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Abstract Our universe hosts various large-scale structures
from voids to galaxy clusters, so it would be interesting to
find some simple and reasonable measure to describe the
inhomogeneities in the universe. We explore two different
methods for this purpose: the Kullback–Leibler entropy and
the Weyl curvature tensor. These two quantities characterize
the deviation of the actual distribution of matter from the
unperturbed background. We calculate these two measures
in the spherically symmetric Lemaître–Tolman–Bondi model
in the dust universe. Both exact and perturbative calculations
are presented, and we observe that these two measures are in
proportion up to second order.

1 Introduction

The standard model of cosmology is usually based on two
preconditions: (1) the dynamics of cosmological evolution
is governed by Einstein’s general relativity; (2) the universe
is spatially homogeneous and isotropic, as described by the
Friedmann–Robertson–Walker (FRW) metric. The first pre-
condition has stood many astronomical tests through the past
century. However, the second one, always named “cosmolog-
ical principle”, is not so well established. Data from various
cosmological experiments, have already confirmed with high
precision that the universe is indeed very homogeneous at
early times and large scales. However, at late times (matter-
dominated era) or small scales (102 Mpc), due to gravitational
instabilities, regions that are slightly overdense will attract
matter from the surroundings, in the process becoming even
more overdense and vice versa. As a result, the present uni-
verse has a well-developed nonlinear structure that cannot
at all scales be described by the FRW model. Consequently,
the cosmological principle still deserves serious considera-
tions.
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The irreversibility of structure formation in the universe
reminds us of the process of entropy increasing in thermo-
dynamics. Their resemblance naturally leads us to attempt
to introduce some kind of “entropy” to characterize the cos-
mological structure formation. This issue aroused attention
of many people in recent years. Motivated by the Penrose
conjecture and thermodynamical considerations on gravita-
tional field, Clifton et al. [1] proposed a measure of grav-
itational entropy based on the Bel–Robinson tensor, which
is the unique totally symmetric traceless tensor constructed
from the Weyl tensor. It was shown that this measure is
applicable to many models under certain conditions, ranging
from the exact Schwarzschild black hole solution to the per-
turbed FRW model. Moreover, Sussman introduced a quasi-
local scalar weighted average for the study of the Lemaître–
Tolman–Bondi (LTB) dust model [2,3]. Considering the
asymptotic limits in this framework, Sussman and Larena
[4] pointed out that the proposal in Ref. [1] is directly related
to a negative correlation of the fluctuations of the energy
density and the Hubble rate. Furthermore, these authors also
explored the relative information entropy defined by Hosoya
et al. [5] and a variant based on the averaging procedure in
Ref. [2]. They found that the independent proposals in Refs.
[1,5] yield fairly similar conditions for entropy production,
so they were able to obtain a robust qualitative inference of
the evolution of gravitational entropies in Refs. [1,5] for the
full evolution range of the generic LTB models.

The aim of this paper is to explore some quantity that
can measure the structure formation in the inhomogeneous
universe, i.e. to investigate some way to describe the devia-
tion of the actual distribution of matter from the FRW back-
ground. This problem has been discussed in Ref. [6], where
two different measures were studied: the Kullback–Leibler
(KL) entropy SD and the full contraction of the Weyl ten-
sor CμνλρCμνλρ . It was found that they both serve as the
reasonable measures for structure formation, and their only
difference is a kinematical backreaction term QD,
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SD
VD

= 9

32π

(
t2

8
〈CμνλρC

μνλρ〉D + QD
)

. (1)

We should emphasize that this relation was obtained in the
linear cosmological perturbation theory [6]. However, the
three terms SD,CμνλρCμνλρ , andQD are all of second order
in the perturbative approach, so Eq. (1) is their relation at the
leading order. More calculational details will be discussed in
Sect. 4.

The present paper is a successive research of Ref. [6].
Here, we work in the spherically symmetric LTB model.
We will prove that the kinematical backreaction vanishes in
the perturbative approach in this model, with both growing
and decaying modes of the scalar perturbations taken into
account. Therefore, the KL entropy is actually proportional
to the Weyl scalar in the LTB model. For simplicity, the grav-
itational constant G is set to be unity throughout the paper.

