
Eur. Phys. J. C (2015) 75:419
DOI 10.1140/epjc/s10052-015-3641-0

Regular Article - Theoretical Physics

A note on Maxwell’s equal area law for black hole phase transition

Shan-Quan Lan, Jie-Xiong Mo, Wen-Biao Liua

Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China

Received: 26 March 2015 / Accepted: 24 August 2015 / Published online: 9 September 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The state equation of the charged AdS black hole
is reviewed in the T –r+ plane. With a view on the the phase
transition, the T –S, P–V , P–ν graphs are plotted and then
the equal area law is used in the three cases to get the phase
transition point (P, T ). The analytical phase transition point
relations for P–T of a charged AdS black hole has been
obtained successfully. By comparing the three results, we
find that the equal area law possibly cannot be used directly
for the P–ν plane. According to the T –S, P–V results, we
plot the P–T –Q graph and find that for a highly charged
black hole a very low temperature condition is required for
the phase transition.

1 Introduction

In the 1970s, Bekenstein and Smarr found the Smarr rela-
tion for a Kerr–Newman black hole and Hawking proved
the existence of black hole radiation. Since then black hole
thermodynamics has become an interesting and challenging
subject. It turns out that the black hole system has a precise
analogy with the non-gravitational thermodynamic system in
nature. A black hole not only has a temperature or an entropy,
but also it possesses a rich phase structure and admits critical
phenomena. Especially, when it comes to AdS spacetimes,
there exists a Hawking–Page phase transition between a sta-
ble large black hole and a thermal gas which can be explained
as the confinement/deconfinement phase transition of a gauge
field [1,2]. This AdS/CFT correspondence [3–5] can be used
to study quark–gluon plasmas and various condensed matter
phenomena which makes the AdS black hole thermodynam-
ics more attractive.

In the early time, the charged AdS (RN-AdS) black hole
was assigned thermodynamical variables such as tempera-
ture, entropy, and charge, electric potential, but not volume
and pressure. An attempt to introduce the pressure was car-
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ried out in Refs. [6,7]. They rearranged the characters of
thermodynamical variables: 1/T was identified with P , r+
was identified with V , Q was identified with T (where T is
the temperature, P is the pressure, r+ is the radius, V is the
volume, Q is the charge, for a black hole). This approach is
not uniquely defined and mismatches intensive and extensive
thermodynamical variables [8]. Recently, treating the varia-
tion of the cosmological constant � as a pressure has attained
increasing attention [8–20]. This interpretation is much more
physically sound and avoids the confusion among intensive
and extensive variables. What is more, when � is identified
with the pressure and the black hole mass M is identified
with the enthalpy rather than the internal energy, the first law
is consistent with the Smarr relation [10].

With this interpretation of the cosmological constant,
many works on the AdS black hole phase transition were
carried out [21–29]. In Ref. [8], the authors showed that the
graph plotted by the state equation of an AdS black hole
for fixed T in the P–r+ or P–V plane is reminiscent of the
van der Waals (VDW) system. There is an oscillating part
of the graph (for T < Tc) which denotes a phase transition.
The oscillating part needs to be replaced by an isobar such
that the areas above and below it are equal to each other.
This treatment is called Maxwell’s equal area law. They also
showed that the graph of the Gibbs free energy G (during the
phase transition) which possesses a characteristic swallow
tail is also reminiscent of the VDW system. What is more,
they found the phase transition coexistence line P–T where
G and T coincide, they also studied the critical exponents
and showed that the results coincide with those of the VDW
system. That is why we use the equal area law, which is valid
for the VDW system to address the phase transition of an
RN-AdS black hole.

