
Eur. Phys. J. C (2014) 74:3158
DOI 10.1140/epjc/s10052-014-3158-y

Letter

Present accelerated expansion of the universe from new
Weyl-integrable gravity approach

Ricardo Aguila1, José Edgar Madriz Aguilar1,a, Claudia Moreno1, Mauricio Bellini2,3,b

1 Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e ingenierías (CUCEI), Universidad de Guadalajara (UdG),
Av. Revolución 1500, S.R. 44430, Guadalajara, Jalisco, Mexico

2 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350,
C.P. 7600, Mar del Plata, Argentina

3 Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
La Plata, Argentina

Received: 27 August 2014 / Accepted: 26 October 2014 / Published online: 11 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We investigate if a recently introduced formu-
lation of general relativity on a Weyl-integrable geometry
contains cosmological solutions exhibiting acceleration in
the present cosmic expansion. We derive the general condi-
tions to have acceleration in the expansion of the universe and
obtain a particular solution for the Weyl scalar field describ-
ing a cosmological model for the present time in concordance
with the data combination Planck + WP + BAO + SN.

1 Introduction

The present accelerated expansion of the universe has
become an interesting topic, not just for the absence of a fully
satisfactory explanation of its origin, but for the wide range
of gravity theories introduced in the quest for viable answers
to the problem. Many have been the attempts to construct
viable models. This issue has been addressed basically in two
approaches. In one of them the acceleration is generated by an
extra material component in the universe, the dark energy (in
which is included the cosmological constant). In the other the
acceleration is a purely gravitational effect within the frame-
work of gravitation theories alternative to Einstein’s general
relativity. Modifications to Einstein’s gravitational theory go
back to the work of Eddington and Schrödinger [1]. Physical
scalar fields have been included in some dark energy mod-
els, but unfortunately not always with a solid motivation for
its introduction beyond the justification of the acceleration
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in the expansion of the universe. However, none of these is
free from problems, as for some quintessence fields [2]. The
majority of quintessence models have been proposed in the
light of general relativity. However, in the second approach,
the Weyl-integrable geometry provides a solid tool to incor-
porate a scalar field as a part of the geometry of the spacetime.
A consequence of this is that the scalar field can also describe
the gravitational field (in addition to the metric tensor gμν),
in a new version of scalar-tensor theory [3,4].

The Brans–Dicke (BD) theory of gravity is the simplest
scalar-tensor theory considered as an alternative to general
relativity, in which gravity is described by both a tensor field
gμν and a scalar field �. In this theory the scalar field, which
is not of geometric nature, is not a matter field, instead it deter-
mines the inverse of the gravitational coupling parameter and
in this sense it is part of gravity. This is the reason why the
BD scalar field does not appear in the geodesic equation for
both massive and massless particles [5,6]. This aspect may
be considered as inconvenient in the sense that even when �

is a part of the gravitational field, it does not appear as a part
of the geometry, which in this case is the Riemannian one.

A more congruent gravitational theory of the BD type
would be one in which the BD scalar field would play an
active role in the dynamical field equations of the theory,
the same as in its geometrical structure, describing together
with the metric tensor gμν , the gravitational field. Recently
Romero and collaborators, by means of the Palatini varia-
tional method, found that the scalar field of a BD theory of
gravity can turn the space time geometry (assumed Rieman-
nian in DB theories) into a Weyl-integrable one, generating in
this manner a scalar-tensor theory that differs from the orig-
inal BD one [7]. They also found that the Weyl-integrable
geometry contains a Riemannian structure which allows one
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to formulate general relativity on Weyl-integrable manifolds
[4].

