ref. [75], it is convenient to introduce the ratio

R ≡ B(Bs → μ+μ−)

B(Bs → μ+μ−)SM

=
( |P|2

1 − ys
+ |S|2

1 + ys

)
1

|SSM|2 + |PSM|2 , (2.7)

where both hadronic uncertainties and CKM matrix elements
are canceled out.

3 Bs → µ+µ− in the 2HDMs with Z2 symmetry

In the 2HDMs with Z2 symmetry, b → sμ+μ− processes
receive contributions from box diagrams with charged Higgs
and penguin diagrams with Z boson and neutral Higgs
bosons. The Wilson coefficient C10 has been calculated in
the type-II 2HDM [54]. For CS and CP , only the leading
contributions in the large tan β limit have been computed in
the type-II model [61–63]. However, the remaining contribu-
tions could be important for some specific tan β values in the
other types of 2HDMs. In this section, we first of all give a
brief introduction to the 2HDMs with Z2 symmetry, and then
show that the Wilson coefficients could be derived explicitly
from the recent full one-loop results of the A2HDM [60].

3.1 2HDMs with Z2 symmetry

The 2HDM extends the SM Higgs sector with an additional
scalar doublet. With the two Higgs doublets 
1 and 
2, the
CP-conversing 2HDM potential with a softly broken Z2 sym-
metry reads [19]

V = +m2
1


†
1
1 + m2

2

†
2
2 − m2

3(

†
1
2 + 


†
2
1)

+ λ1

2
(


†
1
1)

2 + λ2

2
(


†
2
2)

2 + λ3(

†
1
1)(


†
2
2)

+ λ4(

†
1
2)(


†
2
1)

+ λ5

2
[(
†

1
2)
2 + (


†
2
1)

2], (3.1)

where m2
3(


†
1
2 + 


†
2
1) is a soft Z2 symmetry breaking

term and the parameters m1−3 and λ1−5 are real. The two
Higgs doublets 
1 and 
2 can be generally parameterized
as


i =
(

ω+
i

1√
2
(vi + hi − i zi )

)

, (3.2)

where the two vacuum expectation values (VEVs) v1 and v2

are real and positive. From the vacuum condition [77]

m2
3v2 − m2

1v1 − 1

2
λ1v

3
1 − 1

2
λ345v1v

2
2 = 0,

m2
3v1 − m2

2v2 − 1

2
λ2v

3
2 − 1

2
λ345v

2
1v2 = 0,

(3.3)

they can be expressed as other parameters in the Higgs poten-
tial, where λ345 = λ3 + λ4 + λ5 is defined. By intro-
ducing the VEV v (v = vSM = 246 GeV), the mixing
angle β and the soft Z2 symmetry breaking parameter M
as v1 = v cos β, v2 = v sin β and M2 = m2

3/sβcβ , we can
use (v, β, M, λ1−5) as independent 2HDM potential param-
eters.

Physical Higgs states are obtained by the following rota-
tions:
(

h1

h2

)

= R(α)

(

H
h

)

,

(

z1

z2

)

= R(β)

(

G0

A

)

,

(

ω+
1

ω+
2

)

= R(β)

(

G+
H+

)

, (3.4)

where the rotation matrix is given by

R(θ) =
(

cos θ − sin θ

sin θ cos θ

)

. (3.5)

The mixing angle α is determined by the Higgs potential of
Eq. (3.1) [77],

tan 2α = (M2 − λ345v
2)s2β

(M2 − λ1v2)c2
β − (M2 − λ2v2)s2

β

. (3.6)

In the 2HDM with Z2 symmetry, the physical Higgs spectrum
consists of five degrees of freedom: two charged scalars H±,
two CP-even neutral scalars h and H , and one CP-odd neutral
scalar A. The quartic couplings λi in the Higgs potential can
be expressed in terms of their masses as [77]

λ1 = 1

v2c2
β

(−s2
βM

2 + s2
αm

2
h + c2

αm
2
H ),

λ2 = 1

v2s2
β

(−c2
βM

2 + c2
αm

2
h + s2

αm
2
H ),

λ3 = −M2

v2 + 2
m2

H±
v2 + 1

v2

s2α

s2β

(m2
H − m2

h),

λ4 = 1

v2 (M2 + m2
A − 2m2

H±),

λ5 = 1

v2 (M2 − m2
A). (3.7)