As far as we know, there are two ways to obtain the phase
diagram or the coexistence line of an AdS black hole: (1)
using the Maxwell equal area law, (2) analyzing the charac-
teristic swallow tail behavior of the Gibbs free energy. In this
paper, we will use the equal area law to obtain the coexistence
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line (P–T ) and the coexistence surface (P–T –Q) of an RN-
AdS black hole. Especially, we use the method which was
used in T –S plane (S is the entropy for a black hole) in Ref.
[18] to explicitly argue the viewpoint raised in Ref. [30]: that
the equal area law can be only used in the P–V , T –S, and φ–
Q planes, but not in the T –r+ or P–ν plane (ν is the specific
volume defined in Eq. (42)), though for these cases there is
also an oscillating behavior below the critical point. More-
over, we obtained the analytical phase transition point rela-
tion P–T –Q of an RN-AdS black hole from the P–V plane.

This paper is organized as follows. In Sect. 2, we review
the thermodynamical state equation of the RN-AdS black
hole in the T –r+ plane. We use the critical point to rescale
the state equation and give a brief analysis of the oscillating
part. In Sect. 3, we use the equal area law in the T –S, P–V ,
and P–ν planes to obtain the analytical phase transition point
relation P–T –Q and discuss the equal area law, the Smarr
relation, and the first law. In Sect. 4, we discuss some results
and draw conclusions.

2 Thermodynamic state equation of charged AdS black
hole and the system’s critical point

The line element of the RN-AdS metric is given as

ds2 = −Fdt2 + dr2

F
+ d�2

2, (1)

where d�2
2 stands for the standard element on S2 and the

function F is given by

F = 1 − 2M

r
+ Q2

r2 + r2

l2
. (2)

The parameter M represents the ADM mass of the black
hole, Q represents the total charge, and the AdS curvature
radius l is related to the cosmological constant as � =
−3/ l2.

The black hole radius r+, the same as the event horizon
position, is determined as the largest root of F(r+) = 0. The
black hole temperature T is given by

T = κ

2π
= 1

2π

⎛
⎝−1

2

√
g11

−ĝ00
ĝ00,1

⎞
⎠

= 1

4πr+

(
1 + 3r2+

l2
− Q2

r2+

)
(3)

where g is the RN-AdS metric tensor, g00 is the 00 component
of the covariant metric tensor g, g11 is the 11 component of
the contravariant metric tensor g, and ĝ00 = g00 − g2

03/g33.
By setting T = 0, we can get the extremal RN-AdS black
hole as [18]

r2
0 = l2

6

⎛
⎝

√
1 + 12Q2

l2
− 1

⎞
⎠ ,

M0 = r0

3

⎛
⎝2 +

√
1 + 12Q2

l2

⎞
⎠ . (4)

In fact, Eq. (3) is the thermodynamic state equation of
the black hole and we will frequently use it when we argue
about the equal area law. Now we are going to find the critical
point and some state information of the RN-AdS black hole
from the T –r+ plane. The T –r+ plane is preferred in Ref.
[18] because Eq. (3) here is the original thermodynamic state
equation, regardless of the thermodynamic quantities P and
V . We treat Q as a constant, then T is a function of r+. The
critical point occurs when T (r+) has an inflection point,

∂T

∂r+
= 0,

∂2T

∂r2+
= 0. (5)

From the above two equations, we get the critical values
(we replace 3

8πl2
by P; this is just for convenience here, but

we find in Ref. [10] that P can be treated as the pressure of
the AdS black hole system). We write

rc = √
6Q,

3

8πlc2 = 1

96πQ2 ≡ Pc, Tc =
√

6

18πQ
. (6)

From Eq. (6) we can see Pcrc
Tc

= 3
16 , so we can rescale Eq.

(3) to get rid of Q by defining [18]

r+ = r̃rc, P = pPc, T = tTc, (7)

r+ and r̃ both are the radius of a black hole—r̃ is a rescaling
of r+.