2 KL entropy, Weyl curvature, and kinematical
backreaction

In this section, we explain the meanings of the KL relative
entropy in information theory, the Weyl tensor in differential
geometry, and the kinematical backreaction in the averaging
problem in the inhomogeneous universe, respectively.

2.1 KL Relative information entropy

The relative information entropy in cosmology is a direct
analog of the KL divergence widely used in statistics, prob-
ability theory, and information theory [7],

S{p||q} :=
∑
i

pi ln
pi
qi

,

which measures the difference between two probability dis-
tributions {pi } and {qi }. Typically, {pi } denotes an actual
distribution of data, while {qi } represents the presumed one
or the theoretical description of {pi }.

The KL divergence possesses several advantageous prop-
erties: (1) it is always nonnegative, S{p||q} � 0, with
S{p||q} = 0 iff pi = qi ; (2) it is invariant under parameter
transformations; (3) it is additive for independent distribu-
tions; (4) it remains well defined for continuous distributions.

These properties inspired people to apply this idea to cos-
mology. In Ref. [5], Hosoya et al. defined the KL entropy
density SD/VD as a functional of the actual and averaged
distributions of mass densities, ρ and 〈ρ〉D, in the inhomo-
geneous universe,

SD{ρ||〈ρ〉D}
VD

:=
〈
ρ ln

ρ

〈ρ〉D
〉
D

, (2)

where VD is the volume of a domain D. Furthermore, it
proves that the increasing of SD encodes the noncommu-
tation of the temporal evolution and spatial averaging of the
mass density [5],

ṠD
VD

= 〈ρ̇〉D − 〈ρ〉.D. (3)

2.2 Weyl curvature and Penrose conjecture

As matter and the geometry of space-time are closely interre-
lated in general relativity, it is also possible to depict the inho-
mogeneous distribution of matter via geometrical concepts.
The idea was suggested by Penrose that the Weyl curvature
tensor could play the role of gravitational entropy.

In differential geometry, the Weyl tensor Cμνλρ is a mea-
sure of the curvature of a pseudo-Riemannian manifold, and
in four-dimensional space-time, it is defined as

Cμνλρ := Rμνλρ − gμ[λRρ]ν + gν[λRρ]μ + 1

3
gμ[λgρ]νR,

where Rμνλρ is the Riemann tensor, Rμν is the Ricci tensor,
and R is the Ricci scalar. We may regard the Weyl tensor as
a part of the Riemann tensor, containing the components not
captured by the Ricci tensor. Thus, it is locally independent
of the energy-momentum tensor, so the Weyl tensor may be
viewed as a purely geometrical description of an inhomoge-
neous space-time. Besides the same symmetries as the Rie-
mann tensor, the Weyl tensor is traceless, Cλ

μλν = 0. There-
fore, the full contraction of the Weyl tensor CμνλρCμνλρ is
the principal scalar that we can construct.

For a Schwarzschild black hole of mass M , its Weyl scalar
is CμνλρCμνλρ = 12(2M)2/r6. Meanwhile, the entropy S
of this black hole is S = 4π(2M)2/4. These observations led
Penrose to conjecture that there could be some latent rela-
tionship between the thermodynamical entropy S and the
geometrical Weyl scalar CμνλρCμνλρ [8]. The various devel-
opments and modifications of Penrose’s original conjecture
can be found in Refs. [9–21].

We may further ponder upon Penrose’s conjecture in the
evolution of the universe. In the early universe, when space-
time is almost homogeneous, its Weyl tensor vanishes. But
at late times, in the inhomogeneous space-time, the Weyl
tensor will appear. Consequently, the averaged Weyl scalar
〈CμνλρCμνλρ〉D plays the role of a measure for structure
formation or a kind of entropy. For a more detailed discussion
of Penrose’s conjecture in cosmology, see Ref. [6].

2.3 Averaging procedure

We see in Sects. 2.1 and 2.2 that SD and 〈CμνλρCμνλρ〉D
are both averaged quantities in the inhomogeneous universe.
How to average a physical observable in the perturbed space-
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time is a long-standing and very complicated issue [22].
However, for the objects with redshifts �1, spatial aver-
aging on a constant-time hyper-surface, for which the rest
frames are complete, is already a good enough approxima-
tion.