Therefore, the eight parameters in the Higgs potential m1−3

and λ1−5 can be rewritten equivalently by the four physical
Higgs masses mh , mH , mA, mH± , the two mixing angles
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α and β, the VEV v = vSM, and the Z2 symmetry break-
ing parameter M . In the case of λ1 = λ2, which is consid-
ered in Refs. [62,63], M can be eliminated and the 2HDM
potential parameters can be expressed by seven parameters
(α, β, v,mh,mH ,mA,mH±) as

λ1 = λ2 = 1

2v2 (m2
h + m2

H ) − 1

2v2

c2α

c2β

(m2
h − m2

H ),

λ3 = − 1

2v2 (m2
h + m2

H − 4m2
H±)

− 1

2v2 (m2
h − m2

H )

(
c2α

c2β

+ 2
s2α

s2β

)

,

λ4 = 1

v2 (m2
A − 2m2

H±) + 1

2v2 (m2
h + m2

H )

+ 1

2v2

c2α

c2β

(m2
h − m2

H ),

λ5 = −m2
A

v2 + 1

2v2 (m2
h+m2

H )+ 1

2v2

c2α

c2β

(m2
h−m2

H ),

M2 = 1

2
(m2

h + m2
H ) + 1

2

c2α

c2β

(m2
h − m2

H ). (3.8)

In the interaction basis, the general Yukawa Lagrangian
of the 2HDM can be written as

−LY = Q̄L(Yd
1 
1 + Yd

2 
2)dR + Q̄L(Yu
1 
̃1 + Yu

2 
̃2)uR

+ L̄ L(Y �
1 
1 + Y �

2 
2)eR + H.c., (3.9)

where 
̃i = iσ2

∗
i , QL and LL denote the SM quark and

lepton doublets, and uR , dR , and eR are the right-handed up-
type quark, down-type quark, and lepton singlet, respectively.
The Yukawa coupling matrices Yu,d,�

i are 3 × 3 complex
matrices in flavor space.

In order to avoid tree-level FCNC, a discrete Z2 symme-
try is introduced [49]. All the possible nontrivial Z2 charge
assignments are listed in Table 1, which define the four well-
known types of 2HDM, i.e. type-I, type-II, type-X, and type-
Y. In the mass-eigenstate basis, the Yukawa interactions can
be written in the form

−LY = +
∑

f =u,d,�

[

m f f̄ f

+
(m f

v
ξ
f
h f̄ f h+m f

v
ξ
f
H f̄ f H−i

m f

v
ξ
f
A f̄ γ5 f A

)]

Table 1 Charge assignments of the Z2 symmetry in the four types of
2HDM


1 
2 uR dR �R QL , LL

Type-I + − − − − +
Type-II + − − + + +
Type-X + − − − + +
Type-Y + − − + − +

+
√

2

v
ū(muV ξuAPL + Vmdξ

d
APR)dH+

+
√

2m�ξ
�
A

v
ν̄L�RH

+ + H.c., (3.10)

where PL ,R = (1 ∓ γ5)/2. The Yukawa couplings ξ
f
h,H,A in

the four types of 2HDM are listed in Table 2. In addition, the
couplings of the light CP-even Higgs bosonh to gauge bosons
W+W− or Z Z can be written as ghVV = sin(β − α)gSM

hV V ,
which is normalized to the corresponding couplings of the
SM Higgs boson gSM

hV V [19].
Recently, the LHC Run I data confirm the SM Higgs-like

nature of the 125 GeV boson discovered at the LHC [3–6].
If the light CP-even Higgs h in the 2HDM is identified with
the observed 125 GeV boson, global fits to the LHC Higgs
data suggest that all four types of 2HDM should lie close to
the so-called alignment limit [78–84]

sin(β − α) = 1, (3.11)

where both the Yukawa and the gauge couplings of h are iden-
tical to the values of the SM Higgs boson. From Eqs. (3.3) and
(3.6), the alignment limit can be achieved when the quartic
couplings in the Higgs potential satisfy [85–87]

tan2 β = λ1 − λ345

λ2 − λ345
, or λ1 = λ2 = λ345. (3.12)

For recent studies on the alignment limit in the 2HDM, we
refer to Refs. [85,86].