Then the rescaled equation of T becomes

t = 3

4

(
1

r̃
+ r̃ p

2
− 1

6r̃3

)
. (8)

The t–r̃ graphs for different p are plotted in Fig. 1.
For p = 1, there is an inflection point at t = 1, r̃ = 1,

which is just the critical point. For p > 1, which is beyond
the critical point, the temperature t increases as the radius
r̃ increases. It is a thermally stable “gas” phase black hole
(here the term “gas” means that the black hole radius changes
largely as the temperature changes just like a gas does, and
the term “liquid” means that the black hole radius almost does
not change as the temperature changes just like a liquid does).
For p < 1, which is below the critical point, the t–r̃ graph is
oscillating. There are one maximum point at (r̃max, tmax) and
one minimum point at (r̃min, tmin). For r̃ < r̃max, the temper-
ature t increases as the radius r̃ increases, it is a small, ther-
mally stable, near-extremal black hole. For r̃max < r̃ < r̃min,
the temperature t decreases as radius r̃ increases, it is a
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Fig. 1 The rescaled t–r̃ thermodynamical state graph of RN-AdS black
hole for different p. The critical point is at p = 1, r̃ = 1, t = 1, which
is an inflection point

thermally unstable black hole. For r̃min < r̃ , the tempera-
ture t increases as the radius r̃ increases; it is a large, ther-
mally stable black hole. Inspired by the VDW gas–fluid P–
V graph, we can replace the oscillating part of the isopi-
estic for p < 1 by an isobar. For the VDW P–V graph,
the isobar should make sure that the areas above and below
it are equal to each other, which is called the equal area
law. One may say we can use the equal area law here too.
In fact, in Ref. [18], one applied the method for the P–
ν graph. But we find that the equal area law cannot be
used here. We will show that the oscillating part should be
replaced by an isobar but not the equal area isobar later.
Now, we suppose that the oscillating part is replaced by an
isobar of which the left hand side is r̃l and the right hand
side is r̃g . Just like the VDW case, from right to left, for
r̃ > r̃g the black hole system is in its “gas” phase, for
r̃l < r̃ < r̃g it goes through a phase transition from “gas”
phase to the “liquid” phase, for r̃ < r̃l it is in the “liquid”
phase.

3 Equal area law and phase transition

It was for a first time suggested in Ref. [10] that we may
regard the cosmological constant as a variable and treat it as
a dynamical pressure of a black hole,

p = − 1

8π
� = 3

8πl2
. (9)

With this interpretation, the black hole mass is identified
with enthalpy rather than internal energy. Recently, there has
been great interest in studying the phase transition of the RN-
AdS black hole system in this extended phase space. Based
on Ref. [18], we will use the equal area law in the T –S,

s
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Fig. 2 The rescaled t–s graph of an RN-AdS black hole for p =
0.7615. The oscillating areas above and below the straight line are equal
to each other. The equal area law tells us the phase transition point is at
p = 0.7615, t = 0.9

P–V , and P–ν planes to investigate the phase transition in
detail.

3.1 Equal area law in T –S plane

The entropy of the black hole system is

S = A

4
, A = 4πr2+. (10)

We can rewrite the thermodynamic state equation as

T = 1

4
√

π S

(
1 + 8PS − πQ2

S

)
. (11)

At the critical point, the entropy is Sc = πr2
c = 6πQ2. So,

just as the above section, we can rescale S = sSc. Together
with the rescaled T and P , the state equation can be written
as

t = 3

8

(
p
√
s + 2√

s
− 1

3s
3
2

)
. (12)

To show the phase transition, t, p should be smaller than
the critical point, which means t < 1 and p < 1. We plot the
graph t–s for p = 0.7615 in Fig. 2.

The oscillating part should be replaced by an isobar which
satisfies the requirement that the areas above and below it are
equal to each other. We suppose the isobar is t = t∗, so the
left cross point in sl denotes the “liquid” phase entropy and
the right cross point in sg denotes the “gas” phase entropy.
Then the equal area law is manifest as follows:

t∗(sg − sl) =
∫ sg

sl
t (s)ds, (13)
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so we obtain

t∗ = 1√
sg + √

sl

(
3

2
− 1

4
√
sl sg

+ p∗

4
(sl + sg + √

sl sg)

)
. (14)

Our purpose is to find the coexistence phase transition line
for (t, p), thus we just need to solve Eqs. (12) and (14). For
Eq. (12), from Fig. 2, the left and right cross points give us
two equations. Using x = √

sl , y = √
sg , together with Eq.

