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Abstract We consider the evaluation of the ηπ isospin-
violating vector and scalar form factors relying on a system-
atic application of analyticity and unitarity, combined with
chiral expansion results. It is argued that the usual analyticity
properties do hold (i.e. no anomalous thresholds are present)
in spite of the instability of the η meson in QCD. Unitarity
relates the vector form factor to the ηπ → ππ amplitude:
we exploit progress in formulating and solving the Khuri–
Treiman equations for η → 3π and in experimental mea-
surements of the Dalitz plot parameters to evaluate the shape
of the ρ-meson peak. Observing this peak in the energy dis-
tribution of the τ → ηπν decay would be a background-free
signature of a second-class amplitude. The scalar form factor
is also estimated from a phase dispersive representation using
a plausible model for the ηπ elastic scattering S-wave phase
shift and a sum rule constraint in the inelastic region. We
indicate how a possibly exotic nature of the a0(980) scalar
meson manifests itself in a dispersive approach. A remark is
finally made on a second-class amplitude in the τ → ππν

decay.

1 Introduction

Isospin-breaking phenomena involving light pseudoscalar
mesons are particularly interesting probes of the three flavour
chiral expansion as they are driven by the parameter

ε =
√

3(md − mu)

4(ms − (mu + md)/2)
, (1)

which involves the three light-quark masses. One of the major
goals of non-perturbative approaches to QCD is to arrive at
an accurate determination of the light-quark masses. One
issue in the direct determination of ε from the very precisely
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known difference between the masses of the charged and
the neutral kaon is to properly evaluate the electromagnetic
contribution to this difference. At leading chiral order, it is
given by Dashen’s low-energy theorem [1]. There are, how-
ever, possible substantial corrections from next-to-leading
O(e2ms) effects which suggests to explore, in parallel, other
isospin-violating processes.

In this respect, the η → 3π decay amplitude is of partic-
ular interest since electromagnetic contributions are absent
at leading order [2] and found to be rather small at next-
to-leading order (NLO) [3–5]. Furthermore, there has been
considerable progress, on the experimental side, in the pre-
cision of the measurements of the Dalitz plot parameters for
both the η → 3π0 amplitude [6–9] and the η → π+π−π0

amplitude [10]. There is a price to pay, however, in that
the chiral expansion has an inherently slow convergence
in the treatment of final-state interactions, e.g. in the NLO
expression of the η → 3π amplitude [11], ππ rescatter-
ing is treated only at leading chiral order. The amplitude
has now been computed to NNLO in chiral perturbation
theory (ChPT) [12]. A partly analytic representation of the
ππ rescattering part at NNLO, accounting for some effects
of higher order, was obtained in Ref. [13]. A treatment
of rescattering in the framework of non-relativistic effec-
tive field theory has been discussed in Ref. [14]. An alter-
native approach is to combine the chiral expansion with
a more general representation which encodes exact uni-
tarity, analyticity and crossing symmetry [15]. A rigorous
framework was proposed by Khuri and Treiman (KT) [16]
who derived a set of integral equations for the analogous
K → 3π problem. Application to the η → 3π ampli-
tude was first discussed in Ref. [17]. The KT equations
were more recently generalised to account for both S and
P-wave elastic rescattering [18,19] and numerical solutions
were constructed. Updates of these analyses, which take
into account the recent experimental data, have been pre-
sented [20–22].
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This progress have motivated us to reconsider the prob-
lem of evaluating the ηπ isospin-violating vector and scalar
form factors exploiting, as systematically as possible, their
analyticity properties and matching with chiral NLO calcu-
lations [23,24]. The vector form factor, in particular, probes
the ηπ → ππ amplitude, via unitarity, in a kinematical
region different from that of the decay, but where the KT
equations should still be applicable. These two form fac-
tors are measurable, in principle, from the τ → ηπν decay
mode. This mode, being forbidden in the isospin-symmetric
limit, is a clean example of the “second-class currents” as
introduced by Weinberg [25], which are yet to be discovered
experimentally. An upper bound on the branching fraction,
Bηπ < 1.4 × 10−4, was obtained by the CLEO collabora-
tion [26] which was slightly improved to Bηπ < 9.9 × 10−5

by Babar [27]. The Belle collaboration has quoted Bηπ <

7.3 × 10−5 as a preliminary result [28] which, however,
was not subsequently confirmed. Theoretical estimates for
this branching fraction [23,29–34] yield values in the range
10−6 to 10−5, which do not seem so small as compared to
the number of τ pairs available at Babar: Nτ � 4.3 × 108

or Belle Nτ � 9.0 × 108. One difficulty faced by the B
factories was that a substantial number of ηπ pairs were pro-
duced from background modes, like τ− → ηπ−π0ν, which
have to be subtracted. A drastic reduction of this background
should be possible at τ–charm factories [35,36], which could
make detailed measurements of the ηπ mode possible. An
increase in the luminosity by a factor of 50 is expected at
Belle II [37].

Here, we will consider not only the integrated τ → ηπντ

branching fraction but also the detailed dependence as a
function of the ηπ invariant mass. This dependence carries
nontrivial dynamical information. Close to s = 0 it can be
related, via ChPT, to the isospin-breaking quark mass ratio
ε while, at higher energy, the shape of the ρ resonance peak
in the vector form factor can be related to η → 3π decay
properties. From an experimental point of view, the obser-
vation of the ρ peak would be a background-free signal of a
second-class amplitude. A peak at the a0(980) mass is also
expected from the scalar form factor. As was noted long
ago [38], the mode τ → ηπν probes the “nature” of the
scalar meson a0(980) in a clean way via its coupling to the ūd
operator.

The ηπ scalar form factor has a potential for constrain-
ing extensions of the Standard Model which contain charged
Higgs bosons. For illustration, in the two-Higgs model pro-
posed in Ref. [39],1 the energy dependence of the form factor
is modified as follows:

1 This model, in which tree-level flavour-changing neutral currents are
avoided by an alignment prescription of Yukawa matrices, includes a
number of previously proposed models and also allows for CP violation.

f ηπ
0 (s) = f ηπ

0 (s)|SM

(
1 − ζ ∗

τ (ζumu − ζdmd)

mu − md
× s

m2
H+

)

(2)

where the ζ are coupling constants. The influence of the
charged Higgs in this form factor could be enhanced because
of the mu − md denominator, depending on the relative
sign and size of ζu , ζd . The constraints which are already
available (specifically from B → τν) are not so stringent:
|ζlζd/m2

H+| < 0.1 GeV−2 [40]. In order to derive a similar
level of constraint, one should be able to evaluate f ηπ

0 in the
Standard Model (and also be able to measure it, of course)
with a precision of � 20 % at s = 1 GeV2.

The plan of the paper is as follows. After introducing some
basic formulae and notation, we list the contributions from
the light two-meson states to the unitarity relations of the two
form factors. We also discuss contributions with one photon.
Then we recall the main results from the NLO ChPT calcu-
lations [23,24]: the values of the form factors at s = 0 and
their first derivatives will be used as input in the dispersive
representations. In order to derive these, it is important to
check the possible presence of anomalous thresholds, since
the η meson is unstable: we present arguments that they are
actually absent. We then discuss the dispersive evaluation of
the vector form factor using as input πη → ππ amplitudes
satisfying the KT equations and constrained by experimen-
tal data in the physical decay region. Finally, we estimate the
scalar form factor from a phase dispersive representation,
using a modelling of ηπ → ηπ elastic scattering borrowed
from Ref. [41].

2 Definitions and basic unitarity relations

The semi-leptonic weak decay amplitudes τ → ηπν and
η → lπν (with l = e, μ) are induced by the usual Fermi
Lagrangian

LF = −G F Vud√
2

[
ūγ μ(1 − γ 5)d × l̄γμ(1 − γ 5)νl + h.c.

]
.

(3)

The ηπ matrix element of the charged vector current is
expressed in terms of two form factors (we follow the same
notation as Ref. [23] except that we call the ηπ invariant
mass squared s instead of t),

〈
out

η(pη)π
+(pπ )| jud

μ (0)|0〉

= −√
2
[

f ηπ
+ (s)(pη − pπ+)μ + f ηπ

− (s)(pη + pπ+)μ
]

(4)

with

jud
μ (x) = ū(x)γμd(x), s = (pη + pπ )2. (5)
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When writing unitarity relations it is convenient to introduce
the scalar form factor f ηπ

0 (s) instead of f ηπ
− (s)

f ηπ
0 (s) = f ηπ

+ (s) + s


ηπ

f ηπ
− (s), 
P Q = m2

P − m2
Q .

(6)

The expression for the differential decay width of the τ lep-
ton which derives from the Fermi Lagrangian (3) and the
definition of the form factors (4) then reads

d�τ→ηπντ

ds

= G2
F V 2

ud SEW m3
τ

384 π3

√
ληπ (s)

s3

(
1 − s

m2
τ

)2

×
{
| f ηπ

+ (s)|2 ληπ (s)

(
1 + 2s

m2
τ

)
+ 3| f ηπ

0 (s)|2
2
ηπ

}
(7)

where SEW is the logarithmically enhanced universal radia-
tive correction factor [42] (SEW = 1.0201 [43]) and

λP Q(s) = λ(s, m2
P , m2

Q), (8)

λ being the Källén function λ(x, y, z) = x2 + y2 + z2 −
2(xy + yz + xz). For the physical τ decay, the variable s lies
in the range (mη + mπ )2 ≤ s ≤ m2

τ . The analogous formula
for the differential decay of the η, η → l±π∓νl with l = e
or l = μ reads

d�η→lπνl

ds

= G2
F V 2

ud SEW

192π3

√
ληπ (s)

m3
η

(
1 − m2

l

s

)2

×
{

| f ηπ
+ (s)|2 ληπ (s)

(
2 + m2

l

s

)
+ 3| f ηπ

0 (s)|2
2
ηπ

m2
l

s

}
.

(9)

In this case, the variable s is restricted to the range m2
l ≤ s ≤

(mη − mπ )2.