A similar result has been obtained in [8]. In this letter a
conformal equivalence principle is postulated which mathe-
matically is associated with the conformal invariance of the
field equations of the theory of gravitation considered. The
conformal equivalence principle is formulated as follows: the
laws of gravity look the same, no matter which one of the dif-
ferent conformally related frames is chosen to describe them.
From this point of view is analyzed an alternative interpre-
tation of conformal transformations of the metric, establish-
ing that they can be viewed as a mapping between Riemann
and Weyl-integrable geometries. Thus, when the conformal
equivalence principle is assumed to be valid, the transforma-
tions relate complementary geometrical pictures of the same
physical reality. As an example, it is shown that in order to
have a BD theory of gravity in concordance with the confor-
mal equivalence principle, the background geometry of the
BD theory must be the Weyl-integrable geometry.

Thus, in view of the preview results, the Weyl-integrable
geometry as gravity theory has several interesting aspects by
which to address the problem of the acceleration in the cosmic
expansion. In this letter we investigate if the formulation of
the general theory of relativity on Weyl-integrable geometry
contains cosmological solutions compatible with an acceler-
ated expansion of the universe, without the introduction of a
dark energy component. For this purpose the letter is orga-
nized as follows. In Sect. 2 we give a review of the proposal
of C. Romero and collaborators to formulate a general theory
of relativity on a Weyl-integrable geometry [4]. In Sect. 3 we
establish the dynamical field equations of the gravity model
on cosmological scales. In Sect. 4 we derive the general con-
ditions under which the cosmological solutions of the theory
exhibit accelerated expansion on cosmological scales, and
we find a particular solution compatible with the data com-
bination Planck + WP + BAO + SN [9]. Finally, in Sect. 5
we develop some final comments.

2 A new approach of Weyl-integrable geometry

As is well known, the Weyl geometry is the simplest exten-
sion of Riemann geometry. The general theory of relativity
is formulated on the base of Riemannian geometry. Unlike
Riemannian geometry, in Weyl geometry the nonmetricity
condition has a different form. In a coordinate chart the Weyl
nonmetricity condition reads [4,8]

(w)∇αgμν = −σαgμν, (1)

where (w)∇α is the Weyl covariant derivative, σα is a 1-form
field also known as a gauge vector field, and gμν are the
covariant components of the tensor metric. It can easily be

shown that the nonmetricity condition (1) is invariant under
the Weyl rescaling transformations,

ḡαβ = �2gαβ, σ̄μ = σμ − 2∂μln�, (2)

�(x) being a non-vanishing differentiable function. In Weyl
geometry the affine connection is assumed torsionless and
hence the condition (1) yields

	α
μν = {

α
μ ν

}+ 1

2
gαβ

[
gβμσν + gβνσμ − gμνσβ

]
, (3)

where
{
α
μ ν

}
denotes the Christoffel symbols.

The presence of σμ in (1) has its consequences when par-
allel transport of vectors is implemented. One of them is
that the length of a vector, l2 = gαβlαlβ , varies from point
to point even on a closed path: l = l0exp

∮
dxμσμ/2. This

effect is known as “ the second clock effect” which basically
consists in the broadening of the atomic spectral lines of the
electrons immersed in the σα field. This second clock effect
is unobserved, as was pointed out by Einstein, and thus the
Weyl geometry was considered not viable [10].

Subsequently, Weyl proposed a particular subclass of his
geometry known as a Weyl-integrable (WI) geometry, which
does not suffer from the second clock effect. This achieve-
ment was due to the fact that Weyl expressed the 1-form field
as the gradient of a scalar field: σμ = ∂μϕ. This scalar field is
geometrical in nature and is known as the Weyl scalar field.
In WI geometry the nonmetricity condition (1) reads