(14) we have

t∗ = 3

8

(
p∗x + 2

x
− 1

3x3

)
, (15)

t∗ = 3

8

(
p∗y + 2

y
− 1

3y3

)
, (16)

t∗ = 1

x + y

(
3

2
− 1

4xy
+ p∗

4
(x2 + y2 + xy)

)
. (17)

The equations can be solved straightforwardly. However,
it is difficult and complicated. Now we will calculate it in a
simpler way.

Equations (15)–(16) = 0 will give

x2 + y2 = −3p∗x3y3 + 6x2y2 − xy. (18)

Setting 2*Eq. (17) = Eqs. (15) + (16) will give

p∗(x2 + y2)x3y3 − 6(x2 + y2)x2y2 + (x2 + y2)2

+(x2 + y2)xy = 2p∗x4y4 − 12x3y3 + 2x2y2. (19)

Then putting Eq. (18) into Eq. (19) to get rid of x2 + y2 and
making the replacement z = xy, we have

p∗2z4−2p∗z3+2z−1 = 0 = z2(p∗z−1)2 −(z−1)2, (20)

so we obtain

z1,2 = ± 1√
p∗ , z3,4 = 1

p∗ (1 ± √
1 − p∗), (21)

where z2 < 0 is meaningless and z3,4 are also unreasonable
as sl = sg . So we only have z = 1√

p∗ . Together with Eq.
(18), we get

sg,l = 1

2p∗

(√
3 − √

p∗ ±
√

3 − 3
√
p∗

)2

, (22)

t∗ =
√
p∗(3 − √

p∗)/2. (23)

This is the coexistence line of the“gas” and “liquid” phases
for the black hole system. We can also rewrite it as

p∗ =
[

1 − 2 cos

(
arccos(1 − t∗2) + π

3

)]2

. (24)

v

p
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Fig. 3 The rescaled p–v graph of RN-AdS black hole for t = 0.9.
The oscillating areas above and below the straight line are equal to
each other. The equal area law tells us the phase transition point is at
p = 0.7615, t = 0.9

Finally, we can rescale back P = pPc, T = tTc to get the
phase transition phase as

T =
√

8P(3 − √
96πQ2P)

9π
, (25)

with T < Tc =
√

6
18πQ and P < Pc = 1

96πQ2 . For P > Pc,
the black hole only exists in its “gas” phase.

3.2 Equal area law in P–V plane

The volume of the black hole is

V = 4

3
πr+3. (26)

Thus we can rewrite the thermodynamical state equation
as

P = T

2

(
4π

3V

) 1
3 − 1

8π

(
4π

3V

) 2
3 + Q2

8π

(
4π

3V

) 4
3

. (27)

At the critical point, Vc = 4
3πrc3 = 8

√
6πQ3. Thus we

can use the same rescaling method V = vVc together with
T, P to rewrite the above state equation

p = 8t

3
v− 1

3 − 2v− 2
3 + 1

3
v− 4

3 . (28)

We plot the p(v) graph in Fig. 3 for t = 0.9.
The oscillating part should be replaced by an isobar which

satisfies the requirement that the areas above and below the
isobar are equal to each other. We suppose the isobar is
p = p∗, the left cross point in vl denotes the “liquid” phase
volume and the right cross point in vg denotes the “gas” phase
volume. Then the equal area law is manifest as follows:
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p∗(vg − vl) =
∫ vg

vl

p(v)dv, (29)

so we obtain

p∗ = 1

vg − vl

[
4t∗

(
vg

2
3 − vl

2
3

)
− 6

(
vg

1
3 − vl

1
3

)

−
(
vg

− 1
3 − vl

− 1
3

)]
. (30)

Using x3 = vl , y3 = vg , from Eqs. (28) and (30), we have

p∗ = 8t∗

3x
− 2

x2 + 1

3x4 , (31)

p∗ = 8t∗

3y
− 2

y2 + 1

3y4 , (32)

p∗ = 4t∗(x + y) − 6 + 1
xy

x2 + xy + y2 . (33)