In the following, we adopt the averaging formalism pro-
posed by Buchert in Ref. [23], and focus only on the scalars
in the dust universe during the matter-dominated era. The
metric of the inhomogeneous universe is written in the syn-
chronous gauge as ds2 = −dt2 + gi j (t, x) dxidx j , and vol-
ume average of a scalar O(t, x) in a comoving domain D on
a constant-time hyper-surface is defined as

〈O〉D := 1

VD(t)

∫
D
O(t, x)

√
det gi j d3x,

where VD(t) := ∫
D

√
det gi j d3x is the volume of D, and we

may thus introduce an effective scale factor aD(t)/aD(t0) :=
(VD(t)/VD(t0))1/3. For the perturbative calculations in Sect.
4, we further define the volume average on the spatially flat
three-dimensional background as

〈O〉 := 1∫
D d3x

∫
D
O(t, x) d3x .

Applying Buchert’s averaging procedure on the Einstein
equations, we arrive at the generalized Friedmann equations
for the irrotational dust universe [23],
(
ȧD
aD

)2

= 8π

3
〈ρ〉D − 〈R〉D + QD

6
,

äD
aD

= −4π

3
〈ρ〉D + QD

3
.

From these effective equations, we see that besides the ordi-
nary entries in the Friedmann equations for the FRW model,
two extra terms influence the evolution of the perturbed
universe: the averaged three-dimensional spatial curvature
〈R〉D and the so-called “kinematical backreaction”,

QD := 2

3
(〈θ2〉D − 〈θ〉2

D) − 2〈σ 2〉D. (4)

QD bears this name because (1) it consists of kinemat-
ical quantities: the volume expansion scalar θ := uμ;μ

and the shear scalar squared σ 2 := 1
2σμνσ

μν ; (2) from
Eq. (4), if QD > 0, it plays the role of effective dark
energy, and thus backreacts the evolution of the background
universe.

3 LTB model

In this section, we first introduce the frequently used LTB
model, and then calculate the three terms in Eq. (1): SD,
〈CμνλρCμνλρ〉D, and QD in this model, respectively.

3.1 LTB model and its solutions

The LTB metric is an exact spherically symmetric (isotropic
but maybe inhomogeneous) solution to Einstein’s equations
[24,25], which reads

ds2 = −dt2 + R′(t, r)2

1 + f (r)
dr2 + R(t, r)2 d�2, (5)

where R(t, r) is a function of the cosmic time t and the
comoving radius r , and f (r) > −1 is an arbitrary function
of r , with f (r)/2 being the energy per unit mass of the dust at
the comoving radius r . In the following, we denote the partial
derivative with respect to t by Ṙ(t, r) and that to r by R′(t, r).
It is obvious that if we further demand spatial homogeneity
in this model, R(t, r) = a(t)r and f (r) = −kr2, the LTB
metric reduces to the FRW model naturally.

Substitution of the LTB metric into Einstein’s equations
yields the dynamical equations for the dust universe,

F ′

R2R′ = 8πρ, f = Ṙ2 + 2RR̈, (6)

where

F(r) = −2R2 R̈ = Ṙ2R − f R (7)

is the second arbitrary function of r , with F(r)/2 denoting
the mass within the sphere at the comoving radius r .

The solutions to R(t, r) can be categorized into three
classes:

(1) for f = 0, the parabolic evolution,

R =
(

9F

4

)1/3

(t − T )2/3, (8)

(2) for f > 0, the hyperbolic evolution,

R = F

2 f
(cosh η − 1), t − T = F

2 f 3/2 (sinh η − η),

(9)

(3) for f < 0, the elliptic evolution,

R = F

−2 f
(1 − cos η), t − T = F

2(− f )3/2 (η − sin η),

(10)

where T = T (r) is the third arbitrary function of r ,
describing the time of the big bang at the comoving
radius r .