Since the 2HDMs with Z2 symmetry are particular cases
of the A2HDM [48], there exists a one-to-one correspon-
dence for Yukawa couplings between these two models.
However, the correspondence is not so straightforward for
Higgs cubic couplings. Unlike the 2HDMs with Z2 symme-
try, the A2HDM potential is usually defined in the so-called
“Higgs basis” [88], in which only one Higgs doublet gets a
nonzero VEV. Therefore, the parameter tan β defined in the
NFC 2HDMs is not a physical parameter in the A2HDM [89].

3.2 Bs → μ+μ− in the 2HDMs with Z2 symmetry

In both the A2HDM and the NFC 2HDMs, Bs → μ+μ−
decay is induced by gauge boson Z , Goldstone boson G0,
and Higgs bosons ϕ ≡ {h, H, A} penguin diagrams, as well
as box diagrams mediated with W±, H±, and G±. At one-
loop level, their contributions to the Wilson coefficients are
divided into the following different parts:

C10 = (CZ , SM
10 + Cbox, SM

10 ) + (CZ , 2HDM
10 ),

CS = (Cbox, SM
S + Cbox, 2HDM

S + Cϕ, 2HDM
S ),

CP = (Cbox, SM
P + CZ , SM

P + CG, SM
P ) (3.13)

+ (CZ , 2HDM
P +CG, 2HDM

P )

+ (Cbox, 2HDM
P +Cϕ, 2HDM

P ),
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Table 2 Yukawa couplings in
the four types of 2HDM ξuh ξdh ξ�

h ξuH ξdH ξ�
H ξuA ξdA ξ�

A

Type-I cα/sβ +cα/sβ +cα/sβ sα/sβ sα/sβ sα/sβ − cot β + cot β + cot β

Type-II cα/sβ −sα/cβ −sα/cβ sα/sβ cα/cβ cα/cβ − cot β − tan β − tan β

Type-X cα/sβ +cα/sβ −sα/cβ sα/sβ sα/sβ cα/cβ − cot β + cot β − tan β

Type-Y cα/sβ −sα/cβ +cα/sβ sα/sβ cα/cβ sα/sβ − cot β − tan β + cot β

where each part in the parentheses is gauge invariant. This
gauge invariance is validated by the actual calculation in both
the Feynman and the unitary gauges in the A2HDM [60]. The
Wilson coefficients labeled with “SM” denote the contribu-
tions from the diagrams involved with only the SM fields
(with the Goldstone bosons but not the Higgs boson), whose
expressions are given in Appendix A. Those with “2HDM”
contain the Higgs contributions. For simplicity, their explicit
expressions are given in the unitarity gauge in the following,
where the Goldstone boson contributions are absent.

The Higgs bosons affect the box and Z penguin dia-
grams with Yukawa interactions. Their contributions to Wil-
son coefficients in the NFC 2HDMs can easily be obtained
from the A2HDM results with replacement of the Yukawa
couplings,

Cbox, 2HDM
S,P, Unitary = Cbox, A2HDM

S,P, Unitary

∣
∣
∣
(ςu ,ςd ,ς�)→(−ξuA,ξdA,ξ�

A)
, (3.14)

CZ , 2HDM
10,P, Unitary = CZ penguin, A2HDM

10,P, Unitary

∣
∣
∣
(ςu ,ςd ,ς�)→(−ξuA,ξdA,ξ�

A)
.

For making this article self-contained, we present the Wilson
coefficients after the correspondences made in Appendix A.

The Higgs penguin diagrams involve Yukawa couplings as
well as Higgs–gauge couplings and Higgs cubic couplings.
Therefore, their Wilson coefficients cannot be derived from
the A2HDM results so straightforwardly as in the box and Z
penguin diagrams, as discussed in previous section. Since
the A2HDM Wilson coefficients are given for individual
Higgs penguin diagrams in Ref. [60], we use the follow-
ing approach. For every Higgs penguin diagram in the NFC
2HDMs, its contribution is derived from the A2HDM results
with the replacement of the Higgs–gauge vertex and the triple
Higgs vertex. Then the total contributions to the Wilson coef-
ficients are obtained,

Cϕ, 2HDM
S, Unitary = + xt ξ�

h

2xh

(

−sα−βg
(a)
1 +cα−βg

(a)
2 + 2v2

m2
W

λhH+H−g0

)

+ xt ξ�
H

2xH

(

+cα−βg
(a)
1 +sα−βg

(a)
2 + 2v2

m2
W

λH
H+H−g0

)

,

Cϕ, 2HDM
P, Unitary = − xt ξ�

A

2xA
g(a)