Equations (31)–(32) set to 0 will give

8t∗x3y3 − 6(x + y)x2y2 + (x2 + y2)(x + y) = 0. (34)

Setting 2*Eq. (33)=Eqs. (31) + (32) will give

24t∗(x + y)x5y5 − 36x4y4 + 6x3y3 = (x2 + xy + y2)

×[8t∗(x + y)x3y3 − 6(x2 + y2)x2y2 + x4 + y4].
(35)

Equations (34) and (35) can be simplified as

2t∗x2y2 = x + y, (36)

2t∗2x3y3 − 3xy + 1 = 0. (37)

According to Eq. (37), we get

xy = −
√

2

t∗
cos

(
θ

3

)
,

√
2

t∗
cos

(
θ + π

3

)
,

√
2

t∗
cos

(
π − θ

3

)
, cos(θ) =

√
2

2
t∗. (38)

Only the last one is correct as xy should be larger than 1.
Putting it back into Eq. (36) and using ϕ = π−θ

3 , we have

x = 2

t∗
cos2 ϕ −

√
4

t∗2 cos4 ϕ −
√

2

t∗
cos ϕ,

y = 2

t∗
cos2 ϕ +

√
4

t∗2 cos4 ϕ −
√

2

t∗
cos ϕ,

ϕ = π − θ

3
, cos θ =

√
2

2
t∗. (39)

So from Eq. (32) we have

p∗ = 8t∗

3y
− 2

y2 + 1

3y4

= 8t∗

3

(√
2 cos ϕ −

√
2 cos2 ϕ − t∗√

2 cos ϕ

)

−2

(√
2 cos ϕ −

√
2 cos2 ϕ − t∗√

2 cos ϕ

)2

+1

3

(√
2 cos ϕ −

√
2 cos2 ϕ − t∗√

2 cos ϕ

)4

= 16

(
cos

θ

3
cos

π + θ

3

)2

=
⎛
⎝1 − 2 cos

2(π − arccos t∗√
2
)

3

⎞
⎠

2

=
(

1 − 2 cos
arccos(1 − t∗2) + π

3

)2

, (40)

where 0 ≤ t∗ ≤ 1 is just for the physical cases that we are
interested in. Now, we have

t∗ =
√
p∗(3 − √

p∗)/2. (41)

We find that this result is just the same as Eq. (23). This
means the equal area law is identical in the T –S plane and
the P–V plane. Thus, we get the analytical result of p(t) or
P(T, Q) [rescale p(t) back] for the coexistence line using
the P–V equal area law.

3.3 Equal area law in P–ν plane

In Refs. [8] and [18], the RN-AdS black hole’s thermody-
namical state equation is compared with the VDW equation
and the specific volume is identified

ν = 2l2pr+, (42)

where l p denotes the Planck length. In this subsection, we will
use the equal area law in P–ν plane to get the coexistence line
p(t). By setting l p = 1, the state equation can be written as

P = T

ν
− 1

2πν2 + 2Q2

πν4 . (43)

At the critical point, νc = 2
√

6Q. We rescale it by ν =
μνc. Together with the rescaled T, P , we have

p = 8t

3μ
− 2

μ2 + 1

3μ4 . (44)

We plot the graph in Fig. 4 for t = 0.9.
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Fig. 4 The rescaled p–μ graph of the RN-AdS black hole for t = 0.9.
The oscillating areas above and below the straight line are equal to
each other. The equal area law tells us the phase transition point is at
p = 0.751, t = 0.9

The oscillating part should be replaced by an isobar which
satisfies the requirement that the areas above and below the
isobar are equal to each other. We suppose the isobar is
p = p∗, the left cross point in μl denotes the “liquid” phase
volume and the right cross point inμg denotes the “gas” phase
volume. Then the equal area law is manifest as follows:

p∗(μg − μl) =
∫ μg

μl

p(μ)dμ, (45)

so we obtain

p∗ = 1

μg − μl

(
8t∗

3
ln

(
μg

μl

)
+ 2

μg
− 2

μl
− 1

9μ3
g

+ 1

9μ3
l

)
.