2.1 Unitarity relations for f ηπ
+ (s)

We consider the ηπ+ centre-of-mass system and choose the
z-axis along the three-momentum of the η meson. The vector
form factor is easily seen to be proportional to the matrix
element of the third component of the vector current in this
frame

〈
out

η(pη)π
+(pπ )| jud

3 (0)|0〉 = −2
√

2qηπ (s) f ηπ
+ (s), (10)

where qηπ (s) is the centre-of-mass momentum. The form
factor f ηπ

+ (s) can be defined as an analytic function of s

with a cut along the positive real axis starting at sth = 4m2
π

(see the discussion of the absence of anomalous thresholds
in Sect. 4 below). The discontinuity across the cut has the
form of a generalised unitarity relation and is given as a sum
over a complete set of states,

−2
√

2 qηπ (s) disc[ f ηπ
+ (s)]

= 1

2

∑
n

T ∗
ηπ+→n 〈

out
n| jud

3 (0)|0〉, (11)

with

disc[ f ηπ
+ (s)] ≡ f ηπ

+ (s + iε) − f ηπ
+ (s − iε)

2i
. (12)

The lightest state contributing to the unitarity relation is
n = π0π+ with angular momentum l = 1. The next-to-
lightest contribution is from four pion states n = π0π+ππ .
However, we expect such contributions not to be effectively
relevant below 1 GeV because of phase-space suppression
and we will ignore them here. Let us consider successively the
contributions from the lightest two-body states n = π0π+,
n = ηπ+ and n = K̄ 0 K +

(a) n = π0π+:
The π0π+ matrix element of the vector current,

〈
out

π0π+| jud
μ |0〉

= √
2
[
Fπ

V (s)(pπ0 − pπ+)μ + Fπ− (s)(pπ0 + pπ+)μ
]
,

(13)

involves two form factors since mπ+ �= mπ0 . The unitar-
ity relation for f ηπ

+ involves only the vector form factor,
Fπ

V (s). Using Eq. (11), we can write the ππ contribution
in the unitarity relation as follows:

disc
[

f ηπ
+ (s)

]
ππ

= −θ(s − 4m2
π )

s − 4m2
π

16π
√

ληπ (s)
Fπ

V (s)

× 1

2

1∫
−1

dzz T ∗
π0π+→ηπ+(s, t, u),

(14)

where z = cos θ , θ being the scattering angle in the
centre-of-mass system. We expect this contribution to
be important below 1 GeV, because of the presence of
the ρ(770) resonance.

(b) n = ηπ+
Next, the contribution from the ηπ state to the unitarity
relation reads

disc
[

f ηπ
+ (s)

]
ηπ

= θ(s − (mη + mπ )2)

√
ληπ (s)

16πs
f ηπ
+ (s)

× 1

2

1∫
−1

dz z T ∗
ηπ+→ηπ+(s, t, u). (15)
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This contribution involves the ηπ → ηπ amplitude
projected on the P-wave. The quantum numbers of the
state (ηπ)l=1 are exotic: J PC = 1−+. We expect the
(ηπ → ηπ)l=1 amplitude to be very small below 1 GeV.
This is borne out by the ηπ scattering model proposed
in Ref. [41], which predicts that the P-wave phase shift
is of the order of −1◦ at 1 GeV.

(c) n = K̄ 0 K +
Finally, let us write the contribution of the K̄ 0 K + state
in the unitarity relation, which is useful for comparing
with the chiral calculation. In this case, the kaon vector
form factor appears, defined from

〈
out

K̄ 0 K +| jud
μ |0〉

= −
[
F K

V (s)(pK̄ 0 − pK +)μ + F K− (s)(pK̄ 0 + pK +)μ

]
.

(16)

The corresponding contribution in the unitarity relation
reads

disc
[

f ηπ
+ (s)

]
K̄ K = θ(s − 4m2

K )
s − 4m2

K

16π
√

2
√

ληπ (s)

×F K
V (s)

1

2

1∫
−1

dzzT ∗̄
K 0 K +→ηπ+(s, t, u). (17)

In the above expression, isospin breaking is contained in
the amplitude K̄ 0 K + → ηπ+ projected on the P-wave.
Let us recall the reason: since G|K +〉 = |K̄0〉, G|K̄0〉 =
−|K +〉 one has G|K̄0 K +〉 = (−1)l+1|K̄0 K +〉. Since
ηπ has G-parity −1, this implies that the partial-wave
amplitudes (K̄ 0 K + → ηπ+)l with odd angular momen-
tum l vanish in the isospin limit.

2.2 Unitarity relations for f ηπ
0 (s)

Unitarity relations for the scalar form factor can be derived
in exactly the same way as above noticing that, in the centre-
of-mass frame, the matrix element of the zeroth component
of the vector current is proportional to f ηπ

0 ,

〈
out

η(pη)π
+(pπ )| jud

0 (0)|0〉 = −
√

2
ηπ√
s

f ηπ
0 (s). (18)

One can then derive a relation for the discontinuity along the
cut, analogous to Eq. (11),

−
√

2
ηπ√
s

disc[ f ηπ
0 (s)] = 1

2

∑
n

T ∗
ηπ+→n× 〈

out
n| jud

0 (0)|0〉.

(19)

As before, let us consider the contributions from the lightest
two-particle states ππ , πη and K K̄ .

(a) n = π0π+:
Introducing a scalar pion form factor2 from Eq. (13)

f ππ
0 (s) = Fπ

V (s) + s


π0π+
Fπ− (s), (20)

one derives

disc
[

f ηπ
0

]
π0π+

= −θ(s − 4m2
π )

√
s − 4m2

π

16π
√

s


π0π+

ηπ+

f ππ
0 (s)

×1

2

1∫
−1

dz T ∗
ηπ+→π0π+(s, t, u). (21)

This contribution involves a product of two isospin-
breaking terms (
π0π+ and T ∗

ηπ+→π0π+) and thus must
be negligibly small in practice.

(b) n = ηπ+:
The contribution from the ηπ+ states to the unitarity
relation reads

disc
[

f ηπ
0

]
ηπ

= θ(s − (mη + mπ )2))

√
ληπ (s)

16πs
f ηπ
0 (s)

× 1

2

1∫
−1

dz T ∗
ηπ+→ηπ+(s, t, u). (22)

It has a form similar to Eq. (15) for the vector form factor
except that it involves the ηπ → ηπ amplitude projected
on the S-wave instead of the P-wave. This contribution
is enhanced by the presence of the a0(980) resonance
and thus must be the dominating one below 1 GeV.

(c) n = K̄ 0 K +:
Finally, the contribution from K̄ 0 K + involves the cor-
responding scalar form factor

f K̄ 0 K +
0 (s) ≡ F K

V (s) + s


K̄ 0 K +
F K− (s) (23)

and one has the following expression:

2 This form factor induces a second-class amplitude in the τ± →
π0π±ν decay; see Appendix D.
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disc
[

f ηπ
0

]
K̄ 0 K + (s)

= θ(s − 4m2
K )

√
s − 4m2

K

16π
√

s


K 0 K +√
2
ηπ

f K̄ 0 K +
0 (s)

×1

2

1∫
−1

dz T ∗
ηπ+→K̄ 0 K +(s, t, u). (24)

As compared to the analogous contribution for f ηπ
+ , the

relation (24) involves the ηπ+ → K̄ 0 K + amplitude
projected on the S-wave, which is isospin conserving.
Isospin breaking is contained in the mass difference fac-
tor 
K̄ 0 K + .

2.3 Some electromagnetic contributions to the unitarity
relations

In the unitarity equations discussed above, we have con-
sidered only hadronic states in the sums over n. Since we
are studying isospin-breaking form factors, electromagnetic
contributions are present and at order e2 one should also
consider states involving one photon. Note that EM contri-
butions have already appeared, e.g. in Eqs. (21), (24), which
are proportional to the mass differences m2

π0 − m2
π+ (which

is mainly electromagnetic) and m2
K̄ 0 − m2

K + (which is partly
of electromagnetic origin). These contributions are dominant
in the chiral counting; they are included in the NLO chiral
expressions. We will not discuss EM contributions in their
full generality here and simply mention the contributions of
the two lightest states n = γπ and n = γππ in the unitarity
relations:

(a) n = γπ

The γπ matrix element of the vector current can be
expressed in terms of one form factor

〈γ (λ)π+| jud
μ (0)|0〉 = eFπγ

V (s) εμ[eγ (λ), pγ , pπ+]
(25)

where eγ is the polarisation vector of the photon.3 At
leading order in the chiral expansion, the value of this
form factor at s = 0 is given by the anomaly

Fγπ

V (0)
∣∣
L O =

√
2Nc

24π2 F2
π

. (26)

Going to the centre-of-mass frame, one sees that the
matrix element (25) vanishes for jηπ

0 . The unitarity con-
tribution from γπ thus concerns only the vector form

3 We use the simplified notation εμ(a, b, c) ≡ εμναβ aνbαcβ and the
convention ε0123 = +1.

factor. One finds the following expression for the dis-
continuity:

disc[ f ηπ
+ (s)]πγ = θ(s − m2

π )
i(s − m2

π )2

128π s qηπ (s)
eFπγ

V (s)

×1

2

∑
λ=±1

π∫
0

dθ sin2 θ T ∗
ηπ+→γ (λ)π+ .

(27)

Evaluating this contribution precisely would require
some modelling of the amplitude ηπ → γπ . It is likely
that this amplitude should be small below 1 GeV since
no resonant contribution from the ρ-meson is allowed in
the isospin limit.

(b) n = γππ

In principle, the states n = γππ can contribute to the
unitarity relations for both f ηπ

+ and f ηπ
0 . We will con-

sider here only the latter one, the evaluation of which
is simplified by using the relation between f ηπ

0 and the
matrix element of the divergence,

〈
out

η(pη)π(pπ )|i∂μ jud
μ (0)|0〉 = √

2
ηπ f ηπ
0 (s), (28)

together with the Ward identity for the divergence,

i∂μ jud
μ (x) = (md − mu)ūd(x) − eAμ(x) jud

μ (x). (29)

Equation (29) makes it easy to evaluate the matrix ele-
ment involving γππ in terms of the pion vector form
factor

〈
out

γ (λ)π0π+|∂μ jud
μ (0)|0〉

= −e
√

2 eγ (λ) · (pπ0 − pπ+)Fπ
V (sππ ), (30)

with sππ = (pπ0 + pπ+)2. One can then write the uni-
tarity relation in the form

disc[ f ηπ
0 ]γππ = θ(s − 4m2

π )
−e


ηπ

× 1

2

∑
λ=±1

∫
dLips3

×Fπ
V (sππ ) eγ (λ) · (pπ0 − pπ+)T ∗

ηπ+→γ (λ)π0π+
(31)

(where dLips3 is the three-body Lorentz invariant phase-
space measure). A resonant contribution from the a0(980)

to the amplitude ηπ → γππ which appears in Eq. (31) is
possible. However, a suppression of this contribution in the
region below 1 GeV is expected because of the three-body
phase space.
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In summary, below the K K̄ threshold, the dominant con-
tribution is from n = π0π+ [enhanced by the ρ(770) res-
onance] for the vector form factor and from n = ηπ+
(enhanced by the a0(980)) for the scalar form factor. We
will use this result in the sequel in order to evaluate the two
form factors with the help of dispersion relations. In order to
suppress the sensitivity of the integrals to the region s ≥ 1
GeV2 it is necessary to introduce subtractions. We now recall
the results which have been obtained in ChPT at NLO from
which we will be able to estimate the subtraction constants.