Furthermore, in any of the three cases above, the volume
expansion scalar and the shear scalar squared are given as

θ = 2Ṙ

R
+ Ṙ′

R′ , σ 2 = 1

3

(
Ṙ

R
− Ṙ′

R′

)2

. (11)
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These results will be used in the following calculations.

3.2 Exact calculations in the LTB model

Now, we review the exact results ofSD , 〈CμνλρCμνλρ〉D, and
QD in the LTB model. We calculate the time derivative of
SD with the help of Eq. (3), instead of SD, for mathematical
convenience.

First, using Eqs. (3) and (6), we have the production rate
of the KL entropy in the LTB model,

ṠD
VD

= 1

8π

[〈(
F ′

R2R′

).〉
D

−
〈

F ′

R2R′

〉.
D

]
. (12)

Second, the calculation of the Weyl scalar is straightforward.
From the LTB metric in Eq. (5), using Eq. (6), we have

CμνλρC
μνλρ = 16

3

(
R̈

R
− R̈′

R′

)2

. (13)

This result may be reexpressed in terms of the conformal
Newman–Penrose scalar 
2, which is related to the quasi-
local density fluctuation (see Appendix D of Ref. [2]),


2 = 4π

3
ρ − F

2R3 = 1

3

(
R̈

R
− R̈′

R′

)
,

so the averaged Weyl scalar reads in a compact way

〈CμνλρC
μνλρ〉D = 48〈[
2]2〉D.

Last, from Eqs. (4) and (11), we have the kinematical back-
reaction,

QD =
〈

2Ṙ

R

(
Ṙ

R
+ 2Ṙ′

R′

)〉
D

− 2

3

〈
2Ṙ

R
+ Ṙ′

R′

〉2

D
. (14)

The results in Eqs. (12)–(14) are the exact expressions for
ṠD/VD, 〈CμνλρCμνλρ〉D, andQD in the LTB model. In gen-
eral, it is highly nontrivial to work out some concise relation
between them. This issue was extensively discussed in Refs.
[2,3,6].

In Ref. [26], numerical calculations were performed in
a toy model to illustrate the evolutionary behavior of SD.
Nevertheless, in order to gain quantitative relations, we still
have to appeal to the perturbative approach. This will be the
task in the next section.

4 Perturbative calculations in the LTB model

In this section, we regard the LTB model as a spatially flat
FRW model plus linear (first order) spherical perturbations.

In this way, the three arbitrary functions f (r), F(r), and T (r)
in the LTB metric are solved as [27]

f (r) = 20

9
ψ ′(r)r, (15)

F(r) = 4

9
r3

(
1 + 10

3
ψ(r)

)
, (16)

T (r) = −3

2

φ′(r)
r

, (17)

where ψ(r) and φ(r) are the linear spherical scalar per-
turbations. A direct gauge transformation shows that ψ =
− 9

10 (
 + 1
6χ) and φ = t

2 [χ + 9
5 t

2/3(
 + 1
6χ)], where


 and χ are the linear scalar perturbations in the cartesian
coordinate system in Ref. [6]. Here, we should address that
the linear regime around a spatially flat FRW model is nec-
essarily restricted to early times and the decaying mode must
be very subdominant (see numerical examples in Ref. [3]).
Besides, ψ and φ can be mapped to the free parameters in
the Hellaby–Lake conditions, which avoid the shell crossing
singularities [28], and one of these conditions implies that
φ′ ≤ 0. This is consistent with the fact that the time of the
big bang T (r) ≥ 0 at any comoving radius r . Last, by using
the variables in Ref. [27], it is difficult to identify an initial
time slice that admits linearized initial conditions. However,
other metric parametrization of the LTB metric, e.g. the one
used in Refs. [2–4] may be more useful.