(46)

Using x = 1
μl

, y = 1
μg

, from Eqs. (44) and (46) we have

p∗ = 8t∗

3
x − 2x2 + 1

3
x4, (47)

p∗ = 8t∗

3
y − 2y2 + 1

3
y4, (48)

p∗ = xy

x − y

(
8t∗

3
ln

x

y
− 2(x − y) + 1

9
(x3 − y3)

)
. (49)

Using the straightforward way, an implicit function of
p∗(t∗) can be obtained. We have

x1 =
√

1 + �

4
−

√
2 − �

4
− 4t∗√

4 + �
,

x2 =
√

1 + �

4
+

√
2 − �

4
− 4t∗√

4 + �
,

x3 = −
√

1 + �

4
−

√
2 − �

4
+ 4t∗√

4 + �
,

x4 = −
√

1 + �

4
+

√
2 − �

4
+ 4t∗√

4 + �
,

� ≡ 2(1 − p∗)
A

1
3

+ 2A
1
3 ,

A ≡ 4t∗2 − 3p∗ − 1 +
√

(p∗ − 1)3 + (1 + 3p∗ − 4t∗2)2.

(50)

For 1 < x and 0 < y < 1, we identify x = x2 and y = x4.
Putting them back to Eq. (49), we get an implicit function of
p∗ = p∗(t∗) as

p∗ = x2x4

x2 − x4

[
8t∗

3
ln

x2

x4
− 2(x2 − x4)+ 1

9
(x2

3 − x4
3)

]
.

(51)

3.4 The Smarr relation and the first law

In the above three subsections, we have got three phase tran-
sition coexistence lines for the RN-AdS black hole, while
only two lines are identical. However, a thermodynamical
system should have only one real phase transition coexis-
tence line, which means the same phase transition point at
t = 0.9 in Figs. 2, 3, and 4. Unfortunately, the one obtained
from the P–ν plane is not identical to the other two cases.
In the black hole phase transition research, the P–ν possibly
cannot be used to identify the transition point by the equal
area law directly.

We note that in Ref. [30], the authors obtained a numer-
ical result of the phase transition coexistence line by using
the second method (analyzing the characteristic swallow tail
behavior of the Gibbs free energy). Their fitting formula is
(Eq. (45) in their paper)

P̃ = 0.666902T̃ 2 + 0.175830T̃ 3 + 0.127273T̃ 4

−0.230638T̃ 5 + 0.795846T̃ 6 − 1.36972T̃ 7

+1.47494T̃ 8 − 0.867209T̃ 9 + 0.226773T̃ 10, T̃ ∈ (0, 1).

(52)

The fitting formula displays an overlap with our analytical
results Eqs. (24) and (40) in the p–t graph, Fig. 5. This also
indicates that the phase transition coexistence line Eq. (51)
is wrong.

That is why we emphasize that the equal area law cannot be
used in the P–ν plane. The equal area law comes from the first
law (the differential formula of mass) or the Smarr relation
(the integral formula of mass). So the reason originates with
the first law or the Smarr relation for the RN-AdS black hole.
When the mass, as the original internal energy, is treated
as the enthalpy (M ≡ H ) of the system [8,10], the Smarr
relation is

H = 2T S − 2PV + Qφ, (53)
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Fig. 5 The phase transition coexistence lines (rescaled p–t graph) for
the RN-AdS black hole. Line 1 is from Eqs. (24), (40), and (52), which
display an overlap. The former two are obtained by using the equal area
law in the T–S plane and the P–V plane, the latter one is obtained
by analyzing the characteristic swallow tail behavior of the Gibbs free
energy. Line 2 is from Eq. (51) using the equal area law in the P–ν

plane

and the first law is

dH = T dS + V dP + φdQ. (54)

Equation (53) follows from Eq. (54) via integrating a scale
transformation. But if P is treated as a constant, then the first
law Eq. (54) reduces to a first law without the V dP term
and the Smarr relation Eq. (53) no longer follows from the
first law by the scaling argument. Thus the treatments of the
cosmological constant as a variable pressure and the mass as
an enthalpy are reasonable.