3 Results from ChPT at order p4

The ηπ form factors have been computed in ChPT at next-
to-leading order in Refs. [23,24]. We collect below some of
the results which are relevant to our study.

3.1 Form factors at s = 0

Consider first the form factors at s = 0. At leading order in
ChPT they are simply equal to the π0–η mixing angle,

f ηπ
+ (0) = f ηπ

0 (0)
∣∣
L O = ε (32)

where ε is given in (1). At the same order, ε can be determined
using the experimental values of the pseudoscalar meson
masses mπ+ , mπ0 , mK + , mK 0 , together with Dashen’s low-
energy theorem [1],

m2
K + − m2

K 0

∣∣∣
E M

= m2
π+ − m2

π0 + O(e2 p2), O(p4), (33)

which gives

ε|L O � 0.99 × 10−2. (34)

The corrections of order p4, including also the electromag-
netic e2 p2 piece, were written in Ref. [23] (see also [44]) in
the following form:

f ηπ
+ (0) = f ηπ

0 (0)
∣∣
L O+N L O

= ε − 2ε

3
ηπ F2
π

[
64
2

Kπ (3Lr
7 + Lr

8) − m2
η 
Kπ Lη

− 2m2
K (m2

K − 2m2
π )L K + m2

π (m2
K − 3m2

π )Lπ

− 2m2
K 
Kπ

16π2

]
+ 2

√
3 e2m2

K

27
ηπ

×
[

2(2Sr
2 + 3Sr

3) − 9Z(L K + 1

16π2 )

]
(35)

with

L P ≡ 1

16π2 log
m2

P

μ2 (36)

(an additional small electromagnetic contribution, propor-
tional to m2

π/
ηπ has been neglected). Here, Lr
7, Lr

8 are the
standard low-energy coupling constants of the strong chiral
Lagrangian at O(p4) [45], while Z , Sr

2, Sr
3 are O(e2) and

O(e2 p2) electromagnetic couplings [46,47]. One can also
express f ηπ

+ (0) in terms of the two π0–η mixing angles ε1,
ε2 introduced in Ref. [45],

f ηπ
+ (0) = f ηπ

0 (0)
∣∣
L O+N L O = 1

2
(ε1 + ε2) (37)

(the electromagnetic contributions to ε1, ε2 can be found
in [48]). In using Eq. (35), one must also update the deter-
mination of the mixing angle ε, e.g. from the pseudoscalar
meson masses, including O(p4) and O(e2 p2) contributions.
At present, however, the O(e2 p2) LECs, which play an
important numerical role for the meson masses, are not
known in a model independent way. Fortunately, it was
observed in Ref. [23] that a very simple relation holds
between f ηπ

+ (0) and an isospin-breaking difference involv-
ing the K 0π± and K ±π0 vector form factors. In its updated
form, it can be written in terms of the form factors f̃ Kπ+
defined in Ref. [44] to include the isospin-breaking effects
from QCD and part of the radiative corrections as

f ηπ
+ (0) = 1√

3
δKπ + O(p6), δKπ = f̃ K +π0

+ (0)

f̃ K 0π+
+ (0)

− 1.

(38)

This relation was not used in earlier work on the second-
class ηπ amplitudes because the precision of the experimen-
tal results on the Kl3 form factors was insufficient. The sit-
uation has considerably improved in recent years and, using
the averaged experimental result quoted in the review [49],

δKπ
∣∣∣
exp

= 0.027 ± 0.004, (39)

one obtains

f ηπ
+ (0)

∣∣
NLO+exp = (1.56 ± 0.23) 10−2. (40)

Clearly, this is a very significant enhancement as compared
to the leading order result. For comparison, the following
range of values was quoted in Ref. [23]: f ηπ

+ (0) = [1.22–
1.37] × 10−2 based on the chiral expression (35), using the
LO result for ε and order of magnitude estimates for the elec-
tromagnetic coupling constants. A result completely compat-
ible with (40) can be obtained if the value of the quark mass
ratio ε is enhanced from its LO result by 20–30 % due to
NLO effects. There are indications that this could indeed be
the case from model estimates as well as lattice QCD cal-
culations of the chiral corrections to Dashen’s low-energy
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theorem [see e.g. the FLAG review [50]]. We will return to
the question of the quark mass ratio in Sect. 5.4 in connec-
tion with η → 3π decay. The fact that compatible results are
obtained using either the low-energy theorem relation (38)
or the chiral expression (35), which have different O(p6)

corrections, is an indication that O(p6) corrections should
be of a natural size (5–10 %, say) in spite of the large size of
the NLO correction.

3.2 Vector form factor

We reproduce below the expression of the vector form factor
f ηπ
+ (s) from Ref. [23], in a slightly re-expressed form, which

involves the scalar loop functions J̄P Q(s) [45],

J̄P Q(s) = s

16π2

∞∫
(m P+m Q)2

ds′
√

λP Q(s′)
(s′)2(s′ − s)

. (41)

The result for f ηπ
+ reads

f ηπ
+ (s) = f ηπ

+ (0) + ε

12F2
π

{
(s − 4m2

K ) J̄K K (s)

+2(s − 4m2
π ) J̄ππ (s) + s

[
24Lr

9 − L K − 2Lπ

− 1

16π2

]}
. (42)

Equation (42) allows one to deduce the value of the deriva-
tive of the vector form factor at s = 0, which will serve us,
together with f ηπ

+ (0), to normalise the dispersive construc-
tion of the form factor. One finds

ḟ ηπ
+ (0) = ε

12F2
π

(
24Lr

9(μ) − L K − 2Lπ − 3

16π2

)
= ε (1.70 ± 0.10) GeV−2. (43)

In the last equality, we have used the value of the coupling
Lr

9 given by [51], Lr
9(mρ) = (5.93 ± 0.43) 10−3.

3.3 Scalar form factor

Next, the scalar form factor f ηπ
0 from Ref. [23] can be

expressed as follows:

f ηπ
0 (s) = f ηπ

+ (0) + ε

F2
π

Hε(s) + e2


ηπ

He(s) (44)

with

Hε(s) = m2
π

3
J̄ηπ (s) + 1

4

{
(3s − 4m2

K ) J̄K K (s)

+ s

[
16Lr

5 − 3L K − 3

16π2

]}

He(s) =
√

3

18

{
− 3Z(3s − 4m2

K ) J̄K K (s)

+ s
[

− 2(2Sr
2 + 3Sr

3) + 9Z
(

L K + 1

16π2

)]}
. (45)

One expects that the scalar form factor, evaluated at the point
s = 
ηπ = m2

η − m2
π should satisfy a Callan–Treiman

relation [52,53]

f ηπ
0 (
ηπ) = − F (3)

η

F (3)

π0

+ 
CT , 
CT = O
(

m2
π

)
, (46)

where F (3)
P is defined from the matrix element of the axial

current j3
μ,5

〈0| j3
μ,5(0)|P〉 = i pμF (3)

P , P = η, π0. (47)

Indeed, using the expressions for F (3)
η , F (3)

π0 computed in

Ref. [47] at chiral order p4 and e2 p2 one obtains that 
CT

is proportional to m2
π and reads


CT = ε
m2

π

3F2
π

[
J̄ηπ (
ηπ) − 3 J̄K K (
ηπ)

]

+ e2 2Zm2
π√

3
ηπ

J̄K K (
ηπ). (48)

The Callan–Treiman relation (46) could be used to evaluate
f ηπ
0 (
ηπ) rather precisely if the ratio F (3)

η /Fπ were known
accurately from lattice QCD. For now, we must rely only on
the chiral expansion and, as in the case of the vector form
factor, we will use the value of the derivative of the scalar
form factor at s = 0 as an input to the dispersive calculation.
Using the chiral expression (45) with the value of the LEC
L5: Lr

5(mρ) = (1.20 ± 0.05)× 10−3 deduced from the ratio
FK /Fπ = 1.192 ± 0.005 [50] one obtains

ḟ ηπ
0 (0) = ((0.404 ± 0.025) ε − 5.49 × 10−4) GeV−2 (49)

where the last term is the electromagnetic contribution eval-
uated using resonance modelling estimates [54] of the cou-
plings S2, S3.

As a final remark, we note that in ChPT at NLO the discon-
tinuities of the form factors (which coincide with the imagi-
nary parts at this order) are generated by the functions J̄ππ ,
J̄ηπ and J̄K K . As a simple check, we show in Appendix B
that one recovers these NLO results from the general uni-
tarity relations as given in Sect. 2 using the chiral O(p2)

expressions for the form factors and the four-meson ampli-
tudes which enter in these relations.
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4 Absence of anomalous thresholds in ηπ form factors
in a toy model

A usually accepted property of form factors involving two
stable particles (like the pion or the nucleon electromagnetic
form factors) is that they can be defined as analytic functions
of the energy variable s = (p1 − p2)

2, with a cut along the
positive real axis, the discontinuity along this cut being given
by unitarity relations (e.g. [55]).