Below, we calculate SD/VD, 〈CμνλρCμνλρ〉D, and QD
in the perturbative approach up to second order, but in fact
we only need to consult the first order perturbative results.
This trick lies on the fact that all these three quantities are
already of second order. We pick SD/VD for an example. If
we expand ρ to second order, ρ = ρ(0) + ρ(1) + ρ(2), we
have

SD
VD

=
〈
ρ ln

ρ

〈ρ〉D
〉
D

= 〈(ρ(1))2〉 − 〈ρ(1)〉2

2ρ(0)
+ · · · . (18)

We see that the leading term in Eq. (18) is the variance of
the mass density, and is thus of second order. Therefore, we
are entitled to neglect the perturbation in

√
det gi j and to

use the average on the spatially flat three-dimensional back-
ground 〈· · ·〉 to replace the average in the perturbed space-
time 〈· · ·〉D, as their difference is at even higher orders. Sim-
ilarly, this argument holds for 〈CμνλρCμνλρ〉D and QD.

We should state here that since the three quantities SD,
〈CμνλρCμνλρ〉D, and QD are all of second order and have
no zeroth and first order terms, they are automatically gauge
invariant quantities [29,30], albeit the following calcula-
tions are performed in the synchronous gauge. An alternative
gauge invariant treatment for the linear regime of the LTB
models was furnished by the exact quasi-local perturbations
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in Ref. [2], which has the advantage that it can track the
perturbations through the nonlinear regime.

For the three solutions for R, we start from the simplest
f = 0 case, where there is only the decaying mode of the
scalar perturbations. Next, we proceed to the growing mode
in the f �= 0 cases, and finally to the general case with both
the decaying and the growing modes taken into account.

4.1 Decaying mode

In the f = 0 case, from Eq. (15), ψ ′ = 0, and ψ is a constant.
Using Eqs. (8) and (16), we expand R to first order,

R(t, r) = r t2/3
(

1 + 10

9
ψ + φ′

r t

)
. (19)

We see from Eq. (19) that the first two terms 1 + 10ψ/9
are constant in time, and the third one φ′/(r t) represents a
decaying mode in R. But this term should not be simply dis-
regarded at present, because the constant perturbation 10ψ/9
can be viewed as a fraction of the background metric and thus
does not contribute to the perturbative results. This will be
seen in Eqs. (22)–(26).

Before giving the final results, two useful intermediate
steps are listed below,

Ṙ = 2r

3t1/3

(
1 + 10

9
ψ − φ′

2r t

)
, (20)

R′ = t2/3
(

1 + 10

9
ψ + φ′′

t

)
. (21)

Substituting Eqs. (16), (19), and (21) into Eq. (6), we obtain

ρ = 1

6π t2

(
1 − 2φ′

r t
− φ′′

t

)
.

Thus, we have the mass density at the background and first
order,

ρ(0)(t) = 1

6π t2 , ρ(1)(t, r) = − 1

6π t3

(
2φ′

r
+ φ′′

)
.

Substituting these results into Eq. (18), we attain the KL
entropy in the LTB model up to second order,

SD
VD

= 1

12π t4

[〈(
2φ′

r
+ φ′′

)2
〉

−
〈

2φ′

r
+ φ′′

〉2
]

. (22)

Above, we changed 〈· · ·〉D to 〈· · ·〉, as we have already
explained.

Immediately, the time derivative and convexity of the KL
entropy read

ṠD
VD

= − 1

6π t5

[〈(
2φ′

r
+ φ′′

)2
〉

−
〈

2φ′

r
+ φ′′

〉2
]

, (23)

S̈D
VD

= 1

2π t6

[〈(
2φ′

r
+ φ′′

)2
〉

−
〈

2φ′

r
+ φ′′

〉2
]

. (24)

From Eqs. (23) and (24), we find that the KL entropy
decreases (in a decelerated way) for the parabolic evolution
in the LTB model. This result was exactly proven in Ref.
[32], and our perturbative calculation is consistent with this
fact. Last, we should mention that if we start from Eq. (12),
we will arrive at the same result as that in Eq. (23).

In like manner, substituting Eq. (19) into Eqs. (13) and
(14), we get the averaged Weyl scalar,

〈CμνλρC
μνλρ〉D = 64

27t6

〈(
φ′

r
− φ′′

)2
〉

, (25)

and the kinematical backreaction,

QD = 2

3t4

[〈(
2φ′

r
+ φ′′

)2
〉

−
〈

2φ′

r
+ φ′′

〉2

−
〈(

φ′

r
− φ′′

)2
〉]

. (26)

Above, we did not combine the first and third terms in QD,
as we notice that the third term exactly cancels the aver-
aged Weyl scalar (up to a coefficient). We may discover from
Eq. (26) that QD just characterizes the difference between
SD/VD and 〈CμνλρCμνλρ〉D.