3 , (3.15)

where xt = m2
t /m

2
W , xh,H,A = m2

h,H,A/m2
W , the functions

g(a)
0−3 ≡ g(a)

0−3

(

xt , xH± ,−ξuA, ξdA

)

defined in Eq. (A.4), and
the Higgs cubic couplings are defined as

⎡

⎢
⎣

λhH+H−

λH
H+H−

λA
H+H−

⎤

⎥
⎦

= 1

2v2s2β

⎡

⎢
⎣

(m2
h − 2m2

H± )cα−3β +(−4M2+3m2
h+2m2

H± )cα+β

(m2
H − 2m2

H± )sα−3β +(−4M2+3m2
H +2m2

H± )sα+β

0

⎤

⎥
⎦ ,

(3.16)

where the soft Z2 symmetry breaking parameter M has been
defined in Sect. 3.1.

In the literature [61–63], it is found that the Wilson coeffi-
cients can receive large tan β enhancement only in the type-
II 2HDM and the branching ratio with large tan β depends
only on the Higgs masses mH± , mH , mh and the mixing
angle α. However, as shown by Eqs. (3.15) and (3.16), a
term proportional to M2/m2

H in our full one-loop Wilson
coefficient CS is also enhanced by tan2 β, which comes from
the heavy Higgs H penguin diagrams mediated by charged
Higgs bosons. Using the parameter m3 in the Higgs poten-
tial of Eq. (3.1) directly, this term is proportional to m2

3/m
2
H

and enhanced by tan3 β. This M dependent term has not
been considered yet in the previous studies in the literature.
Therefore, its effects are worthy of a detailed investigation.

The soft Z2 symmetry breaking parameter M is associated
with the spontaneous CP breaking [17,90–92] and character-
izes the masses of all the Higgs bosons [77]. This parameter
enters the Bs → μ+μ− decays through the Higgs penguin
diagrams. However, it is found that the M term cannot make
more significant contributions than other terms of the Wilson
coefficient CS . Here, we would choose h as the Higgs boson
discovered by ATLAS [1] and CMS [2] and take the align-
ment limit β − α = π/2, which is favored by the current
2HDM fits [78–84]. Then the cubic couplings in Eq. (3.16)
read

⎡

⎢
⎣

λhH+H−

λH
H+H−

λA
H+H−

⎤

⎥
⎦

.= 1

v2

⎡

⎢
⎣

−2M2 + 2m2
H± + m2

h

cot 2β(2M2 − 2m2
H )

0

⎤

⎥
⎦ . (3.17)
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Focusing on the coupling λhH+H− , it can be seen from
Eqs. (2.4) and (3.17) that large contributions from this cou-
pling would require |M2 −m2

H±|/v2 � m2
W /m2

B . However,
we know |M2 − m2

H±|/v2 = |λ4 + λ5|/2 < 4π from the
2HDM vacuum condition [77] and perturbativity [93]. It is
also noted that the Higgs penguin diagrams can be enhanced
by very large tan β or cot β. In all the four types of 2HDMs,
the λhH+H− contributions could be enhanced by large cot2 β.
In practice, cot β � 3 has been excluded by the perturba-
tivity [93]. Similarly, the coupling λH

H+H− can make a large
contribution if M2/m2

H � m2
W /m2

B . Among the four mod-
els, this contribution is enhanced by tan2 β only in type-II
2HDM. However, the ratio M2/m2

H still suffers from the
theoretical constraints, which will be discussed with numer-
ical results in the following section.

Although the effects from the operators OS and OP

are suppressed by m2
B/m2

W , these two scalar operators can
make significant contributions in the two parameter regions:
(i) in the type-II 2HDM, since both CS and CP contain
tan β enhanced terms, the effects of the scalar operators are
enhanced in the parameter space with large tan β. (ii) The
contributions from the CP-odd Higgs penguin diagrams are
inversely proportional to the mass of the CP-odd Higgs boson
A. Thus, the Wilson coefficient CP becomes much more sig-
nificant in the region with small values of mA

1 in all the four
2HDMs.