Here, we wish to consider the ηπ form factors f ηπ
+ , f ηπ

0
and, since the η meson is unstable, one should be concerned
about the presence of anomalous thresholds. We illustrate
in Fig. 1 the two types of diagrams which involve the η →
3π decay amplitude at one vertex. We will consider here
contributions of the form of Fig. 1a in which the normal
threshold is sth = 4m2

π . The contributions of the second type,
as shown in Fig. 1b have a much higher normal threshold
sth = 16m2

π and the discontinuity function is expected to be
very much suppressed in the region s � 1 GeV2 because of
the four-body phase space. Let us discuss here the question of
the anomalous threshold in the toy model case where Fig. 1a
represents a Feynman diagram with local vertices. The form
factor can then be represented as an integral [e.g. [56]]

f ηπ (s) =
∞∫

4m2
π

dt ′ ρ(t ′)K ηπ (t ′, s) + · · · (50)

where K ηπ (t ′, s) corresponds to the simple triangle Feynman
diagram with external momenta p2

1 = m̄2
η, p2

2 = m2
π , p2

3 = s

and internal masses m2
1 = m2

2 = m2
π , m2

3 ≡ t ′ (see Fig. 2),
and the weight function is

(a) (b)

η πη π

Fig. 1 Two types of diagrams contributing to ηπ form factors and
involving one η → 3π vertex

m2
π m2

π

s

m2
3m̄2

η m2
π

Fig. 2 Triangle diagram in Eq. (50)

ρ(t ′) = 1

16π2

√
1 − 4m2

π

t ′
. (51)

In Eq. (50), additional terms (including the UV divergent
ones) have been omitted since they are not concerned with the
possibility of an anomalous threshold. We will vary the value
of m̄2

η and, since it can be considered as an energy variable,
the amplitude may be defined by appending an infinitesimal
positive imaginary part to it, i.e.

m̄2
η ≡ lim

ε→0
(m̄2

η + iε). (52)

We first take m̄2
η to be sufficiently small (e.g. m̄2

η = m2
π )

such that an ordinary dispersion relation (DR) holds and then
increase m̄2

η until it reaches the physical value m2
η. The ordi-

nary DR for the triangle graph reads,

K ηπ (t ′, s) = 1

π

∞∫
4m2

π

ds′ Lηπ (t ′, s′)
s′ − s

(53)

where Lηπ (t ′, s′) is the discontinuity function of the triangle
graph,

Lηπ (t ′, s′) = 1

16πλ
1
2 (s′, m̄2

η, m2
π )

log
a + b

a − b
,

a = s′ − (m̄2
η + 3m2

π − 2t ′),

b =
√

1 − 4m2
π

s′ λ
1
2 (s′, m̄2

η, m2
π ).

(54)

We note that the discontinuity of the form factor is then given
as an integral over Lηπ (t ′, s)

disc[ f ηπ (s)] =
∞∫

4m2
π

dt ′ρ(t ′)Lηπ (t ′, s) + · · · (55)

As discussed in Refs. [57,58] the presence of anomalous
thresholds can be inferred from studying the motion of the
singularities of the function Lηπ upon varying m̄2

η: if one of
the singularities crosses the unitarity cut, it is then necessary
to deform the contour in the dispersion representation (53),
in order to properly define its analytical continuation as a
function of m̄2

η, thereby introducing an anomalous thresh-
old. In the present case (54), the singularities of the func-
tion Lηπ (t ′, s) are given by the solutions of the equation
a2 − b2 = 0, which is quadratic in s

t ′s2+t ′(t ′−3m2
π−m̄2

η−iε)s+m2
π (m2

π−m̄2
η−iε)2 = 0. (56)

Let us consider three cases, depending on the value of the
mass variable t ′
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Fig. 3 Illustration of the motion of the two singularities of the discon-
tinuity function Lηπ (t ′, s) in the s plane for a given value of t ′ when
varying the external mass squared m̄2

η ≡ xm2
η. The plot corresponds to

t ′ = 5m2
π , ε = 10−3m2

π

1. t ′ = 4m2
π : In this case, the two singularities coincide and

are given by

s± = 1

2
(m̄2

η − m2
π + iε), (57)

which is above the unitarity cut.
2. 4m2

π < t ′ ≤ 1
2 (m̄2

η − m2
π ): This is the most interesting

situation, the motion of the two singularities s±(m̄2
η) as

a function of x = m̄2
η/m2

η is illustrated in Fig. 3. The
figure shows that while s+(m̄2

η) remains above the real
axis, the other singularity does cross the real axis very
close to 4m2

π . It is easy to see that the crossing occurs
when m̄2

η = m2
π + 2t ′ and the value of the crossing point

is

s−(m2
π + 2t ′) = 4m2

π

(
1 − ε2

4t ′(t ′ − 4m2
π )

)
, (58)

which is located strictly below the normal threshold.
3. 1

2 (m̄2
η − m2

π ) < t ′ ≤ (m̄η − mπ )2: In this case s+(m̄2
η)

remains above the real axis and s−(m̄2
η) remains below

it.

For larger values of t ′, it is easily verified that s±(m̄2
η) do not

come close to the unitarity cut. The conclusion of this discus-
sion is that, for a Feynman diagram, the amplitude as given
from Fig. 1a does not involve any anomalous threshold. We
will argue in the next section that the same conclusion holds
in a more realistic approach where the η → 3π amplitude
is given from Khuri–Treiman equations solutions. The fact
that the η meson is unstable, i.e. mη > 3mπ , manifests itself
in the violation of real analyticity, the discontinuity func-
tion is complex and does not coincide with the imaginary

part of the diagram (the latter, indeed, is given by the sum of
two Cutkosky contributions, corresponding to two physically
allowed ways of cutting the diagram; see Fig. 1a).

5 Dispersive evaluation of f ηπ
+

We have argued in Sect. 2 that the dominant contribution to
the discontinuity of f ηπ

+ (s), with s � 1 GeV2 , was from
the n = π0π+ state. Then disc[ f ηπ

+ ] was found to be pro-
portional to the pion vector form factor Fπ

V , which is well
known from experiment, and to the l = 1 projection of the
ηπ+ → π0π+ amplitude. In order to evaluate this ampli-
tude, we will make use of the work of Refs. [18,19], who
developed and solved a set of Khuri–Treiman [16] equa-
tions and applied the results in the physical region of the
η → 3π decay. We briefly recall the main features of this
formalism below (a very detailed account can be found in
the thesis [59]). As it encodes the analyticity properties of
the ηπ+ → π0π+ amplitude, this formalism should be suit-
able for evaluating the amplitude in the partly unphysical
region needed for computing disc[ f ηπ

+ ].

5.1 Brief review of the Khuri–Treiman formalism

The Khuri–Treiman (KT) equations implement dispersion
relations, crossing symmetry and unitarity in the approxima-
tion where a single state, n = ππ , is retained in the unitarity
relations. This approximation is acceptable when the Man-
delstam variables s, t , u are smaller than 1 GeV2 in magni-
tude. It was noted in Refs. [18,19] that, in the same region,
the contributions from the discontinuities of the partial-waves
J ≥ 2 can also be neglected in the dispersion relations such
that the decomposition theorem [60] may be applied to the
η → 3π amplitude. As a result, it can be expressed in terms
of three functions of a single variable, MI (w),

Tηπ0→π−π+(s, t, u) = Tηπ+→π0π+(t, s, u)

= − εL ×
[

M0(s) + (s − u)M1(t) + (s − t)M1(u)

+M2(t) + M2(u) − 2

3
M2(s)

]
(59)

with

εL = 1

Q2

m2
K

m2
π

m2
K − m2

π

3
√

3F2
π

, Q2 = m2
s − m̂2

m2
d − m2

u

. (60)

Based on the usual Regge phenomenology for estimating the
asymptotic behaviour, it was concluded in Ref. [19] that M0,
M2 should obey converging DRs with two subtractions and
M1 a converging DR with a single subtraction,
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M0(w) = α̃0 + β̃0w + w2

π

∞∫
4m2

π

ds′ disc[M0(s′)]
(s′)2(s′ − w)

M1(w) = w

π

∞∫
4m2

π

ds′ disc[M1(s′)]
s′(s′ − w)

M2(w) = w2

π

∞∫
4m2

π

ds′ disc[M2(s′)]
(s′)2(s′ − w)

.

(61)

In writing these DRs one has further made use of freedom
to redefine MI by linear functions without modifying the
ηπ → ππ amplitude in Eq. (59) because of the constraint
s + t + u = m2

η + 3m2
π ≡ 3s0. The functions MI (w) are

analytic in the complex w plane except for a cut along the
real axis along [4m2

π ,∞]. The discontinuity along this cut is
obtained from the unitarity relations of the J = 0, 1 partial-
wave projections of the ηπ → ππ amplitudes and they read,

disc[MI (s)]ππ = θ(s − 4m2
π ) e−iδI (s) sin δI (s)

× (MI (s + iε) + M̂I (s)). (62)

In Eq. (62) the functions M̂I are linear combinations of the
angular integrals,

〈zn MI 〉(s) = 1

2

1∫
−1

dzzn MI (t (s, z)) (63)

with

t (s, z) = 1

2
(3s0−s+κ(s)z), κ(s) =

√
1 − 4m2

π/s
√

ληπ (s).

(64)

The explicit expressions of M̂I in terms of the angular inte-
grals read [19]

M̂0 = 2

3
〈M0〉 + 20

9
〈M2〉 + 2(s − s0)〈M1〉 + 2

3
κ〈zM1〉

M̂1 = κ−1
{

3〈zM0〉 − 5〈zM2〉 + 9

2
(s − s0)〈zM1〉

+ 3

2
κ〈z2 M1〉

}
(65)

M̂2 = 〈M0〉 + 1

3
〈M2〉 − 3

2
(s − s0)〈M1〉 − 1

2
κ〈zM1〉.

Equations (61) and (62) (65) are a first form of the Khuri–
Treiman integral equations for the ηπ → ππ amplitude.

5.2 Singularities of the functions M̂I

Using the representation of Tηπ→ππ based on the decompo-
sition theorem (59), we can now write the discontinuity of
the form factor f ηπ

+ as

disc[ f ηπ
+ (s)]ππ = θ(s − 4m2

π )
(s − 4m2

π )
3
2

48π
√

s
εL

×Fπ
V (s − iε) (M1(s + iε) + M̂1(s)). (66)

For completeness, let us mention the analogous relation for
the scalar form factor,

disc[ f ηπ
0 ]ππ = θ(s − 4m2

π )
(s − 4m2

π )
1
2

16π
√

s


π0π+

ηπ+

εL

× f ππ
0 (s − iε) (M2(s + iε) + M̂2(s)). (67)

Adapting the discussion of Sect. 4 about the presence of
anomalous thresholds to the present, more realistic situ-
ation, requires one to investigate the singularities of the
functions M̂I (w) i.e. of the angular integrals given in (63).
This can be done by inserting the dispersive representa-
tions of the functions MI [Eqs. (61)] into the angular inte-
grals [Eqs. (63)] from which one obtains an expression of
the functions 〈zn MI 〉 as integrals over kernels K (n)(t ′, w),
P(n)(t ′, w)

〈M0〉(w) = α̃0 + 1

2
(3s0 − s)β̃0

− 1

π

∞∫
4m2

π

dt ′K (0)(t ′, w) disc[M0(t
′)]

〈zM0〉(w) = 1

6
κ(w)β̃0 − 1

π

∞∫
4m2

π

dt ′K (1)(t ′, w) disc[M0(t
′)]

〈zn M2〉(w) = − 1

π

∞∫
4m2

π

dt ′K (n)(t ′, w) disc[M2(t
′)]

〈zn M1〉(w) = − 1

π

∞∫
4m2

π

dt ′ P(n)(t ′, w) disc[M1(t
′)]. (68)

The kernels which are needed here are given explicitly in
Appendix A. They involve the logarithmic function

L(t ′, w) = 1

2

1∫
−1

dz
1

t (w, z) − t ′
, (69)

which controls their singularity structure. When performing
the angular integration in Eqs. (63), (69) one must keep in
mind that the path of integration from z = −1 to z = 1
must eventually be deformed in order not to intersect with
the cut of the functions MI , i.e. 4m2

π ≤ t (w, z) < ∞, as is
explained in detail in Ref. [18]. The following expression of
the logarithmic function exactly encodes these prescriptions
on the integration path in a simple way:
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L(t ′, w) = log(t ′ − t+(w)) − log(t ′ − t−(w))

t+(w) − t−(w)
(70)

where

t±(w) = 1

2

(
m2

η + iε + 3m2
π − w

±
√

1 − 4m2
π

s
λ

1
2 (m2

η + iε, m2
π ,w)

)
, (71)

displaying explicitly the iε prescription. From the form of
the logarithmic function (70), (71) we can infer the following
consequences:

1. Absence of anomalous thresholds: Inserting the represen-
tation of M̂1, M̂0 in terms of the kernels (68) one obtains
an integral representation of the form factor discontinu-
ities disc[ f ηπ

+ ], disc[ f ηπ
0 ] in terms of the logarithm func-

tion (70) which is analogous to Eq. (55). Furthermore,
the singularities of the logarithms are exactly the same.
Therefore, the conclusion about the absence of anoma-
lous thresholds, as discussed in Sect. 4, applies also in
the present realistic situation.

