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Abstract The present work is a generalization of the recent
work [arXiv.1206.1420] on the modified Hawking tempera-
ture on the event horizon. Here the Hawking temperature is
generalized by multiplying the modified Hawking tempera-
ture by a variable parameter α representing the ratio of the
growth rate of the apparent horizon to that of event hori-
zon. It is found that both the first and the generalized second
law of thermodynamics are valid on the event horizon for
any fluid distribution. Subsequently, the Bekenstein entropy
is modified on the event horizon and the thermodynamical
laws are examined. Finally, an interpretation of the parame-
ters involved is presented.

1 Introduction

In black hole physics a semi-classical description shows that a
black hole behaves as a black body emitting thermal radiation
with temperature (known as the Hawking temperature) and
entropy (known as the Bekenstein entropy) proportional to
the surface gravity at the horizon and area of the horizon
[1,2], respectively. Further, this Hawking temperature and
the Bekenstein entropy are related to the mass of the black
hole through the first law of thermodynamics [3]. Due to
this relationship between the physical parameters (namely,
entropy and temperature) and the geometry of the horizon,
there is natural speculation about the relationship between
black hole thermodynamics and the Einstein field equations.
A first step in this direction was put forward by Jacobson
[4], who derived the Einstein field equations from the first
law of thermodynamics: δQ = T dS for all locally Rindler
causal horizons with δQ and T as the energy flux and Unruh
temperature measured by an accelerated observer just inside
the horizon. Subsequently, Padmanabhan [5,6] on the other
side was able to derive the first law of thermodynamics on
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the horizon starting from the Einstein equations for a general
static spherically symmetric space-time.

This idea of equivalence between Einstein field equations
and the thermodynamical laws has been extended in the con-
text of cosmology. Usually, the universe bounded by the
apparent horizon is assumed to be a thermodynamical system
with Hawking temperature and the entropy as

TA = 1

2π RA
,

SA = π R2
A

G
(1)

where RA is the radius of the apparent horizon. It was shown
that the first law of thermodynamics on the apparent hori-
zon and the Friedmann equations are equivalent [7]. Subse-
quently, this equivalent idea was extended to higher dimen-
sional space-time, namely gravity theory with a Gauss–
Bonnet term and Lovelock gravity theory [7–10]. It is pre-
sumed that such an inherent relationship between the ther-
modynamics at the apparent horizon and the Einstein field
equations may lead to some clue on the properties of dark
energy.

Although the cosmological event horizon does not exist
in the usual standard big bang cosmology, in the perspec-
tive of the recent observations [11–16], the universe is in an
accelerating phase dominated by dark energy (ωd < −1/3)
and the event horizon distinct from the apparent horizon.
By defining the entropy and temperature on the event hori-
zon similar to those for the apparent horizon (given above)
Wang et al. [17] showed that both the first and the second law
of thermodynamics break down on the cosmological event
horizon. They justified it arguing that the first law is appli-
cable to nearby states of local thermodynamic equilibrium,
while the event horizon reflects the global features of space-
time. As a result, the thermodynamical parameters on the
non-equilibrium configuration of the event horizon may not
be as simple as on the apparent horizon. Further, they specu-
lated that the region bounded by the apparent horizon may be
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taken as the Bekenstein system, i.e., the Bekenstein entropy
or mass bound, S < 2�RE , and the entropy or area bound,
S < A/4, are satisfied in this region. Now due to universality
of the Bekenstein bounds and as all gravitationally stable spe-
cial regions with weak self-gravity should satisfy the above
Bekenstein bounds, the corresponding thermodynamical sys-
tem is termed a Bekenstein system. Further, due to the radius
of the event horizon being larger than the apparent horizon,
Wang et al. [17] termed the universe bounded by the event
horizon a non-Bekenstein system.