(w)∇αgμν = −∂αϕ gμν, (4)

while the torsionless affine connection (3) leads to

	α
μν = {

α
μ ν

}+ 1

2
gαβ

[
gβμ∂νϕ + gβν∂μϕ − gμν∂βϕ

]
, (5)

which is the WI connection. Along a closed path the Stokes
theorem ensures that

∮
σμ

2
dxμ =

∮
∂μϕ

2
dxμ =

∮
dϕ

2
= 0, (6)

and thus the length of a vector is preserved when it is parallel
transported along a closed path. However, in the case of an
open path the length of a vector continues varying from point
to point. This variation is due to the variation of the scalar
product of two vectors g(u(λ), v(λ)) when they are parallel
transported along a path C characterized by the parameter λ.
If λ0 corresponds to a point a and λ corresponds to a different
point b, the scalar product is given by

g(v(λ), u(λ)) = g(v(λ0), u(λ0))e
−[ϕ(x(λ))−ϕ(x(λ0))]. (7)
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This expression is interpreted as the Weyl scalar field, it is
responsible for the non-invariance of the scalar product along
an opened path, and this is the interpretation usually found
in the literature.

However, recently Romero and collaborators have shown
that we can have a novel interpretation of (7), in which a Rie-
mannian structure can be recovered into the Weyl-integrable
geometry. To show it, they rewrite (7) in the form

eϕ(x(λ))g(v(λ), u(λ)) = eϕ(x(λ0))g(v(λ0), u(λ0)). (8)

This equation can be interpreted as there being an isometry
between the tangent spaces of the manifold (spacetime) at
the points a = C(λ0) and b = C(λ) only in the effective
metric ĝμν = eϕgμν . It is easy to see that with this effective
metric the nonmetricity condition (4) becomes

∇α ĝμν = 0, (9)

which corresponds to a Riemannian nonmetricity condition.
Moreover, as ĝμν = eϕgμν is invariant under Weyl rescal-
ing transformations, then any geometrical object constructed
only with ĝμν is also invariant. The isometry acts as a cor-
respondence between a Weyl frame (M, g, ϕ) and a unique
Riemannian frame (M, ĝ = eϕg, 0). In this sense the isome-
try in (8) implies that a new kind of invariance can be estab-
lished and the same physical phenomena may appear in dif-
ferent representations. For example, the present accelerated
expansion of the universe may be addressed in both frames,
however, a possible advantage is that in a Weyl frame we
can find a more satisfactory solution to the problem, taking
into account that in WI gravity the gravitational field has a
scalar-tensor nature, whereas in the Riemann frame gravity
is just described by a tensor field. Thus, as a result it is con-
venient to study the possibility that the present acceleration
in the expansion of the universe could be explained simply
as an effect of gravity, without the need of any dark energy.
The answer will be investigated in the next sections.

3 The field equations on cosmological scales

Let us start by considering the simplest action for a Weyl-
integrable (WI) gravity [4,8],

(w)S =
∫

d4x
√−g eϕ

[
(w)R + κeϕLm

]
, (10)

(w)R being the Ricci scalar calculated with the WI connec-
tion, κ is a coupling constant, and g is the determinant of the
metric gαβ . This action respects the conformal equivalence
principle. When a Palatini variational principle is applied to
this action, the appropriate background geometry as a result

is the Weyl-integrable geometry [8]. The action (10) must
be invariant under the Weyl-integrable rescaling transforma-
tions ḡαβ = e f gαβ , ϕ̄ = ϕ − f , with f being a coordi-
nate dependent smooth function. The Riemann frame can be
obtained simply when we make the particular choice f = ϕ

in the WI rescaling transformations i.e. with this choice we
pass from an arbitrary Weyl frame (M, g, ϕ) to the Riemann
frame (M, ḡ = eϕg, ϕ̄ = 0). In the Riemann frame the action
(10) becomes the usual action for the standard theory of gen-
eral relativity, where the Weyl scalar field ϕ̄ becomes null.
The sources of matter are described by the Lagrangian den-
sity Lm , which is considered independent of the Weyl scalar
field.