2. Cuts C of the M̂I functions: They are given, using the
integral representations in terms of kernels, as the ensem-
ble of the singularities of the logarithmic function (70)
(see [61]) i.e. the points w which satisfy t±(w) = t ′.
This relation can be recast as a quadratic equation in w

identical to (56). Therefore,

C = {w : w = t±(t ′), 4m2
π ≤ t ′ < ∞}. (72)

The curve (72) includes the negative real axis; it extends
into the complex plane and approaches infinitesimally
close the unitarity cut on the positive real axis in the
region 4m2

π ≤ w ≤ (mη−mπ )2 without, however, cross-
ing it: this is shown on Fig. 4. As a consequence, the
functions M̂I (s′) are unambiguously defined on the real
axis in the integration range 4m2

π ≤ s′ < ∞.

The point w = m2− ≡ (mη − mπ )2 requires special atten-
tion. At this point the difference between t+(w) and t−(w)

is infinitesimal but their imaginary parts have different signs

t±(m2−) = mπ (mη + mπ ) ± i
√

ε

2

√
mπ (mη − mπ ), (73)

which implies that the logarithmic function L(t ′, w) diverges
when ε goes to zero and t ′ lies in the range 4m2

π ≤ t ′ <

mπ (mη + mπ ),

lim
w→m2−

L(t ′, w) = 2π√
ε

θ(mπ (mη + mπ ) − t ′)√
mπ (mη − mπ )

, (74)

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8 10

Im
[w

/m
2 π
]

Re[w/m2
π]

t =(mη+mπ)2

t =m2
η−m2

π

t =m2
η−m2

π
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Fig. 4 Complex cut C of the functions M̂I (w) [see Eq. (72)]: the solid
(dashed) curves correspond to the points which satisfy w = t−(t ′)
(t+(t ′)). The lower figure shows an enlarged view of the vicinity of the
unitarity cut

which induces a divergence in the functions M̂I (w) when
w → m2−,

lim
w→m2−

M̂0(w), M̂2(w) ∼ O(ε− 1
2 ),

lim
w→m2−

M̂1(w) ∼ O(ε− 3
2 ).

(75)

However, the integrals over M̂I [as in Eqs. (68), (78)] remain
finite in the ε → 0 limit [18] such that the functions MI (w)

themselves do no exhibit any divergence. The numerical
treatment of the integrations involving M̂I is the delicate
part of solving the KT equations. When the integration vari-
able is close to m2− one must perform expansions in powers of√

m2− − t ′ and use the analytical expressions for the integrals

of the functions log(t ′−t±(w))/(m2−−t ′+iε)n+1/2 [appear-
ing in Eq. (68)] and 1/((t ′ − w − iε)(m2− − t ′ + iε)n+1/2)

[in Eq. (78)]. Analogous singular integrations appear in the
dispersive representation of the vector form factor f ηπ

+ as its
discontinuity involves M̂1.
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5.3 Matching with ChPT

In the form given by Eqs. (61), (62), (65) the KT equations are
linear integral equations with a singular Cauchy kernel. The
most general solutions of such integral equations involve an
arbitrary number of polynomial parameters [62,63]. Physi-
cally, the polynomial growth is limited by asymptotic condi-
tions on the amplitudes. In practice, however, the system of
equations is valid only in the elastic scattering region, while
the integrals run up to infinity. The polynomial part must thus
be considered as a parametrisation of the corrections to the
effects of the integration regions s′, t ′ ≥ 1 GeV2 over the
solutions in the elastic scattering region. For our purposes,
we will consider here a four-parameter family of solutions.
The polynomial dependence is exhibited by introducing the
Omnès functions,

�I (w) = exp

⎡
⎢⎣w

π

∞∫
4m2

π

ds′ δI (s′)
s′(s′ − w)

⎤
⎥⎦ (76)

where δI is equal to the S or P-wave ππ phase shift with
isospin I in the elastic region. The functions MI are then
expressed as

M0(w) = �0(w)
(
α0 + β0w + γ0w

2 + w2 Î0(w)
)

M1(w) = �1(w)
(
β1w + w Î1(w)

)
(77)

M2(w) = �2(w)
(
w2 Î2(w)

)
where

Îa(w) = 1

π

∞∫
4m2

π

ds′ sin δa(s′)M̂a(s′)
(s′)2−na (s′ − w)|�a(s′)| , na = δ1a,

(78)

and they ensure that the discontinuities of Eqs. (62) are
obeyed. The two subtraction constants which appear in the
dispersive representation (61) are simply related to the poly-
nomial parameters: α̃0 = α0, β̃0 = β0 + α0�̇(0). Plugging
this representation into Eq. (65) one obtains a set of linear
integral equations for the functions M̂I . As these are not sin-
gular equations anymore, one may thus expect that, for given
values of the parameters α0, β0, γ0, β1, if a solution exists
for M̂I , it should be unique [19].

The most natural idea for determining the polynomial
parameters is by matching the KT amplitude with the ampli-
tude computed in the chiral expansion [17–19] in the region
where the variables s, t , u are small. More precisely, if
�M(s, t, u) is the amplitude computed to chiral order pN ,
then the parameters α0, β0, β1, γ0 should be such that

M(s, t, u) − �M(s, t, u) = O(pN+2). (79)

Considering the N = 4 case, a first observation is that the
differences of the discontinuities in each of the component
functions MI are of chiral order p6,

disc[MI (w) − �MI (w)] = O(p6), (80)

independently of the values of the polynomial parame-
ters. This implies that the O(p4) parts of the differences
MI (w)− �MI (w) must be polynomial. Imposing the require-
ment that the O(p4) parts of polynomial expansions of the
differences MI − �MI vanish yields the following four match-
ing equations [19]:

α0 = 9

(
1

2
�M ′′

2 − Î2

)
s2

0 + 3( �M ′
2 − �M1) s0 + �M0 + 4

3
�M2

β0 =−9

(
1

2
�M ′′

2 − Î2

)
s0 + �M ′

0 + 3 �M1 − 5

3
�M ′

2 − �′
0α0

β1 = �M ′
1 + 1

2
�M ′′

2 − Î1 − Î2

γ0 = 1

2
�M ′′

0 + 2

3
�M ′′

2 − Î0 − 4

3
Î2 − 1

2
�′′

0α0 − �′
0β0 (81)

where the functions �Ma , �a , Îa and their derivatives are all
to be taken at w = 0. In order to solve the set of Eqs. (81),
one must keep in mind that the integrals Îa carry an implicit
linear dependence on the four polynomial parameters. This
dependence must be determined by using four independent
KT solutions in which one of the polynomial parameters is
set to 1 and the others to 0.

The chiral NLO amplitude �M(s, t, u) was first computed
in Ref. [11]; it is given in Ref. [19] in a form which involves
a single O(p4) coupling constant, L3. We will use here the
value L3 = (−3.04 ± 0.43)10−3 [64].

5.4 Numerical solutions and comparisons with the η → 3π

data

We have constructed numerical solutions of the set of KT
equations by iteration. The main differences with earlier work
[18,19] is that:

(a) we have used the kernel representations (68) for perform-
ing the angular integrations, which should be somewhat
faster than the integration over a complex contour method
used previously,

(b) The matching with ChPT was done via the four matching
Eqs. (81), which were solved with no approximations.

In Ref. [19] only the last two matching equations were imple-
mented while the first two were replaced by imposing the
requirement that the amplitude M(s, t, u) along the line t = s
has an Adler zero at the same position and with the same slope
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Fig. 5 Illustration of I = 0 phases used for computing the Omnès
function �0 [Eq. (76)] based on different assumptions in the inelastic
region. The solid line is analogous to the phase used in Ref. [59] and
the dashed line is the phase used in Ref. [18]. Also shown are some
experimental ππ data from Refs. [65,66]

as the chiral NLO amplitude. We will see below (Fig. 6) that
the first two matching relations ensure essentially equivalent
constraints on the Adler zero.

Concerning the phases δI (s) for I = 1 and I = 2, for
which inelasticity sets in rather smoothly, we take the phases
to be equal to the corresponding ππ scattering phase shifts
up to

√
scut = 1.4 GeV and, for s > scut interpolate to the

asymptotic values δ1(∞) = π and δ2(∞) = 0.
In the case of the I = 0 S-wave, inelasticity sets in

sharply around the K K̄ threshold. We have employed two
different phase choices in the inelastic region: a) the one
used in Ref. [18] (which we call cutoff (1)): for s larger than
scut = (0.865)2 GeV2, the phase is interpolated rapidly to
δ0(∞) = 0 and b) a condition similar to that used in Ref. [59])
(which we call cutoff (2)): for s larger than 4m2

K , the phase
is interpolated slowly to δ0(∞) = π . These phases are illus-
trated in Fig. 5. When used in the matching relations (81)
these different conditions lead to rather different values for
some of the polynomial parameters,4 reflecting differences
in the values of the integral Î0(0) as well as in the values of
the Omnès function and its derivatives at s = 0 (see Table 1).
However, the matching conditions ensure that the complete
KT amplitude depends only moderately on the cutoff condi-
tions. Figure 6 illustrates some results, showing amplitudes
along the line t = s where an Adler zero is present in the
chiral amplitude.