From Eqs. (22), (25), and (26), we may formally express
the relation of SD/VD, 〈CμνλρCμνλρ〉D, and QD as

SD
VD

= 9

32πG

(
t2

8
〈CμνλρC

μνλρ〉D + 4

9
QD

)
.

This result looks rather like that in Eq. (1), but with a differ-
ent coefficient: 4/9. However, there is no problem. In Ref.
[6], merely the growing mode of the linear perturbations were
considered, but here we see from Eq. (19) that only the decay-
ing mode exists in the f = 0 case, which was not extensively
discussed in Ref. [6].

Nevertheless, in the f = 0 case, QD is actually found to
vanish. This is because

QD = 2

3t4

[
3

〈
φ′

r

(
φ′

r
+ 2φ′′

)〉
−

〈
2φ′

r
+ φ′′

〉2
]

,

and the integrals above can be performed directly. Consider a
spherical domain with the comoving radius RD, for a second
order quantity O , we have
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〈O〉 = 4π

VD

∫ RD

0
OR2R′ dr = 3

R3
D

∫ RD

0
Or2 dr,

where R2R′ = r2t2 on the spatially flat three-dimensional

background, and VD = 4π
∫ RD

0 r2t2 dr = 4π
3 R3

Dt2. In this
way, it is easy to find

3

〈
φ′

r

(
φ′

r
+ 2φ′′

)〉
=

〈
2φ′

r
+ φ′′

〉2

= 9φ′(RD)2

R2
D

.

This proves QD = 0. In fact, in the parabolic evolution, QD
vanishes exactly. A direct proof can be found in Ref. [31],
and a general discussion was shown in Sect. 5.1 in Ref. [32].

Eventually, we obtain

SD
VD

= 9t2

256π
〈CμνλρC

μνλρ〉D. (27)

We see that the relation of SD/VD and 〈CμνλρCμνλρ〉D is
more direct in the LTB model, as QD vanishes in this case.
Furthermore, if we multiply VD on both sides of Eq. (27), we
find that the total KL entropy in a domain D is the same as
the total Weyl scalar. But we should stress that this integral
equality does not mean that Eq. (27) holds pointwise, and
Eq. (27) holds only in the perturbative approach.

4.2 Growing mode

For the cases with a non-vanishing f , we first Taylor expand
t − T in Eqs. (9) and (10), solve the parameter η, and then
substitute it into the corresponding R. For both cases, f > 0
and f < 0, we arrive at the same result,

R(t, r) = r t2/3
(

1 + 10

9
ψ + φ′

r t
+ ψ ′t2/3

r

)
. (28)

This result is the same as that in Eq. (19), but with an addi-
tional term ψ ′t2/3/r , because ψ ′ is now nonzero if f �= 0.
This term is the growing mode in the perturbative expansion
of R, and it will dominate in R as t increases. For this reason,
we may first neglect the decaying mode φ′/(r t) in Eq. (28)
and focus on the growing and constant ones,

R(t, r) = r t2/3
(

1 + 10

9
ψ + ψ ′t2/3

r

)
. (29)

Now, R is a function of ψ only.
The following perturbative calculations are totally parallel

to those in Sect. 4.1. First, we have

ρ(1) = − 1

6π t4/3

(
2ψ ′

r
+ ψ ′′

)
.

Then SD/VD, ṠD/VD, and S̈D/VD are obtained in order,

SD
VD

= 1

12π t2/3

[〈(
2ψ ′

r
+ ψ ′′

)2
〉

−
〈

2ψ ′

r
+ ψ ′′

〉2
]

,

(30)

ṠD
VD

= 1

9π t5/3

[〈(
2ψ ′

r
+ ψ ′′

)2
〉

−
〈

2ψ ′

r
+ ψ ′′

〉2
]

,

(31)

S̈D
VD

= 1

27π t8/3

[〈(
2ψ ′

r
+ ψ ′′

)2
〉

−
〈

2ψ ′

r
+ ψ ′′

〉2
]

.