In the recent past there were published a series of works
[18–23] investigating the validity of the generalized second
law of thermodynamics of the universe bounded by the event
horizon for Einstein gravity [18,19] and in other gravity the-
ories [18–21] and for different fluid systems [18,19,22,23]
(including dark energy [19,22,23]). In these works the valid-
ity of the first law of thermodynamics on the event horizon
was assumed and it was possible to show the validity of the
generalized second law of thermodynamics with some rea-
sonable restrictions. However, the validity of the first law of
thermodynamics on the event horizon was still followed by
a question mark. Very recently, the author [24] was able to
show that the first law of thermodynamics is satisfied on the
event horizon with a modified Hawking temperature for two
specific examples of single DE fluids. The present work is
a further extension of it. Here, by generalizing the Hawk-
ing temperature, or modifying the Bekenstein entropy, it is
possible to show that both the first and the generalized sec-
ond law of thermodynamics (GSLT) are always satisfied on
the event horizon. The paper is organized as follows: Sect. 2
deals with basic equations related to earlier works. The ther-
modynamical laws with generalized Hawking temperature
and modified Bekenstein entropy are studied, respectively,
in Sect. 3 and in Sect. 4. The interpretation of the parameters
involved in generalized Hawking temperature and modified
Bekenstein entropy has been analyzed in Sect. 5. Finally, a
summary of the work and possible conclusions are presented
in Sect. 6.

2 Basic equations and earlier works

The homogeneous and isotropic FRW model of the universe
can locally be expressed by the metric

ds2 = hi j (xi )dxi dx j + R2d�2
2 (2)

where i, j can take values 0 and 1, and the two dimensional
metric tensor hi j , known as the normal metric, is given by

hi j = diag(−1, a2/1 − kr2) (3)

with xi being the associated co-ordinates (x0 = t, x1 = r).
R = ar is the area radius and is considered as a scalar field
in the normal 2D space. Another relevant scalar quantity on

this normal space is

χ(x) = hi j (x)∂i R∂ j R = 1 − (H2 + k/a2)R2 (4)

where k = 0,±1 stands for flat, closed or open model of the
universe. The Friedmann equations are

H2 + k/a2 = 8�Gρ

3
(5)

and

Ḣ − k/a2 = −4�G(ρ + p) (6)

where the energy density ρ and the thermodynamic pressure
p of the matter distribution obey the conservation relation

ρ̇ + 3H(ρ + p) = 0 (7)

Usually, the apparent horizon is defined at the vanishing of
the scalar i.e. χ(x) = 0, which gives

RA = 1
√

H2 + k/a2
. (8)

Now the surface gravity on the apparent horizon is defined
as

κA=− 1
2

∂χ

∂ R
‖R=RA = 1

RA
. (9)

So the usual Hawking temperature on the apparent horizon
is given by (as in (1))

TA = ‖κA‖
2�

= 1

2�RA
. (10)

It has been shown by Wang et al. [17] and others [7–9,25,26]
that a universe bounded by the apparent horizon (with param-
eters given by (1)) is a thermodynamical system satisfying
both the first and the second law of thermodynamics, not only
in Einstein gravity but also in any other gravity theory and
also for baryonic as well as for exotic matter.

On the other hand, the difficulty starts from the very defini-
tion of the event horizon. The infinite integral in the definition

RE = a

∞∫

t

dt

a
(11)

converges only if a ∼ tα with α > 1 i.e. the event horizon
does not exist in the decelerating phase, it has only relevance
in the present accelerating era. In the literature, the Hawking
temperature on the event horizon is usually taken similar to
the apparent horizon (replacing RA by RE ) as (see (10))

TE = 1

2�RE
. (12)

This choice is also supported from the measurement of the
temperature by a freely falling detector in a de Sitter back-
ground (where the two horizons coincide) using quantum
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field theory [27]. But unfortunately, with this choice of tem-
perature and the entropy in the form of Bekenstein, i.e.,

TE = 1

2�RE
, SE = �R2

E

G
, (13)

the universe bounded by the event horizon is not a realistic
thermodynamical system as both thermodynamical laws fail
to hold there [17].