Employing the expression

(w)R = R − 3�ϕ − 3

2
gμνϕ,μϕ,ν (11)

and avoiding divergence terms, the field equations derived
from the action (10) can be written as

Gμν − ∇μ∇νϕ + gμν�ϕ

+1

2

(
ϕ,μϕ,ν + 1

2
gμνϕ,σ ϕ,σ

)
= κeϕTμν, (12)

�ϕ + 1

2
gμνϕ,μϕ,ν − R

3
= κeϕT, (13)

where T = gμνTμν is the trace of the energy-momentum ten-
sor, Gμν = Rμν − (1/2)Rgμν is the Einstein tensor, ∇α is
the covariant derivative calculated with the Christoffel sym-
bols and � = gαβ∇α∇β is the D’Alembertian operator. It is
important to stress that in WI gravity the gravitational field is
given by the pair (gμν, ϕ) and thus ϕ is a geometrical scalar
field that describes gravity, so it is not a matter field.

In order to consider some cosmological implications from
this theory, we introduce the Friedmann–Robertson–Walker
(FRW) line element

dS2
4 = dt2 − a2(t)dS2

3 , (14)

dS2
3 = δi j dxi dx j being the spatial 3D Minkowskian line

element and a(t) the cosmological scale factor. For observa-
tional reasons we will only consider models with 3D spatially
flat curvature.

Thus, regarding a perfect fluid with total energy density
ρT and a total pressure pT, for the metric in (14) the field Eq.
(12) yield

3

(
H + 1

2
ϕ̇

)2

− 1

a2 ∇2ϕ − 1

4a2 (∇ϕ)2 = κeϕρT, (15)

2
ä

a
+
(

H + 1

2
ϕ̇

)2

+ ϕ̈ + 3H ϕ̇ − 2

3a2 ∇2ϕ

− 5

12a2 (∇ϕ)2 = −κeϕ pT, (16)
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ϕ,i, j − 1

2
ϕ,iϕ, j = 0, i �= j, (17)

where H = ȧ/a is the Hubble parameter and the dot denotes
the derivative with respect to the cosmic time t . Similarly,
(13) now reads

ϕ̈ + 3H ϕ̇ + 1

2
ϕ̇2 − 1

a2 ∇2ϕ − 1

2a2 (∇ϕ)2

− 2(Ḣ + 2H2) = κeϕ(ρT − 3pT), (18)

which is not an independent equation.
Now, in order to implement the cosmological principle on

large scales, let us assume that the Weyl scalar field has two
contributions, one on cosmological scales and another one
on smaller scales. Thus we use the separation formula

ϕ(t, xi ) = φ(t) + δϕ(t, xi ), (19)

where φ(t) is the part on cosmological scales that satisfies
the cosmological principle and δϕ(t, xi ) is valid on smaller
scales. Once we assume (19), it as a result is natural to con-
sider also two contributions for the total energy density and
the total pressure in the form

ρT(t, xi ) = ρ(t) + δρ(t, xi ),

pT(t, xi ) = p(t) + δp(t, xi ), (20)

where ρ(t) = ρm(t) + ρr (t) and p(t) = pm(t) + pr (t),
ρm and ρm being the energy density for matter (baryonic
matter and dark matter) and the energy density for radiation,
while pm and pm denote the pressure for matter and radiation,
respectively.

Under these conditions (15) and (16) read on cosmological
scales as

3

(
H + 1

2
φ̇

)2

= κeφρ, (21)

2
ä

a
+ H2 + φ̈ + 4H φ̇ + 1

4
φ̇2 = −κeφ p, (22)

where we have considered that on cosmological scales the
condition |δϕ| � |φ| holds, thus taking account of the fact
that on cosmological scales the astrophysical contributions
to the Weyl scalar field are subdominant.

On smaller scales (astrophysical scales mainly) the system
(15–16) yields

3

(
H + 1

2
φ̇

)
δϕ̇ + 1

4
δϕ̇2 − 1

a2 ∇2δϕ − 1

4a2 (∇δϕ)2

= κeφeδϕδρ, (23)

δϕ̈ + 4Hδϕ̇ + 1

4
(2φ̇δϕ̇ + δϕ̇2) − 2

3a2 ∇2δϕ

− 5

12a2 (∇δϕ)2 = −κeφeδϕδp. (24)

Notice that the dynamics of the Weyl scalar field on astro-
physical scales is depending of its cosmological solution part.