(32)

From Eqs. (31) and (32), we see that the KL entropy in the
LTB model increases monotonically (in an accelerated way)
both for the hyperbolic and elliptic evolutions. This agrees
with the result in Ref. [6], though it seems to disagree with
that in Eq. (23). But actually, there is no contradiction, as
Ref. [6] only dealt with the growing modes in the perturbed
universe. For more non-perturbative analyses on the temporal
evolutions of the KL entropy, see Ref. [32].

Furthermore, we have 〈CμνλρCμνλρ〉D and QD as

〈CμνλρC
μνλρ〉D = 64

27t8/3

〈(
ψ ′

r
− ψ ′′

)2
〉

(33)

and

QD = 8

27t2/3

[〈(
2ψ ′

r
+ ψ ′′

)2
〉

−
〈

2ψ ′

r
+ ψ ′′

〉2

−
〈(

ψ ′

r
− ψ ′′

)2
〉]

. (34)

From Eqs. (30), (33), and (34), we formally recover the
result in Eq. (1),

SD
VD

= 9

32π

(
t2

8
〈CμνλρC

μνλρ〉D + QD
)

. (35)

Till now, we understand that this relation is valid only for the
growing mode of the scalar perturbations. As expected, the
second order perturbative calculations in the LTB model for
the f �= 0 cases reconfirm this relation.

However, as we demonstrate in the f = 0 case, QD also
vanishes in the f �= 0 cases. In this way, we again have

SD
VD

= 9t2

256π
〈CμνλρC

μνλρ〉D.

This result is the same as that in Eq. (27).
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4.3 General case

With the preparations in Sects. 4.1 and 4.2, we now present
the general solutions for SD/VD, 〈CμνλρCμνλρ〉D, and QD,
taking into account both the decaying and the growing modes
of the scalar perturbations. We begin with

R(t, r) = r t2/3
(

1 + 10

9
ψ + φ′

r t
+ ψ ′t2/3

r

)

and obtain the full expressions for the KL entropy,

SD
VD

= 1

12π t4

⎡
⎣

〈(
2φ′

r
+ φ′′ + 2ψ ′t5/3

r
+ ψ ′′t5/3

)2〉

−
〈

2φ′

r
+ φ′′ + 2ψ ′t5/3

r
+ ψ ′′t5/3

〉2
⎤
⎦ ,

the averaged Weyl scalar,

〈CμνλρC
μνλρ〉D

= 64

27t6

〈(
φ′

r
− φ′′ + ψ ′t5/3

r
− ψ ′′t5/3

)2〉
,

and the kinematical backreaction,

QD = 8

27t4

⎡
⎣

〈(
3φ′

r
+ 3

2
φ′′ − 2ψ ′t5/3

r
− ψ ′′t5/3

)2〉

−
〈

3φ′

r
+ 3

2
φ′′ − 2ψ ′t5/3

r
− ψ ′′t5/3

〉2

−
〈(

3φ′

2r
− 3

2
φ′′ − ψ ′t5/3

r
+ ψ ′′t5/3

)2〉⎤
⎦ .

These are the final and complete results for SD/VD,
〈CμνλρCμνλρ〉D, and QD that we hope to calculate in this
paper, with all the perturbative modes considered. After some
algebra, the seemingly complicated QD proves to vanish in
the perturbative approach again, and we eventually arrive at
the relation between the KL entropy and the Weyl scalar in
the general case,

SD
VD

= 9t2

256π
〈CμνλρC

μνλρ〉D.

5 Conclusions and discussions

In recent years, the study of the inhomogeneous cosmological
models and the corresponding problems, e.g. the averaging
procedure, backreaction mechanism, and light propagation
in perturbed space-time, has attracted much attention (see

Refs. [33–54] and the references therein). One relevant and
important issue is to seek some simple and reasonable mea-
sure for the large-scale structure formation during cosmo-
logical evolution. In Ref. [6], two such measures were inves-
tigated: the KL entropy SD and the averaged Weyl scalar
〈CμνλρCμνλρ〉D, and their relation is shown in Eq. (1) in
the perturbative approach up to second order. In the present
paper, we verify this result in the LTB model, and simultane-
ously point out that the kinematical backreaction vanishes in
this special model, due to its higher symmetry. Consequently,
there is a more concise relation between the KL entropy and
the averaged Weyl scalar—they are in proportion in the LTB
model,

SD
VD

= 9t2

256π
〈CμνλρC

μνλρ〉D.