Recently, the surface gravity on the event horizon has been
defined similar to that on the apparent horizon (see (9)) by
[24]

κE = −1

2

∂χ

∂ R
|R=RE = RE

R2
A

, (14)

and as a result the modified Hawking temperature on the
event horizon becomes

T m
E = ‖κE‖

2�
= RE

2�R2
A

, (15)

which for the flat F RW model (i.e. k = 0) becomes

TE = H2 RE

2�
. (16)

As the two horizons are related by the inequality

RA < RE , (17)

we always have

TA < TE . (18)

Using this modified Hawking temperature the author [24]
has been able to show the validity of the first law of thermo-
dynamics on the event horizon for two specific single fluid
DE models.

3 Generalized Hawking temperature
and thermodynamical laws

In this section, to proceed searching for a general prescrip-
tion, we start with a generalization of the modified Hawking
temperature in the form

T g
E = αRE

2�R2
A

(19)

where the dimensionless parameter α is to be determined so
that α = 1 on the apparent horizon.

The amount of energy flux across a horizon within the
time interval dt is [7,28]

− dEh = 4�R2
h Tabkakbdt, (20)

with ka a null vector. So for the event horizon we get

− dE = 4�R3
E H(ρ + p)dt. (21)

Now using the Einstein field Eq. (6) and the definition of
the apparent horizon (i.e. (8)), the above expression for the
energy flux simplifies to

− dE =
(

RE

RA

)3 ṘA

G
dt. (22)

From the Bekenstein entropy–area relation (see (13)) we have

TE dSE = α

(
RE

RA

)2 ṘE

G
dt. (23)

Hence for the validity of the first law of thermodynamics i.e.

− dE = dQ = TE dSE , (24)

we have

α = ṘA/RA

ṘE/RE
. (25)

Thus reciprocal of α gives the relative growth rate of the
radius of the event horizon to the apparent horizon.

For the generalized second law of thermodynamics, we
start with the Gibbs law [17,29] to find the entropy variation
of the bounded fluid distribution:

T f dS f = dE + pdV, (26)

where T f and S f are the temperature and entropy of the given
fluid distribution, respectively, V = 4�R3

E/3 and E = ρV .
The above equation explicitly takes the form

T f dS f = 4�R2
E (ρ + p)(ṘE − H RE )dt. (27)

Also using the first law (i.e. (24)) we have from (21)

TE dSE = 4�R3
E H(ρ + p)dt. (28)

Now for equilibrium distribution, we assume T f = T g
E ,

i.e., the inside matter has the same temperature as the bound-
ing surface and we obtain

TE dST = 4�R2
E (ρ + p)ṘE dt, (29)

with ST = SE + S f , the total entropy of the universal sys-
tem. Again using the Einstein field Eq. (6), the conservation
relation (7), and (8) we have on simplification

T g
E

dST

dt
=

(
RE

RA

)2 ṘA ṘE

G H RA
. (30)

Now using the generalized Hawking temperature (19) the
time variation of the total entropy becomes

dST

dt
= 2�

G H
ṘE

2
, (31)

which is positive definite for an expanding universe and hence
the generalized second law of thermodynamics always holds
on the event horizon.
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4 Modified Bekenstein entropy and thermodynamical
laws

In the previous section we have generalized the Hawking
temperature, keeping the Bekenstein entropy–area relation
unchanged and we are able to show the validity of both the
first law of thermodynamics and GSLT on the event hori-
zon, irrespective of any fluid distribution and we may term
this universe bounded by the event horizon a generalized
Bekenstein system. However, it is possible to have two other
modifications of the entropy and temperature on the event
horizon as follows.

(a) S(m)
E = βS(B)

E , TE = T (m)
E , and

(b) S(m)
E = δS(B)

E , TE = 1
δ

T (m)
E .

We shall now examine the validity of the thermodynamical
laws for these choices.

(a) S(m)
E = βS(B)

E and TE = T (m)
E .