Then the Gibbs free energy can be obtained as

dG = −SdT + V dP + φdQ. (55)

During the phase transition, the chemical potential is iden-
tical between the two phases. So the Gibbs free energy is
unchanged, which means

−SdT + V dP + φdQ = 0. (56)

Fixing T and Q, we get

∫ Pl

Pg
V dP = 0. (57)

This gives the equal area law,

P(Vg − Vl) =
∫ Vg

Vl
P(V )dV . (58)

By fixing P and Q, or T and P , we get the other two
equal area laws in the T –S and Q–φ planes [18,31]. The
equal area law is right only for special planes rather than any
kind of oscillating lines (such as the T –r plane in Fig. 1 or
the P–ν plane). For the P–V plane, the V is the volume of
the black hole rather than the specific volume ν. That is why
the equal area law cannot be used in the P–ν plane. So far,
we have explicitly checked that the equal area law cannot be
used in the P–ν plane by comparing the p–t phase transition
graphs obtained by using the equal area law in the T –S, P–
V , P–ν planes and by analyzing the characteristic swallow
tail behavior of the Gibbs free energy, and it is also checked
from the Smarr equation.

4 Discussion and conclusion

The equal area law is investigated for a black hole phase tran-
sition. For the especial case of an RN-AdS black hole, we
argued that the equal area law can be only used in the P–V ,
T –S, and φ–Q planes. Though in the T –r or P–ν plane there
is an oscillating behavior below the critical point, the equal
area isobar cannot be used to replace the oscillating part.
To address this argument, first of all, we make the assump-
tion that the equal area law holds for any state graph which
possesses an oscillating behavior. Then we have obtained
the phase transition points (an analytical relation between
T, P, Q) by using the equal area law in the T –S, P–V , P–ν

planes. The result shows that the phase diagrams obtained
from the T –S, P–V planes are identical but they are differ-
ent from the one obtained from the P–ν plane. There should
be only one phase diagram for a thermodynamical system,
so the phase diagram obtained from the P–ν plane is wrong,
contradicting our assumption. We have also made a compar-
ison of our results with the fitting formula Eq. (52) obtained
in Ref. [30], which indicates that the phase diagram obtained
from the P–ν plane is wrong. To further understand why the
equal area law cannot be used in these planes, we traced back
the derivation of the equal area law and found that the Smarr
relation or the first law, which guarantees the equal area law,
can only be used in the P–V , T –S, and φ–Q planes.

In Sects. 3.1 and 3.2, we get the analytical T –P–Q phase
transition relation. With this analytical phase transition rela-
tion, it is convenient to analyze the phenomena near the crit-
ical point. The graph is plotted in Fig. 6.

We see that the RN-AdS black hole’s P–T coexistence
line for fixed charge Q is just the same as the VDW case:
as the temperature T increases in the smaller T region, the
corresponding pressure P increases very slowly, while in the
bigger T region, P increases quickly as T increases. The
critical points are very different for different Q; the critical
point quickly decreases as the Q increases. This means that
the condition for a highly charged RN-AdS black hole to
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Fig. 6 The phase transition coexistence surface (T –P–Q graph) for
the RN-AdS black hole. The phase transition line of P–T decreases as
the charge Q increases, the pressure P increases as the temperature T
increases

transit from its “gas” phase to a “liquid” phase is very difficult
to reach, which requires a very low temperature.

The RN-AdS black hole system is reminiscent of the VDW
system in many aspects, except for the specific volume. For
the VDW case, the equal area law can be used in the P–ν

plane. The specific volume is ν = V
Nm ∼ V

N , here N stands
for the molecule number in V and m stands for the molecule
mass. The molecule mass is a constant, so the specific volume
can stand for one molecule’s volume. This means the specific
volume gives us microscopic information of the VDW sys-
tem. We may expect that the specific volume of the black hole
can give us some microscopic information too. The different
specific volume between a RN-AdS black hole system and a
VDW system probably means there are different microscopic
structures.
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