In the particular case of the type-II 2HDM, our result of
C10 agrees with the one calculated in Ref. [54]. For the Wil-
son coefficients CS and CP in the 2HDM, the calculations
have been performed by various groups [52,53,61–63,94–
97]. The latest results are presented in these three papers [61–
63], where the 2HDM contributions are computed in the
type-II model in some specific cases. In Ref. [61], the Wil-
son coefficients are calculated in large tan β limit, i.e., only
tan2 β enhanced terms are kept. However, the Higgs pen-
guin diagrams with trilinear hH+H− and HH+H− cou-
plings are not considered. In Refs. [62,63],2 after including
these penguin diagrams, the calculations are performed again
in the large tan β limit but with the assumption λ1 = λ2

for the couplings in the Higgs potential.3 Considering only
terms proportional to tan2 β, our result agrees with the one
of Ref. [61] in the case of λhH+H− = λH

H+H− = 0, and
those of Refs. [62,63] in the case of λ1 = λ2. Gener-

1 For the CP-odd Higgs in the MSSM, the LEP experiment put a lower
bound on its mass mA > 93.4 GeV [99].
2 In Ref. [63], it is mentioned that their result is different from the one
in Ref. [62]. However, the two results agree with each other after the
erratum for Ref. [62] has been taken into account. In addition, there is a
typo in Eqs. (3.30) and (3.31) of Ref. [62]: a global factor αe/π should
be included.
3 In Refs. [62,63], the convention for the Higgs potential (i.e., the cou-
plings λi ) is different from the one defined in Eq. (3.1). This condition
is also expressed as λ1 = λ2 by the couplings used in our paper.

ally, the 2HDM contains eight free parameters, i.e., m1−3

and λ1−5 in the Higgs potential of Eq. (3.1). They can be
rewritten equivalently in terms of the Higgs masses mh ,
mH , mA, mH± , the mixing angles α and β, the parame-
ter M , and the VEV v = vSM. If the condition λ1 = λ2

is assumed, M can be expressed by the other parameters,
as shown in Eq. (3.8). It is the reason why terms depend-
ing on the Z2 symmetry breaking parameter M were absent
in the previous calculations [61–63] but are present in this
paper.

4 Numerical analysis

Searches for Bs,d → μ+μ− decays have been performed at
the BaBar, Belle, and Tevatron (for a review, see Ref. [98]).
At the LHC, measurements by CMS [100] and LHCb [101]
collaborations with the full data of LHC Run I have resulted
in the averaged values for the time-integrated branching
ratios [102]

B(Bs → μ+μ−) = 2.8+0.7
−0.6 × 10−9,

B(Bd → μ+μ−) = 3.9+1.6
−1.4 × 10−10,

where the errors are dominated by the statistical uncertainties
and expected to be significantly reduced in the near future.
Both of them are in good agreement with the latest updated
SM predictions [57], B(Bs → μ+μ−) = (3.65 ± 0.23) ×
10−9 and B(Bd → μ+μ−) = (1.06 ± 0.09) × 10−10, in
which the NLO EW [58] and the NNLO QCD [59] correc-
tions have been included. Thus, strong constraints on the
2HDM parameters are expected.

In the NFC 2HDMs, the relevant parameters are the two
mixing angles α and β, four Higgs mass parameters mH± ,
mh , mH , and mA. In the Bs,d → μ+μ− decays, the Z2 sym-
metry breaking parameter M also enters into the decay ampli-
tude and is independent from these parameters. As discussed
in Refs. [103,104], we choose the light neutral Higgs h in the
2HDM as the SM Higgs observed at the LHC and adopt the
alignment limit sin(β − α) = 1. Then the model parameters
are reduced to (mH ,mA,mH± , M, tan β). As discussed in
Ref. [64], we shall restrict these parameters in the following
ranges:

mH ∈ [mh, 1000] GeV, mH± ,mA, M ∈[1, 1000] GeV,

tan β ∈ [0.1, 100]. (4.1)

Starting from these parameter spaces, we will start our
numerical scan.

In the numerical analysis, we impose experimental con-
straints in the same way as in Ref. [64]. To constrain the
2HDM parameters, we have taken into account (i) flavor pro-
cesses: Bs,d–B̄s,d mixing, B̄ → Xsγ , B → τν and Bs,d →
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Fig. 1 a The M dependence of the branching ratio of Bs → μ+μ−
in the type-II 2HDM for tan β = 20 (solid) and tan β = 40 (dashed).
The SM prediction (dotted) and 2σ experimental range (dot–dashed)

are also shown. b Allowed regions of the parameter space (tan β,mH± )

from B(Bs → μ+μ−) for the four types of 2HDM

μ+μ− decays, (ii) direct searches for Higgs bosons at
LEP [67], Tevatron [68,69] and LHC [70,71], both of which
have been discussed in detail in our previous work [64]. Addi-
tionally, we also consider the oblique parameter �ρ in the
EW precision measurement [105–110] and require the cou-
plings λ1−5 to satisfy (iii) theoretical constraints: perturbativ-
ity [93], tree-level vacuum stability [90,111,112] and pertur-
bative unitarity [19,113] (see Ref. [114] for the expressions).