Here S(m)
E and S(B)

E are, respectively, the modified entropy

and the usual Bekenstein entropy on the event horizon, T (m)
E

is the modified Hawking temperature on the event horizon
(given by (15) or (16)) and β is a parameter having value unity
on the apparent horizon. Then as before from the validity of
the Clausius relation β can be determined as

β = 2

R2
E

∫
R2

E
dRA

RA
. (32)

Thus for this choice of β the above modified entropy and
modified Hawking temperature satisfy the first law of ther-
modynamics on the event horizon. Now we shall examine
the validity of the generalized second law of thermodynam-
ics (GSLT) on the event horizon for this choice of entropy and
temperature on the horizon. Proceeding as before (assuming
that the temperature of the inside fluid is the same as the
modified Hawking temperature for thermodynamical equi-
librium), we have

dST

dt
= 2�

G H

(
RE

RA

)
ṘA ṘE . (33)

Thus validity of GSLT depends on the evolution of the two
horizons (apparent and event)—if both horizons increase or
decrease simultaneously the GSLT is always satisfied. How-
ever, as long as the weak energy condition (WEC) is satisfied
ṘA > 0 and ṘE > 0 if RE > RA and GSLT is satisfied. But
if WEC is violated then ṘA < 0 and GSLT will be satis-
fied only if ṘE < 0 i.e. RE < RA, which may be possible
only in the phantom era. Hence for this choice of entropy
and temperature on the event horizon GSLT is always satis-
fied as long as WEC is satisfied and when WEC is violated

then GSLT will be valid if RE < RA. Further, it should be
noted that if we choose the temperature on the event hori-
zon as the generalized Hawking temperature (i.e. T g

E ) then β

turns out to be unity i.e. we get back the previous generalized
Bekenstein system (in Sect. 3).

(b) S(m)
E = δS(B)

E , TE = 1
δ

T (m)
E .

As before the parameter δ should be unity on the apparent
horizon to match with the Bekenstein system. Again for the
validity of the first law of thermodynamics (i.e. the Clausius
relation) δ turns out to be R2

A/R2
E and as a result the entropy

on the event horizon becomes constant (equal to that at the
apparent horizon). So this choice of entropy–temperature is
not of much physical interest.

5 Interpretation of the parameters α and β

(I) α-parameter.
In this section we shall try to find some implications of the

factor α. Note that α can be termed the ratio of the expansion
rate of the two horizons. If we compare the expansion rate of
the expanding matter with that for both horizons, we have

ṘE

RE
− H = − 1

RE
,

ṘA

RA
− H =

(
3ω + 1

2

)
H (34)

where the matter in the universe is chosen as a barotropic fluid
with equation of state p = ωρ. As an event horizon exists
only for the accelerating phase we have ω < − 1

3 . Hence both
the horizons expand slower than comoving. So the expansion
rate of both the horizons coincide (i.e. α = 1) when

H RE = − 2

(3ω + 1)
. (35)

Before proceeding, we present a comparative characteri-
zation of the two horizons in Table 1.

We shall now try to estimate the parameter α for some
known fluid systems.

(a) Perfect fluid with constant equation of state ω(<

− 1
3 ).
For a flat FRW model, the cosmological solution is

a(t) = a0t [
2

3(ω+1)
]
,

i.e.

H(t) = 2

3(ω + 1)t
(36)

and

RE (t) = −3(1 + ω)

(1 + 3ω)
t. (37)

Hence

H RE = − 2

(1 + 3ω)
(38)
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Table 1 A comparative study of the horizons

Horizon Location or
definition

Causal character Velocity Acceleration

Apparent
horizon

RA = 1√
H2+ κ

a2

Time like if −1 < ω < 1
3 , Null if

ω = −1or 1
3 ,

Space like if ω < −1orω > 1
3 .