In order to assess the reliability of the ηπ → ππ ampli-
tude resulting from KT solutions with ChPT matching, let
us compare with experimental results. From the integrated
decay rate of the charged mode: �

exp
η→π0π−π+ = 300 ± 11

eV [67], one obtains for the central value of the double

4 In particular, the simple estimate given in Ref. [19] γ0 � 0 is valid
only if the cutoff is sufficiently small.

Table 1 Influence of the cutoff conditions (see text) for the phase δ0
on the values of the polynomial parameters derived from the matching
equations (in appropriate powers of GeV). Also shown are the results
of fitting two parameters to the experimental Dalitz plot results

α0 β0 β1 γ0

Cutoff(1) −0.60 + i0.07 15.7 − i0.69 6.95 + i0.40 −0.77 + i0.86

Cutoff(2) −0.61 + i0.08 16.5 − i0.88 6.89 + i0.47 −26.5 + i1.76

Fit −0.77 − i0.02 19.8 − i0.17 4.75 −34.9
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Fig. 6 Results for the amplitude M(s, t) along the line t = s obtained
from solving the KT equations together with the four chiral matching
relations (81) using two different cutoff conditions for the phase δ0.
Also shown is the chiral O(p4) amplitude

quark mass ratio: Q � 21.6 with the cutoff (1) condition
and Q � 21.5 with the cutoff (2). This value is compat-
ible with the result of Ref. [18] (Q = 21.6 ± 1.3, with
NLO matching) and slightly smaller than the one quoted in
Ref. [59] (Q = 22.7), based on the same formalism, but
a somewhat different implementation of the matching with
ChPT. The corresponding value of the quark mass ratio, ε, is
ε = 1.32×10−2. Using this value of ε in the chiral expansion
of f ηπ

+ (0), Eq. (35), one obtains a result compatible with the
one given in Eq. (40), derived from experimental data of K +

l3,
K 0

l3 decays.
Precise measurements of the differential decay distribu-

tions across the Dalitz plot have been performed recently for
both the charged [10] and the neutral decay modes [6–9]. It
is customary to represent these differential distributions in
terms of a polynomial of two independent energy variables
X , Y (defined such that X2 + Y 2 ≤ 1 and X = Y = 0 corre-
sponds to the centre of the Dalitz plot, where the three pions
have equal kinetic energies; see Appendix C); we have

d2�c

d XdY
(X, Y )

= d2�c

d XdY
(0, 0)

(
1 + aY + bY 2 + d X2 + f Y 3 + · · · )

(82)
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Table 2 Comparison between the experimental values of the Dalitz
plot parameters for η → π0π+π− and η → 3π0 and the predictions
of the KT solution amplitudes with NLO matching and two different
cutoff conditions (see Table 1). The last column shows the result of a
KT solution where part of the polynomial parameters are fitted to the
data

Par. Experimental Cutoff(1) Cutoff(2) Fit

a −1.090 ± 0.005+0.008
−0.019 −1.171 −1.125 −1.062

b 0.124 ± 0.006 ± 0.010 0.260 0.196 0.163

d 0.057 ± 0.006+0.007
−0.016 0.083 0.082 0.067

f 0.14 ± 0.01 ± 0.02 0.074 0.100 0.102

α −0.0315 ± 0.0015 −0.0127 −0.0260 −0.0336

for the charged mode, and

d2�n

d XdY
(X, Y ) = d2�n

d XdY
(0, 0)

(
1 + α(X2 + Y 2) + · · ·

)
(83)

for the neutral mode. The experimental values of the Dalitz
plot parameters a, b, d, f and α are shown in Table 2
together with results corresponding to KT solutions ampli-
tudes. Implementation of rescattering effects via the KT
equations leads to significantly improved results with respect
to the simple use of the chiral NLO amplitude (see [11]) but
the two Dalitz parameters b and d are still predicted to be too
large.

This discrepancy between the theoretical amplitude and
experiment indicates that further effects need to be taken
into account. These could be either chiral O(p6) effects at
the level of the matching equations or further rescattering
effects. In this respect, one sees clearly from Table 2 that the
ππ phase choice which does include the f0(980) resonance
leads to better results for the Dalitz plot parameters than
the choice which does not. It is then not unlikely that the
a0(980) resonance should be taken into account as well. It
is also worth noting that preliminary results from analysis
of new data sets by KLOE and WASA have been presented
(see [68], p.16) which go in the direction of improving the
agreement with the theoretical predictions.

For our present purposes, in addition to the KT ampli-
tudes which obey the ChPT matching relations, we con-
struct an amplitude which reproduces more closely the
experimental results on the Dalitz plot. In order to do so,
we allow the two polynomial parameters β1, γ0 to vary
freely (still assuming their imaginary parts to be negligi-
ble) and use them as fit parameters. The last two polyno-
mial parameters α0, β0 are then fixed by the two condi-
tions: 1) that the amplitude reproduces the position of the
Adler zero sA of the NLO amplitude and 2) that the central
value of the quark mass double ratio Q from lattice QCD

(the recent FLAG review [50] gives Qlatt = 22.6(7)(6)

from N f = 2 + 1 simulations) is reproduced. The results
from this amplitude for Dalitz plot parameters are dis-
played in the last column of Table 2 and the correspond-
ing polynomial parameters are shown on the last line of
Table 1.

5.5 Results for f ηπ
+

In the elastic scattering region, the discontinuity of f ηπ
+ (s)

was given in Eq. (14) in terms of the pion form factor Fπ
V

and the l = 1 projection of the ηπ+ → π0π+ ampli-
tude. From the decomposition theorem, this projected ampli-
tude may be expressed in terms of M1 + M̂1 (Eq. (66)).
We can now calculate this quantity from our solutions of
the KT equations. Figure 7 shows the numerical results
for the modulus of M1 + M̂1. It illustrates the strong
sensitivity to the choice of the polynomial parameters.
The solution corresponding to fitted parameters (last line
in Table 1) has a significantly smaller resonance peak,
which is related to the smaller size of the parameter
β1.

Concerning the pion form factor, we used the experimen-
tal measurements of |Fπ

V | from τ decays (which provide
exactly the same form factor as needed here) by the Belle
collaboration [69]. The measurement covers the energy range
0.297 ≤ √

s ≤ 1.255 GeV which is essentially adequate for
our purposes. We relied on the fit performed in Ref. [69] in
terms of Gounaris–Sakurai (GS) functions [70] for perform-
ing an extrapolation of |Fπ

V | in the small energy region down
to the threshold and performing the numerical integrations.
For the phase δπ

V , we assumed elastic unitarity to hold below
1 GeV and thus took δπ

V to be equal to the l = 1 ππ phase
shift, in accordance with Watson’s theorem. Above 1 GeV,
we use the phase as predicted by the GS parametrisation.5

Asymptotically, from the usual QCD-based arguments [71,
72], one expects the form factor f ηπ

+ (s) to behave as
1/s log(s), it should thus obey a convergent dispersion rela-
tion. We will actually use DRs for f ηπ

+ (s)/s N in order to
suppress the contribution from the integration region above
1 GeV. In practice, we will use N = 1 or N = 2 and check
the stability of the result. For example, with N = 2, the DR
reads

f ηπ
+ (s) = f ηπ

+ (0) + s ḟ ηπ
+ (0) + s2

π

∞∫
4m2

π

ds′ disc[ f ηπ
+ (s′)]

(s′)2(s′ − s)
.

(84)

5 Below 1 GeV, the phase δπ
V produced by the GS parametrisation and

the ππ phase shift are quite close, differing by 5 − 10 %, except at low
energy,

√
s < 0.5 GeV, where the difference is more significant.
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The values of f ηπ
+ and its derivative at s = 0 from NLO ChPT

were given in Sect. 3. The value of the quark mass ratio ε used
in Eq. (43) was deduced from the quark mass double ratio Q
corresponding to the KT amplitude used (i.e. either Q = 21.5
with matched polynomial parameters or Q = 22.6 with fitted
parameters) and using the central value of the result given in
the FLAG review [50]: 2ms/(mu + md) = 27.46(15)(41).

The results obtained using these dispersion relations
together with ηπ → ππ amplitudes from KT equations and
also using the parametrisation given by the Belle collabora-
tion [69] for the pion form factor are shown in Fig. 8. The
figure shows that the DRs with N = 1 or N = 2 yield very
similar results in the region

√
s ≤ 1 GeV. As one can expect

from the behaviour of M1+M̂1 (see Fig. 7), the KT amplitude
with matched polynomial parameters gives rise to a larger ρ

peak than the one with the fitted parameters and the peak is
more similar in shape to that of the pion vector form factor.

6 Dispersive estimate of f ηπ
0

In this section we provide a qualitative estimate of the scalar
form factor, assuming that there should be analogies between
the πη scattering amplitude and the well-known ππ , π K
scattering amplitudes and also between f ηπ

0 and the π K
scalar form factor.

6.1 Phase dispersive representation

The unitarity relations obeyed by the scalar form factor f ηπ
0 ,

associated with the two-body channels ππ , πη and K K̄ were
written in Sect. 2.2. Below the K K̄ threshold, the contribu-
tion from πη largely dominates since ππ is comparatively
suppressed by isospin symmetry. It is then convenient to write
the form factor as a phase dispersive representation,6

f ηπ
0 (s) = f ηπ

0 (0)×exp

[
ζ s+ s2

π

∞∫
(mη+mπ )2

φηπ (s′)
(s′)2(s′ − s)

ds′
]

(85)

where ζ = ḟ ηπ
0 (0)/ f ηπ

0 (0) and φηπ is the phase of the form
factor. The representation (85) uses two subtractions in order
to suppress, as much as possible, the contributions from the
higher-energy regions. The values of the form factor and
its derivative at s = 0 can be taken from ChPT at O(p4);
see Sect. 3. Below the K K̄ threshold, ηπ scattering can be
assumed to be essentially elastic such that, in this region, the
form factor phase can be identified with the l = 0 elastic
scattering phase shift δ

ηπ
0 by Watson’s theorem.