For Bs → μ+μ− decay, both the NNLO QCD and the
NLO EW corrections in the SM and the full one-loop contri-
butions in the 2HDM are included. As discussed in Sect. 3,
the effects of the soft Z2 symmetry breaking parameter M
can be enhanced by large tan β in the type-II 2HDM. The
M dependence of the branching ratio B(Bs → μ+μ−) is
shown in Fig. 1a in the type-II 2HDM for various tan β and
mH values. As expected, the effects of M become significant
when the two ratios M2/m2

H and tan β are large. However,
it is found that the theoretical constraints from perturbativ-
ity, vacuum stability, and perturbative unitarity have put the
bound M2/m2

H � 1 (and M � 1 TeV) in the parameter
space of Eq. (4.1). Therefore, the soft Z2 symmetry breaking
parameter M cannot make more significant effects than the
other tan β enhanced terms in CS and CP .

After considering the current experimental data, the
allowed parameter spaces of all the four 2HDMs are obtained.
Since the constraints from Bd → μ+μ− appear to be more
or less weaker than those from Bs → μ+μ−, we only
show the results from the latter one, which are plotted in
the (tan β,mH±) plane in Fig. 1b. Compared to our previous
results [64], the parameter space with small tan β is excluded
for all the four types of 2HDMs. This change is caused by
the contributions with small tan β neglected in the previous
calculations [61–63] but included in the present full one-
loop computation as discussed in Sect. 3. For the large tan β

region, only the type-II model is bounded, which is in agree-
ment with our previous result but still weaker than the one
from B(B → τν).

Combining all the constraints aforementioned, we obtain
the survived parameter space of all the four types 2HDMs, as
an update of our previous results [64], which is shown in the
(tan β,mH±) plane in Fig. 2a. It is found that the small tan β

region is restricted for all the four models by Bs–B̄s mixing
and B → Xsγ , while the large tan β region is constrained
only in the type-II 2HDM by B → τν and Bs → μ+μ−
decays. Compared to our previous results, the current con-
straints on the large tan β region in the type-II 2HDM are
more stringent. This is mainly because the theoretical con-
straints are included in the current analysis.

In these constrained parameter spaces of the four 2HDMs,
the correlations between the observables A�� and R defined
in Eqs. (2.6) and (2.7) are reevaluated, which are presented
in Fig. 2b. Unlike our previous results [64], the correlations
in the four different types of 2HDMs are almost indistin-
guishable. The allowed ranges of R are the same for all
the four models, while A�� can deviate slightly from the
SM prediction only in the type-II 2HDM. It is found that
the difference from our previous results is mainly caused by
the theoretical constraints and the new full one-loop Wilson
coefficients considered in the current analysis. In the type-II
2HDM, the bounds on tan β are more stringent compared to
our previous results as discussed above. Thus, the allowed
range of CS is restricted more stringently in the current anal-
ysis. In this case, A�� can deviate from the SM prediction
very tiny, which can be seen from Eq. (2.6). As discussed
in Sect. 3, our results of the Wilson coefficients can also
be applied to the small tan β region in all the four models,
while some terms are not included inCP used in our previous
analysis. In the case of small mA, CP is enhanced and these
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Fig. 2 a Combined constraints on the parameter space of the four types of 2HDM, plotted in the (tan β,mH± ) plane. b Correlations between R
and A�� in the four types of 2HDM

terms make the allowed regions of R in the type-I and type-Y
2HDMs as large as the one in the type-X model. Meanwhile,
the value of R is almost independent of A�� in the type-II
2HDM.

5 Conclusion

In this paper, we have performed an updated analysis of
the rare leptonic decay Bs → μ+μ− in the 2HDM with
a softly broken Z2 symmetry. We have derived the full one-
loop Wilson coefficients C10, CS , and CP from the recent
A2HDM results [60], which can be applied to the contri-
butions of all the four types of 2HDMs for both large and
small tan β value. Our main conclusions are summarized as
follows:

• Compared to C10, the Wilson coefficients CS and CP are
negligible in the entire 2HDM parameter space, except
for large tan β in the type-II 2HDM or small CP-odd
Higgs mass mA in the four models. In addition, only the
Wilson coefficients CS and CP in the type-II 2HDM can
be enhanced by large tan β.