4�H R2
A(ρ + p) = 3

2 (1 + p
ρ
) 9H

2 (1 + p
ρ
)(

p
ρ

− ṗ
ρ̇
)

Event
horizon

RE = a
∫ ∞

t
dt ′

a(t ′) Null H RE − 1 −H(1 + q H RE )

i.e. (33) is identically satisfied for all ω(< − 1
3 ). So for a per-

fect fluid with constant equation of state (< − 1
3 ) we always

have α = 1 and hence the expansion rates of the two hori-
zons are identical throughout the evolution. Thus the universe
bounded by the event horizon with modified/generalized
Hawking temperature (given by (15)/(19)) is a Bekenstein
system and it supports the results in [24].

(b) Interacting holographic dark energy fluid.
We shall now study an interacting holographic dark energy

(HDE) model that consists of dark matter in the form of dust
(of energy density ρm) and HDE in the form of a perfect
fluid: pd = ωdρd . The interaction between them is chosen
as 3b2 H(ρm + ρd) with b2 the coupling constant. If RE is
taken as the I.R. cutoff, then the radius of the event horizon
(RE ) and the equation of state parameter ωd are given by
[30]

RE = c√
�d H

(39)

and

ωd = −1

3
− 2

√
�d

3c
− b2

�d
(40)

where �d = ρd/(3H2) is the density parameter for the dark
energy and the dimensionless parameter ’c’ carries the uncer-
tainties of the theory and is assumed to be constant. In this
case (33) is modified as

H RE = − 2

(1 + 3ωt )
(41)

with

ωt = pd

(ρm + ρd)
= ωd�d . (42)

We shall now examine whether for this model relation (39)
is satisfied or not. Using (37), (38), and (40) in (39) we obtain
a cubic equation in x(= √

�d),

2x3 + cx2 − 2x − (1 − b2)c = 0. (43)

This cubic equation has a positive root (x p) if b2 < 1 (the
other two roots are either both negative or a pair of complex
conjugates). In the Table 2 we present the value of x for
different choices of b and c within the observational bounds:

Table 2 Value of x for different values of c and b2 from (43)

c b2 �d x

0.7 0.92 0.73 0.85

0.8 0.84 0.73 0.85

0.82 0.91 0.70 0.84

0.76 0.8 0.76 0.87

The table shows that for interacting DE fluids it is possible
to have identical expansion rates (i.e. α = 1) for the two
horizons within the observational limit of �d and c.

(II) β-parameter.
To interpret the parameter β we consider thermal fluctua-

tions of the apparent horizon so that the area changes by an
infinitesimal amount, i.e., A(m)

a = Aa + ε; then the entropy
and temperature of the modified apparent horizon can be
written as (from the choice (a)) S(m)

a = βSB
a , Ta = T (m)

a .
Now the modified radius of the apparent horizon is related

to the original radius as (in the first approximation)

R(m)
a = Ra + ε′

2�Ra
, ε′ = ε

4
, (44)

and β approximates

β = 1 − ε′
�R2

a
+ 2ε′

�R2
a

ln Ra . (45)

Hence we have

S(m)
a = S(B)

a + 2ε′
G

ln Ra (46)

and

Ta = 1

2�Ra
+ ε′

2�R3
a
. (47)

Thus there is a logarithmic correction to the Bekenstein
entropy, and the Hawking temperature is corrected by a term
proportional to R−3

a due to this thermal fluctuation. However,
if we consider the infinitesimal change in the radius of the
apparent horizon due to the thermal fluctuation, i.e. R(m)

a =
Ra + ε, then the modified entropy and temperature on the
horizon become
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S(m)
a = S(B)

a + 4�εRa

G
, Ta = T H

a + ε

2�R2
a
, (48)

i.e., the correction to the Bekenstein entropy is proportional
to the radius of the horizon, and that of the temperature is
proportional to the inverse square of the radius.