The S-wave ηπ scattering phase shift has not yet been
directly measured, but detailed experimental information
exists on the properties of the scalar resonances a0(980) and
a0(1450). Furthermore, chiral symmetry constrains the phase
shift to be very small at low energy [73]. For definiteness,
we will make use of the ηπ -scattering model proposed in
Ref. [41], which encodes these various pieces of information
in a simple way. It uses constraints on ηπ scattering derived
from the η′ → ηππ decay amplitude [74]. The ηπ amplitude
is written in the following form:

T ηπ (s, t, u) = TC A + A0(s) + A0(u) + F0(t) (86)

where the first term is the constant current algebra contribu-
tion,

6 We make the usual assumption that no nearby complex zeros are
present.
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TC A = m2
π

3F2
π

(cos δ − √
2 sin δ)2 (87)

(accounting for η–η′ mixing, δ being the corresponding octet-
singlet angle7). The function A0 represents a sum over tree-
level amplitudes associated with the a0(980), a0(1450) res-
onances and F0 is a similar sum involving the two isoscalar
resonances σ(600) and f0(980). These amplitudes are com-
puted from a resonance chiral Lagrangian and thus behave
as O(p4) at small values of the Mandelstam variables.8 We
used the set of resonance parameters from Eqs. (4.7), (A17),
(A1) of Ref. [41]. The partial-wave amplitudes being given
by

tηπ
l (s) =

√
ληπ (s)

32πs

1∫
−1

dz Pl(z)T ηπ (s, t, u), (88)

we define the phase shift from the ansatz

sin(2δ
ηπ
l ) = 2Re tηπ

l (s)

|1 + 2i tηπ
l (s)| , (89)

which applies also in the inelastic scattering region. The l = 0
phase shift from this model is shown in Fig. 9. It is qualita-
tively in good agreement with other approaches which have
been proposed, like the chiral unitary approach [77]. It is
also in agreement with one of the models used in Ref. [78]
and probed against the recent high-statistics measurements
of γ γ → ηπ scattering by the Belle collaboration [79].

Above the K K̄ threshold, ηπ scattering becomes inelastic
under the effect, mainly, of the two-body channels K K̄ and
η′π . The phase φηπ must then differ from δ

ηπ
0 . A global con-

straint on φηπ arises from imposing the requirement that the
form factor, as given from Eq. (85), exhibits no exponential
divergence asymptotically. This gives rise to a sum rule,

ζ ≡ ḟ ηπ
0 (0)

f ηπ
0 (0)

= 1

π

∞∫
(mη+mπ )2

φηπ(s′)
(s′)2 ds′. (90)

Using the chiral expansion results for ζ (see Sect. 3.3), the
sum rule indicates that one should have φηπ << δ

ηπ
0 in the

inelastic region. In order to estimate more precisely how φηπ

behaves, one may rely on an analogy with the phase of the

7 A different convention for Fπ and for the mixing angle was used in
Ref. [41].
8 This model predicts a0 � 3.2 × 10−2 for the l = 0 scattering length.
This value is somewhat larger than the NLO ChPT low-energy theorem
result [75] a0 = (−0.02 ± 0.77) × 10−2. It can possibly be accom-
modated in schemes where higher order effects associated with OZI
violations are included [76].
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Fig. 9 The solid line is the l = 0 πη scattering phase shift obtained
from the model of Ref. [41], the shaded area indicates the region where
scattering is inelastic. The dashed lines shows the scalar form factor
phase φηπ for two values of s1 (see text)

Kπ scalar form factor. In that case, there is enough experi-
mental information on the elastic as well as the leading two-
body inelastic T -matrix elements, such that the form factor
can be deduced from solving a set of Muskhelishvili–Omnès
equations. The analysis performed in Ref. [80] shows that
the form factor phase displays a sharp drop shortly after the
onset of the leading inelastic channel.9 A similar behaviour
has also been observed in the case of the ππ scalar form fac-
tor associated with the ūu + d̄d operator [82]. The authors
argue that the presence of this phase drop is necessary in
order to reproduce the correct value of the pion scalar radius
via a sum rule analogous to Eq. (90). We then propose the
following simple model for the phase φηπ assuming a fast
decrease at s = s1 and a constant value for s > s2 with
4m2

K < s1 < s2:

s ≤ s2 : φηπ (s) = δ
ηπ
0 (s) − πθ(s − s1)

s > s2 : φηπ (s) = φηπ(s2)
(91)

(a slight smoothing of the θ function is implemented in prac-
tice). For each value of s1, the value of s2 is determined such
that the sum rule (90) is exactly satisfied. Figure 9 illustrates
the behaviour of φηπ with

√
s1 = 1.05, 1.15 GeV. In this

model, s1 is bounded from above:
√

s1 < 1.2 GeV, for oth-
erwise it is not possible to satisfy the sum rule (90).

6.2 Results for f ηπ
0

Using the phase φηπ as described above, one can compute
the scalar form factor from the dispersive representation (85).
Results are shown in Fig. 10 for several values of s1. The point
s1, where the phase drops, corresponds to a dip in the modulus

9 Only the modulus of the form factor is actually displayed in Ref. [80].
One can find both the modulus and the corresponding phase shown in
Fig. 1 of Ref. [81].
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of the form factor. Obviously, if the dip is located very close
to the K K̄ threshold, the peak of the a0(980) resonance is
strongly reduced. This corresponds, in this approach, to a
reduced coupling of the resonance to the ūd scalar operator
and thus to an exotic nature of the a0(980). One may formally
define a coupling constant from the matrix element of the
vector current involving the a0 state [83],

〈0| jud
μ |a−

0 (p)〉 = √
2Fa0 pμ. (92)

In a dispersive approach, it is in principle possible to identify
such a coupling constant from the residue of the a0 resonance
pole of the scalar form factor on the second Riemann sheet.
In a simpler way, one may obtain an estimate by matching the
shape of the dispersive form factor with a Breit–Wigner-type
shape. For this purpose, we have used the chiral resonance
approach of Ref. [23] in which one can vary the value of Fa0

(via that of an O(p6) chiral coupling constant, dr ) while the
value of the form factor at the origin is kept fixed. In this
manner, from the phase dispersive representation, with the
largest allowed value of the dip parameter, we find

Fa0 � 0.62 MeV, (93)

which thus represents an upper bound for this coupling in
the present model. For comparison, based on QCD sum rules,
values in the range [0.8–1.6] MeV have been quoted [83,84].
In the same framework, it was found in Ref. [85] that, on
the contrary, the a0 coupling should be strongly suppressed,
while estimates based on the bag model give a range of [0.2–
2.0] MeV [86]. A result from a lattice QCD simulation with
N f = 2 dynamical quarks has been given [87], which cor-
responds to Fa0 = [0.8–0.9] MeV.

7 Application to the τ → ηπν and ηl3 decays

We can now compute the contributions from the vector and
scalar form factors to the differential decay width of the τ into
ηπν [the relevant formula was given in Eq. (7)]. Figure 11
shows the contribution from the vector form factor calcu-
lated from a KT amplitude with fitted polynomial parameters
(lower curve) and that associated with parameters determined
from ChPT matching (upper curve). The vector contribution
is somewhat suppressed here by the kinematics but our calcu-
lations suggest that it should lead to a clearly visible ρ-meson
peak. The contribution to the differential decay width from
the scalar form factor is shown for three different values of
the dip s1.

The corresponding values for the integrated branching
fraction of the τ → ηπν mode are given in Table 3 and
compared with some former results found in the literature.
We quote here a plausible central value only, which corre-
sponds to

√
s1 = 1.10 GeV for the scalar form factor and
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√
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√

s1 = 1.10)
S (

√
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Fig. 11 Contributions to the invariant mass distribution of the τ →
ηπν branching fraction from the vector (V) and the scalar (S) form fac-
tors. For the vector contribution, the upper dotted curve corresponds to
polynomial parameters from ChPT matching and the lower solid curve
to parameters fitted to experiment. The scalar contribution is shown
for several values of the dip parameter s1. The shaded area shows a
plausible central value for the sum of the two contributions

Table 3 Theoretical estimates of the branching fraction of the τ →
ηπν mode, showing the separate contribution from the vector and scalar
form factors. The central values from the approach used here are shown
on the last line

105 BV 105 BS 105 BV +S Ref.

0.25 1.60 1.85 Tisserant and Truong [29]

0.12 1.38 1.50 Pich [30]

0.15 1.06 1.21 Neufeld and Rupertsberger[23]

0.36 1.00 1.36 Nussinov and Soffer [32]

[0.2–0.6] [0.2–2.3] [0.4–2.9] Paver and Riazuddin [33]

0.44 0.04 0.48 Volkov and Kostunin [34]

0.13 0.20 0.33 Present work
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to fitted polynomial parameters for the vector form factor.
It is difficult to precisely evaluate the error, in particular in
the case of the scalar form factor, because of the various
assumptions and model dependence involved. A plausible
guess however, in our approach, is that the scalar contri-
bution to the branching fraction should lie in the range10

0.1 × 10−5 ≤ BS ≤ 0.6 × 10−5. This tends to be smaller
than most previous estimates which are often based on sim-
ple scalar-dominance models. Conversely, in the dispersive
approach, it seems difficult to accommodate a value for BS as
small as quoted in Ref. [34] even if the position of the dip s1 is
very close to the K K̄ threshold, because of the contribution
from below the resonance region.

In the case of the vector contribution, in view of some
possible shifts in the experimental value of the η → 3π

Dalitz plot parameters (see [68], p.16), a plausible range for
the branching fraction should be 0.10×10−5 ≤ BV ≤ 0.40×
10−5.

Finally, for the ηl3 decays, we find the following central
values for the branching fractions (adding the two charge
modes):

Bη→π+e−ν+c.c. � 1.40 × 10−13,

Bη→π+μ−ν+c.c. = 1.02 × 10−13.
(94)

The results, in this case, are practically identical to those com-
puted with the chiral NLO form factors [23,24]. An experi-
mental upper bound on the ηe3 mode branching fraction has
been obtained recently by the BESIII [88] collaboration

Bη→π+e−ν+c.c. < 1.7 × 10−4. (95)

8 Conclusions

In this work, we have reconsidered the ηπ isospin-violating
vector and scalar form factors and the related energy distri-
bution in the second-class τ → ηπν decay which should be
measurable at future B or τ -charm factories. We have started
from the NLO ChPT results for f ηπ

+ (0) and for the deriva-
tives ḟ ηπ

+ (0), ḟ ηπ
0 (0). In particular, for f ηπ

+ (0) a relation was
established [23] with the K +

l3 and K 0
l3 decays which can now

be used thanks to recent experimental progress [49]. These
results at s = 0 could be checked, in principle, in lattice QCD
simulations including isospin violation.

In order to evaluate the form factors in the resonance
regions we further relied on their analyticity properties. We
argued that these should be the same as in the more familiar
cases of the ππ or the π K form factors, i.e., no anoma-
lous threshold should be present despite the fact that the η

meson is unstable. Its instability only generates a few techni-
cal complications in the case of f ηπ

+ : the discontinuity along

10 Varying only the position of the dip parameter s1 yields a range
BS = [0.17–0.30] × 10−5.

the unitarity cut is complex and, furthermore, it displays a
divergence at the pseudothreshold s = (mη − mπ )2.