This result applies to all the three types of evolution in the
LTB model (up to second order).

Finally, we give some general discussions.

(1) The exact results for the KL entropy, Weyl scalar, and
kinematical backreaction in the LTB model are listed
in Eqs. (12)–(14). However, their fully nonlinear exact
relationship is still under consideration and this seems to
be a highly nontrivial task. A next possible step should
be to look for other quantities that vanish in the per-
turbative treatment but are present in the full LTB solu-
tion. In this aspect, the non-perturbative quasi-local aver-
aging formalism in Refs. [2,4] provided a reasonable
approach, which differs from Buchert’s procedure but
coincides in the linear regime around a spatially flat FRW
background. In this formalism, the authors were able to
express the KL entropy, the Weyl scalar, the kinemati-
cal backreaction, and other tensorial objects in terms of
the quadratic fluctuations of the density and the Hubble
expansion scalar (see Sects. 6 and 7 in Ref. [2]).

(2) From Eqs. (11) and (13), we find CμνλρCμνλρ ∝
σ 2. This is not just a coincidence, and we may have
deeper insight from this proportion. The Weyl curva-
ture may be irreducibly decomposed into the electric
part Eμν := Cμλνρuλuρ and the magnetic part Hμν :=
1
2εμλαβCαβ

νρuλuρ . In the LTB model (both in exact and
perturbative approaches), the magnetic part vanishes, so
CμνλρCμνλρ ∝ EμνEμν . At the same time, the shear
tensor is proportional to the electric part, σ 2 ∝ EμνEμν .
These facts explain the similar results in Eqs. (11) and
(13).

(3) To our knowledge, the Penrose conjecture has not
yet been well formulated in a rigorous mathemati-
cal way. Hence, to construct possible scalars from the
Weyl tensor should be the first step in this direc-
tion. According to the Petrov classification, in addition
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to CμνλρCμνλρ , there are other independent full con-
tractions, e.g. εμνλρCλραβCαβ

μν , CμνλρCλραβCαβ
μν ,

or εμνλρCλραβCαβγ δCγ δμν . A direct calculation indi-
cates that εμνλρCλραβCαβ

μν vanishes. In Ref. [55], it
was shown that CμνλρCμνλρ diverges and thus fails to
be monotonic near the isotropic singularities. There-
fore, some other candidates have been considered, e.g.
(CμνλρCμνλρ)/(RμνRμν), which may help to evade this
limitation, and this direction deserves further explo-
ration.

(4) From a mathematical point of view, the curvature of
space-time is measured by the Riemann tensor, con-
sisting of the Ricci tensor and Weyl tensor, namely,
Riemann = Ricci + Weyl. However, Einstein’s equa-
tions only associate the Ricci sector with the energy-
momentum tensor. We may naturally ask why the infor-
mation stored in the Weyl sector is absent in general
relativity. A possible answer is that the Weyl tensor is
linked not to the dynamical, but to the thermodynamical
aspect of gravitational fields. The evolution of our uni-
verse is doubtlessly irreversible. But on the contrary, a
process governed by Einstein’s equations possesses the
invariance of time reversal, so the time asymmetry of cos-
mological evolution is not shown explicitly in Einstein’s
equations. Is this information encoded in the Weyl ten-
sor? Penrose proposed that some scalar invariant of the
Weyl tensor could be identified with the gravitational
entropy of the universe. Our present work helps to con-
firm this idea and indicates that the Weyl tensor can be
further related to the KL entropy. These facts lead us to
wonder whether there exist equations that are parallel
to Einstein’s equations and quantify the thermodynam-
ical relationship between space-time and matter. These
equations are expected to link the Weyl tensor with the
concepts such as temperature or entropy. This question
will be the topic of research in future.
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