The dynamical Eqs. (23–24) can be simplified if we assume
on astrophysical scales validity of the opposite condition:
|δϕ| � |φ|, however, this analysis is out of scope of this
letter.

4 Cosmological solutions exhibiting accelerated
expansion

Now we are in a position to investigate if there exist solutions
of the new Weyl-integrable gravitational approach, capable
to describe the present period of accelerated expansion of
the universe. In order to do so, let us to derive the general
conditions for accelerated expansion solutions.

The cosmological dynamics is described by (21) and (22).
Hence, after straightforward calculations these equations
yield

ä

a
= −1

6
κeφ

[
(ρ + 3p) + 3

κ

(
φ̈ + 3H φ̇

)
e−φ

]
. (25)

It can easily be seen from this equation that to achieve ä > 0
solutions, the condition

(ρ + 3p) + 3e−φ

κ

(
φ̈ + 3H φ̇

)
< 0, (26)

must hold. For the barotropic equations of state for matter and
radiation, pm = 0, pr = 1/3ρr , the condition (26) becomes

(
3H2

0

8πG

)

(�m + �r) + 3e−φ

κ

(
φ̈ + 3H φ̇

)
< 0, (27)

where �m and �r are the density parameter for matter and
radiation, respectively.

The inequality (27) can be satisfied if the following con-
ditions are valid:

φ̈ + 3H φ̇ < 0, (28)
(

3H2
0

8πG

)

(�m + �r) <
3e−φ

κ

∣∣φ̈ + 3H φ̇
∣∣ . (29)

As is usually done in scalar-tensor theories, for a power law
expanding universe with H = p/t , a power law Weyl scalar
field φ(t) = φ0(t0/t)n (here φ0 is a constant) satisfies the
condition (28) only when {n > 0, n < 3p − 1, p > 1/3}.
Hence the expression (29) leads to

(
3H2

0

8πG

)

(�m + �r) <
3

κt2 e−φ |n(n + 1 − 3p)φ| . (30)
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The deceleration parameter is in this case

q(t)

= 1

2

⎡

⎢⎢
⎣1 + 3

κeφ

3

(
3H2

0
8πG

)
�r +

(
n(n+1)

t2 − 4nH
t

)
φ + n2

4t2 φ2

κeφ

(
3H2

0
8πG

)
(�m + �r) − 3nH

t φ + 3n2

4t2 φ2

⎤

⎥⎥
⎦,

(31)

which tends asymptotically to −1.
As we have mentioned the Weyl scalar field is geometrical

in origin and cannot be considered as another component of
the cosmic fluid. It is in fact part of the gravitational field.
However, in order to have a comparison with observational
data we can assume, just for this purpose, that the Weyl scalar
field describes a scalar field fluid characterized by an energy
density ρφ and a pressure pφ . If it is the case, it follows from
the dynamical equations (21) and (22) that

ρφ = − 3

κ

(
H φ̇ + 1

4
φ̇2
)

e−φ, (32)

pφ = 1

κ

(
φ̈ + 4H φ̇ + 1

4
φ̇2
)

e−φ. (33)

Thus, the equation of state parameter (EOS) is given by

ωφ = −
[

1 + φ̈ + H φ̇ − 1
2 φ̇2

3
(
H φ̇ + 1

4 φ̇2
)

]

. (34)

Using φ(t) = φ0(t0/t)n , the expressions (32), (33) and (34)
become

ρφ = 3

κ

(
nH

t
φ − n2

4t2 φ2
)

e−φ, (35)

pφ = 1

κ

[(
n(n + 1)

t2 − 4nH

t

)
φ + n2

4t2 φ2
]

, (36)

ωφ = −
⎡

⎣1 +
(

n(n+1)

t2 − nH
t

)
φ − n2

2t2 φ2

3
(
− nH

t φ + n2

4t2 φ2
)

⎤

⎦ . (37)

It follows from (35) that when φ < (4/n)(Ht) the energy
density for the Weyl scalar field ρφ is positive. Moreover,
for large times the linear term in φ inside the parentheses
becomes dominant.