• The soft Z2 symmetry breaking parameter M enters into
the Higgs penguin diagrams and affects the Wilson coef-
ficient CS . The dominant contributions are proportional
to M2/m2

H and enhanced by tan2 β in the type-II 2HDM,
which have not been considered in the literature [61–63].
However, after combing the theoretical constraints from
perturbativity, vacuum stability and perturbative unitar-
ity, we have found that the parameter M cannot make
more significant contributions than other terms in the
Wilson coefficients.

• After imposing the experimental constraints, regions with
small tan β are excluded for all the four types of 2HDM,
which are quite different from our previous results [64].
As expected, large tan β region is only excluded in the
type-II 2HDM.

As an update of our previous analysis [64], we have also
investigated the possibility to distinguish the four types of
2HDM in light of the recent updated flavor physics data,
the collider data from the direct searches for Higgs bosons
and the theoretical progresses. The combined bounds on the
2HDM parameters have been derived for the four models.
In the survived parameter regions, the correlations between
A�� and R in all the four of the 2HDMs are almost indistin-
guishable from each other. In the 2HDMs with Z2 symmetry,
A�� can only have a very tiny deviation from the SM pre-
diction, while R could deviate from the SM one sizably. This
could be tested by the much more precise measurement of
Bs → μ+μ− at the LHC in the coming years.
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A The Wilson coefficients in the SM and the 2HDMs

In this appendix, we recapitulate the relevant expressions of
the Wilson coefficients in the SM and the four types of the
2HDMs for completeness, which are obtained from Ref. [60].

In the SM, the one-loop Wilson coefficients of the scalar
operators can be written as

CSM
S = Cbox, SM

S + Ch, SM
S ,

CSM
P = Cbox, SM

P + CZ , SM
P + CG, SM

P .
(A.1)
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In the unitary gauge, their expressions read

Cbox, SM
S, Unitary = − xt (xt+1)

48(xt−1)2 − (xt−2)(3x2
t −3xt+1)

24(xt − 1)3 ln xt ,

Ch, SM
S, Unitary = − 3xt

8xh
, (A.2)

Cbox, SM
P, Unitary = + xt (71x2

t − 172xt − 19)

144(xt − 1)3

+ x4
t − 12x3

t + 34x2
t − xt − 2

24(xt − 1)4 ln xt ,

CZ , SM
P, Unitary = + 1

12

[
xt (18x3

t − 137x2
t + 262xt − 95)

6(xt − 1)3

+8x4
t − 11x3

t − 15x2
t + 12xt − 2

(xt − 1)4 ln xt

]

− s2
W

36

[
xt (18x3

t − 139x2
t + 274xt − 129)

2(xt − 1)3

+24x4
t − 33x3

t − 45x2
t + 50xt − 8

(xt − 1)4 ln xt

]

,

where Ch, SM
S, Unitary denotes the contributions from the SM

Higgs penguin diagrams. The other Wilson coefficients
Cbox, SM
S,P, Unitary and CZ , SM

P, Unitary are same in the SM and the
2HDMs.

In the four types of the 2HDMs, the various contributions
in the Wilson coefficients of Eq. (3.13) are obtained by the
replacement of the Yukawa couplings in Eq. (3.14), which
are given in the unitary gauge,

Cbox, 2HDM
S, Unitary = − ξuAξ�

Axt
8(xH± − xt )

[

1 − xH± ln(xH±/xt )

(xH± − xt )

]

− ξdAξ�
A
xt ln(xH±/xt )

4(xH± − xt )
, (A.3)

Cbox, 2HDM
P, Unitary = + ξuAξ�

Axt
8(xH± − xt )

×
[

1 + 2x2
t − xH± xt − xH±

(xt − 1)(xH± − xt )
ln xt

+ xH±(1 − 2xt + xH±)

(xH± − 1)(xH± − xt )
ln xH±

]

+ ξdAξ�
A
xt ln(xH±/xt )

4(xH± − xt )
,

CZ , 2HDM
10, Unitary = +(ξuA)2 x2

t

8

[
1

xH± − xt
− xH± ln(xH±/xt )

(xH± − xt )2

]