Below 1 GeV, the essential contribution to the disconti-
nuity is proportional to the ηπ → ππ amplitude, projected
on the P-wave. We constructed a four-parameter family of
solutions of the Khuri–Treiman equations which we use in
the dispersion relation for f ηπ

+ . The shape of the vector form
factor, in particular the ρ-meson peak, is then correlated with
the Dalitz plot parameters of the η → 3π amplitude (in par-
ticular, the parameter d). Upon using the recent experimental
constraints for the Dalitz plot, we find the ρ-meson peak to
be suppressed as compared with earlier evaluations and that
its shape differs from the naive vector dominance model.

In the case of the scalar form factor f ηπ
0 , we used a phase

dispersive representation. For the ηπ scattering phase shift
in the elastic region, we relied on the ηπ scattering model
proposed in Ref. [41]. This model should be reasonable,
at the qualitative level, but it is clear that there is much to
be improved on our knowledge of ηπ scattering. Again in
this case, lattice QCD simulations, which are making steady
progress in evaluating meson-meson interactions (see [89]
for recent work), could provide unique information, e.g., on
the value of the scattering length.

At energies above the K K̄ threshold, we argued that a
plausible behaviour for the phase is that it should display a
sharp fall-off (which corresponds to a dip in the modulus), by
analogy with the cases of the ππ or the π K scalar form fac-
tors, where the corresponding phase can be generated from
dynamical models. In this approach the exotic (non-exotic)
nature of the a0(980) resonance corresponds to the dip being
situated close (far) from the resonance position. This feature
of the phase can then be used in association with a global
constraint from a sum rule, which relates the integral over
the phase to the logarithmic derivative of the form factor
at the origin. Varying the position of the dip generates the
main source of uncertainty in this approach. The sum rule
restricts the range of variation of the dip but the uncertain-
ties still remain much larger than the 20 % level, required
to make the τ → ηπν process competitive for constraining
the parameters of particle physics models involving charged
Higgs bosons.
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Appendix A: Angular projection kernels

In Sect. 5.2 the angular integrals of the functions MI (t (s, z))
were expressed in terms of kernels. The kernels needed for
I = 1, to start with, have the following expression:

P(0)(t ′, s) = 1

t ′
+ L(t ′, s),

P(1)(t ′, s) = 2

κ(s)
+ (2t ′ + s − 3s0)

κ(s)
L(t ′, s),

P(2)(t ′, s) = 1

3t ′
+ 2(2t ′ + s − 3s0)

κ(s)2

+ (2t ′ + s − 3s0)
2

κ(s)2 L(t ′, s),

(96)

where the logarithmic function L(t ′, s) was given in Eq. (70).
For I = 0, 2 the two kernels which are needed read

K (0)(t ′, s) = 3s0 − s

2(t ′)2 + P(0)(t ′, s),

K (1)(t ′, s) = κ(s)

6(t ′)2 + P(1)(t ′, s).
(97)

Appendix B: Verification of the O( p4) discontinuities

Let us verify here, using the general unitarity formulae for
f ηπ
+ (s) and f ηπ

0 (s) given in Sects. 2.1 and 2.2 that one repro-
duces the O(p4) results. For this purpose, one must use the
chiral expansions of the form factors and those of the scat-
tering amplitudes which appear in the unitarity relations at
order p2. The expressions for the three relevant scattering
amplitudes at O(p2) are

Tηπ+→π0π+(s, t, u) = −ε
3t − 4m2

π

3F2
0

,

Tηπ+→ηπ+(s, t, u) = m2
π

3F2
0

, (98)

Tηπ+→K̄ 0 K +(s, t, u) =
√

6(3s − 4m2
K )

12F2
0

+ √
2ε

t − u

4F2
0

.

The unitarity relation for f ηπ
+ involves the l = 1 partial-wave

projections of these amplitudes which read

1

2

1∫
−1

dzz Tηπ+→π0π+ = −ε

√
s − 4m2

π

s

√
ληπ (s)

6F2
0

,

(99)

1

2

1∫
−1

dzz Tηπ+→K̄ 0 K + = √
2ε

√
s − 4m2

K

s

√
ληπ (s)

12F2
0

,

while the l = 1 projection of Tηπ+→ηπ+ vanishes. Using also
that the vector form factors Fπ

V = F K
V = 1 at O(p2), one

easily finds from the unitarity relations of Sect. 2.1

Im f ηπ
+ (s) = ε

(s − 4m2
π )

6F2
0

Im J̄ππ (s)

+ε
(s − 4m2

K )

12F2
0

Im J̄K K (s). (100)

Analogously, the unitarity relation for f ηπ
0 involves the l = 0

partial-wave projections

1

2

1∫
−1

dz Tηπ+→π0π+ = ε
3s − 4m2

K

6F2
0

,

1

2

1∫
−1

dz Tηπ+→ηπ+ = m2
π

3F2
0

,

1

2

1∫
−1

dz Tηπ+→K̄ 0 K + = √
6

3s − 4m2
K

12F2
0

.

(101)

Using the unitarity relations in Sect. 2.2 and the O(p2)

expressions for the scalar form factors f ππ
0 = f K K

0 = 1
and f ηπ

0 = ε, one obtains

Im f ηπ
0 (s) = −ε


π0π+

ηπ+

(3s − 4m2
K )

6F2
0

Im J̄ππ (s)

+ε
m2

π

3F2
0

Im J̄ηπ (s) + 
K 0 K +

ηπ

√
3(3s − 4m2

K )

12F2
0

×Im J̄K K (s). (102)

Dropping the double isospin-suppressed term and expanding

K 0 K + = m2

K 0 − m2
K + at O(p2) and O(e2) one recovers

exactly the imaginary part of the O(p4) formula (44).

Appendix C: Dalitz plot parameters

For the charged decay, η → π+π−π0, a point inside the
Dalitz plot may be determined in terms of two coordinates
X ,Y defined as

X = √
3

Tπ+ − Tπ−

Qc
, Y = 3

Tπ0

Qc
− 1 (103)

where Tπi = p0
πi

− mπi is the kinetic energy of the pion πi

in the η rest frame and Qc = ∑
i Tπi = mη − 2mπ+ − mπ0 .

In terms of the Mandelstam variables, one has

X =
√

3(u − t)

2mη Qc
, Y = 3((mη − mπ0)2 − s)

2mη Qc
− 1. (104)

123



2946 Page 20 of 22 Eur. Phys. J. C (2014) 74:2946

The Dalitz plot coefficients parameterise the variation of the
square of the amplitude from the centre of the plot

ρc(X, Y ) = |Mc(X, Y )|2
|Mc(0, 0)|2

= 1 + aY + bY 2 + d X2 + f Y 3

+ G X2Y + · · · . (105)

The parametrisation accounts for the invariance of the ampli-
tude under the transformation X → −X which results from
charge conjugation invariance.

In the case of the decays into three neutral pions one sim-
ilarly introduces two variables

X = √
3

Tπ0
1

− Tπ0
2

Qn
, Y = 3

Tπ0
3

Qn
− 1 (106)

with Qn = mη − 3mπ0 . The amplitude is invariant under
Bose symmetry transformations π0

i ↔ π0
j . Using Eq. (106),

one deduces that it must be invariant under the following
transformations of the X , Y variables:

X → −X, (X + iY ) → exp

(−iπ

3

)
(X − iY ). (107)

The expansion of the amplitude squared around the centre of
the Dalitz plot thus has the form,

ρn(X, Y ) = |Mn(X, Y )|2
|Mn(0, 0)|2

= 1 + 2α(X2 + Y 2) + 2γ (3X2Y − Y 3) + · · · .

(108)

Appendix D: Second-class amplitude in τ → π0π+ν

decay

We remark here that the ππ scalar form factor f ππ
0 [see

Eq. (20)], while involving no resonance contribution (to first
order in isospin breaking) can be estimated in an essentially
model independent way in the low-energy region. The π0π+
system with l = 0 must be in an isospin I = 2 state. From
Watson’s theorem, the phase of the scalar form factor φ0,
must coincide with the l = 0, I = 2 ππ scattering phase
shift δ2

0 in an energy range s < sin � 1 GeV2 where ππ

scattering is elastic to a good approximation. We can then
express f ππ

0 as a phase dispersive representation,

f ππ
0 (s) = exp

⎛
⎜⎝ s

π

∞∫
4m2

π

ds′ δ2
0(s′)

s′(s′ − s)

⎞
⎟⎠

× exp

⎛
⎝ s

π

∞∫
sin

ds′ φ0(s′) − δ2
0(s′)

s′(s′ − s)

⎞
⎠ (109)

(using f ππ
0 (0) = Fπ

V (0) = 1). At energies s << sin we can
neglect the effect of the second exponential in Eq. (109) and
thus obtain an approximation of the form factor in terms of
the known I = 2 phase shift.

The form factor f ππ
0 plays a role in the search for CP

violation [92]. Let us consider here its effect in generating a
forward-backward asymmetry in the τ → π0π+ν decay,

Aππ (s) =
∫ 1

0 d cos θ d2�
dsd cos θ

− ∫ 0
−1 d cos θ d2�

dsd cos θ∫ 1
0 d cos θ d2�

dsd cos θ
+ ∫ 0

−1 d cos θ d2�
dsd cos θ

(110)

where θ is the angle between the three-momenta of the π+
and the τ in the ππ centre-of-mass system. In the energy
range s < sin one can express the FB asymmetry in terms
of the moduli of the form factors and the I = 1, 2 phase
shifts,
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Fig. 12 The upper figure shows the I = 2 S-wave ππ phase shift (the
experimental data are taken from Refs. [90,91]) and the scalar form
factor from Eq. (109), neglecting the second exponential. The lower
figure shows the forward-backward asymmetry in the τ → π0π+ν

decay as a function of the ππ energy. The shaded area indicates the
region where the calculation becomes unreliable
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Aππ (s)

= 3
π+π0

√
λπ+π0(s)|Fπ

V (s)|| f ππ
0 (s)| cos(δ1

1 − δ2
0)

|Fπ
V (s)|2λπ+π0(s)(1 + 2s/m2

τ ) + 3| f ππ
0 (s)|2
2

π+π0

.

(111)

Figure 12 shows that the asymmetry is very small, except,
however, in the energy region

√
s ≤ 300 MeV, where it is

positive and larger that 10 %.
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