The condition (29) when we use (32) and (33) can be put
in the form

ωφ < −1

3

[

1 − κ(ρm + 2ρr )eφ

3(H φ̇ + 1
4 φ̇2)

]

= −1

3

(
1 + �m

�φ

+ 2
�r

�φ

)
, (38)

where �φ = (8πG/3H2
0 )ρφ is the density parameter asso-

ciated to φ.

According to the data combination Planck + WP + BAO
+ SN, in the present time �m0 = 0.307+0.011

−0.010, �tot0 =
1.000+0.0032

−0.0033 and �r0 = 2.47 · 10−5h−2. Hence, using the
expression �tot0 = �m0 + �r0 + �φ0 , the condition (38)
nowadays becomes

ωφ0 < −0.481+0.0032
−0.0038. (39)

Thus, the condition for accelerating expansion (27) is equiv-
alent to the condition (39) together with {n > 0, n <

3p − 1, p > 1/3}, for a power law Weyl scalar field. These
requirements are not in contradiction with the data combina-
tion Planck + WP + BAO + SN, in which the present EOS
parameter ranges in the interval ω0 = −1.10+0.08

−0.07 [9].
Now from (37) it can easily be seen that for a fixed present

EOS parameter ωφo the present value for the Weyl scalar field
is restricted to the value

φ0 = 4

n(3ωφ0 + 1)
[H0t0(3ωφ0 + 4) − (n + 1)]. (40)

Using the formula H0t0 � (2/3)�m we have the values
H0t0 � 0.2046+0.0074

−0.0066. Thus employing that the EOS param-

eter ωφ0 = −1.10+0.08
−0.07 (where we have identified ω0 with

ωφ0 ) and taking the intermediate values for H0t0 and ωφ0 the
expression (40) reads

φ0 � 1.7391 − 1.9881

n
. (41)

The condition to the energy density (35) to be positive in the
present time, φ0 < (4/n)(H0t0), together with (41) leads
to the restriction n < 1.6137. Therefore the condition n <

3p − 1 yields p > 0.8712, which is compatible with the
requirement p > 1 for accelerating expansion models of the
universe. Finally, it can be shown by direct substitution of
(41) that the deceleration parameter (31) becomes q0 � −1
in the present time.

5 Final comments

In this letter we have investigated cosmological solutions of a
general theory of relativity formulated on a Weyl-integrable
geometry, as introduced recently by Romero and collabo-
rators in [3,4]. We found the conditions under which the
cosmological solutions exhibit acceleration in the scale fac-
tor. When these conditions hold, the Weyl scalar field, as the
scalar part of the gravitational field, is capable to generate an
acceleration in the expansion of the universe compatible with
the observational data combination Planck+WP+BAO+SN,
without the introduction of a dark energy component.

In this approach the action (10) respects the conformal
equivalence principle and then, when a Palatini variational
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principle is applied to the action, the appropriate background
geometry as a result is found to be the Weyl-integrable geom-
etry [8]. The Riemann geometry is a particular case of the
Weyl-integrable one, and in the Riemann frame the action
(10) becomes the usual action for general relativity, where
no Weyl scalar field appears and, of course, where to explain
the accelerated expansion of the universe the introduction is
necessary of a dark energy component. Hence, we can inter-
pret the Weyl scalar field as a gravitational field that in the
Riemann frame is hidden. However, as was mentioned in [8],
both frames can be viewed as alternative descriptions of the
same physical reality. The main difference is that in a Weyl
frame the acceleration in the expansion is just a pure gravita-
tional effect, whereas in the Riemann frame the dark energy
component necessarily leads to the question about the origin
and dynamics of this exotic component, which is a problem
in the majority of the cosmological models.
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