,

CZ , 2HDM
P, Unitary = + xt

4(xH± − xt )2

×
{

−ξdAξuA

[

− xt +xH±

2
+ xt xH±

xH± − xt
ln

xH±

xt

]

+ (ξuA)2
[
x2
H± −8xH± xt −17x2

t

36(xH± −xt )
−xt (xH± −xt )

+
(
x2
t (3xH± + xt )

6(xH± − xt )2 + xt xH±
)

ln
xH±

xt

]}

+ s2
W xt

6(xH± − xt )2

×
{

−ξdAξuA

[
5xt − 3xH±

2

+ xH±(2xH± − 3xt )

xH± − xt
ln

xH±

xt

]

− (ξuA)2
[(

4x3
H± −12x2

H± xt +9xH± x2
t +3x3

t

6(xH± −xt )2

+ 3

2
xt xH±

)

ln
xH±

xt

− 17x2
H± − 64xH± xt +71x2

t

36(xH± −xt )
− 3

2
xt (xH± −xt )

]}

.

The Higgs penguin contributions Cϕ, 2HDM
S,P, Unitary have been

given in Eq. (3.15), where the functions g(a)
0−3 are defined as

g0(xt , xH± ,−ξuA, ξdA) = − 1

4xH±

×
[

−ξuAξdA( f1 + f2 + f3 + 1) + (ξuA)2

×
(

f4 − f5 − 1

4

)]

,

g(a)
1 (xt , xH± ,−ξuA, ξdA) = − 3

4

− ξuAξdA( f1 + f2 + f3) + (ξuA)2( f4 − f5),

g(a)
2 (xt , xH± ,−ξuA, ξdA) = −(ξdA)2ξuA f1 + ξdA(ξuA)2( f3 + f2)

+ (ξuA)3( f5 − f4) + ξuA( f7 − f6) + ξdA f1,

g(a)
3 (xt , xH± ,−ξuA, ξdA) = −(ξdA)2ξuA f1 + ξdA(ξuA)2( f3 − f2)

− (ξuA)3( f5 + f4) − ξuA( f7 + f6) + ξdA f1. (A.4)
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Here the one-loop functions fi are abbreviated as fi ≡
fi (xt , xH±) with the definitions

f1(x, y) = 1

2(y−x)
[x−y+y ln y−x ln x],

f2(x, y) = 1

2(y−x)

[

x− yx

y−x
(ln y−ln x)

]

,

f3(x, y) = 1

2(y−x)

[

y− y2 ln y

y−x
+ x(2y−x) ln x

y−x

]

,

f4(x, y) = 1

4(y−x)2

[
x (3y−x)

2
− y2x

y−x
(ln y−ln x)

]

, (A.5)

f5(x, y) = 1

4(y−x)2

[
x(y−3x)

2
− yx(y−2x)

y−x
(ln y−ln x)

]

,

f6(x, y) = x
(

x2−3yx+9y−5x−2
)

8(x−1)2(y−x)
+ y (yx−3y+2x)

4(y−1)(y−x)2 ln y

+ y2
(−2x3+6x2−9x+2

)+3yx2(x2−2x+3)−x2
(

2x3−3x2+3x+1
)

4(x−1)3(y−x)2 ln x,

f7(x, y) =
(

x2+x−8
)

8(x−1)2 − y(y+2)

4(y−1)(y−x)
ln y

+ y
(

x3−3x2+3x+2
)+3 (x−2) x2

4(x−1)3(y−x)
ln x .

It is noted that the divergence in the Higgs penguin dia-
grams at one-loop level is canceled by a FCNC local operator
in the A2HDM [60]. In the 2HDMs with Z2 symmetry, we
find that the divergence automatically vanishes after adding
all the Higgs penguin contributions.

For the four types of 2HDM, the values of the relevant
Yukawa couplings are listed in Table 2. When deriving the
expressions of the Higgs penguin diagrams in Eq. (3.15), the
following identities have been used:

ξuh = − cos(α − β)ξuA − sin(α − β),

ξuH = − sin(α − β)ξuA + cos(α − β),

ξdh = + cos(α − β)ξdA − sin(α − β),

ξdH = + sin(α − β)ξdA + cos(α − β),

(A.6)

and

(ξuA + ξdA)(ξuAξdA − 1) = 0, (A.7)

which can be obtained from Table 2. It should be noted that
there is a freedom in the definitions of the functions fi , since
adding the LHS of Eq. (A.7) to Eq. (A.4) does not change
g(a)

0−3.
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