6 Summary and concluding remarks

In this work we have studied thermodynamical laws on the
event horizon for the following three choices of entropy and
temperature on the event horizon:

(1) SE = S(B)
E , TE = T (g)

E ,

(2) SE = βS(B)
E , TE = T (m)

E ,

(3) SE = δS(B)
E , TE = 1

δ
T (m)

E

where S(B)
E and T (m)

E are, respectively, the usual Bekenstein
entropy and modified Hawking temperature (given in (15) or
(16)) and the parameters α, β, and δ are evaluated using the
Clausius relation. It is found that the parameters take value
unity on the apparent horizon so that all the three choices
reduce to the Bekenstein–Hawking system on the apparent
horizon. However, for the third choice the entropy on the
event horizon turns out to be constant (equal to that on the
apparent horizon) and hence it is not of much physical inter-
est. So we have not discussed it further. On the other hand,
both thermodynamical laws hold on the event horizon uncon-
ditionally for any fluid distribution for the first choice, while
for the second choice of entropy and temperature on the event
horizon we must have RE < RA in the phantom era for the
validity of the GSLT. Hence we call a universe bounded by
the event horizon (for the above two choices of entropy and
temperature) a generalized Bekenstein–Hawking thermody-
namical system. Also some interpretations of the parame-
ters α and β have been presented in Sect. 5. Lastly, if in
the present model of the universal thermodynamics there is
thermal equilibrium with CMB photons then the tempera-
ture of the horizon must coincide with the CMB temperature
(� 2.73K ) today [31,32]. Now restoring the dimension, the
temperature of the event horizon (see (19)) can be written (in
Kelvin) as [32]

T (g)
E = (1 + q)H3 R3

E

H RE − 1

1

2π RE

(
h̄c

kB

)
(49)

where q = −(1+Ḣ/H2) is the usual deceleration parameter;
h̄ = 1.05 × 10−27erg s, c = 3 × 1010cm/s, and kB = 1.38 ×
10−16erg/K are, respectively, the Planck constant, the speed
of light, and the Boltzmann constant.

In particular, if we choose the cosmic fluid as holographic
dark energy, then from (39) we get

H RE = c/
√

�d

and we have

T (g)
E = (1 + q)c3

�d(c − √
�d)

0.23

2π RE
K . (50)

Now using the observed values of c, ωd , q, and choosing RE

appropriately, it is always possible to match T (g)
E with the

temperature of the CMB photons. Finally, the conclusions
are point-wise presented below.

I. The universe bounded by the event horizon (generalized
Bekenstein–Hawking system) is a realistic thermody-
namical system where both thermodynamical laws hold
for any matter system within it.

II. In deriving the thermodynamical laws we have used the
second Friedmann Eq. (6) and the energy conservation
relation (7). On the other hand, assuming the first law
of thermodynamics it is possible to derive the Einstein
field equations. So we may conclude that the first law
of thermodynamics and the Einstein field equations are
equivalent (i.e. one can be derived from the other) on the
event horizon irrespective of any fluid distribution.

III. The generalized Bekenstein–Hawking system i.e. a uni-
verse bounded by the event horizon supports the recent
observations, i.e., the results of the present work are com-
patible (qualitatively) with the present observed data.

IV. If due to some thermal fluctuations the apparent hori-
zon is modified so that its area changes infinitesimally
then up to the first order of approximation the Beken-
stein entropy is corrected by a logarithmic term and the
correction to the Hawking temperature is proportional to
the inverse cube of the radius of the apparent horizon.

V. The horizon temperature can be in thermal equilibrium
with CMB photons by an appropriate choice of the
parameters involved.

For future work one may consider the following issues.

(i) Do we have validity of the thermodynamical laws on the
event horizon for other gravity theories?

(ii) Is this generalized Hawking temperature or the modified
Bekenstein valid for other horizons (if it exists) of the
universal thermodynamical system?

(iii) Further, what are the physical and geometrical implica-
tions of the parameters α and β?

(iv) Is the present generalized Bekenstein–Hawking system,
i.e., SE = S(B)

E , TE = T (g)
E or SE = βS(B)

E , TE = T (m)
E

or some other modified version on the event horizon
physically more realistic?
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