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Abstract We explore off-diagonal deformations of ‘prime’
metrics in Einstein gravity (for instance, for wormhole
configurations) into ‘target’ exact solutions in f (R, T )-
modified and massive/bi-metric gravity theories. The new
classes of solutions may, or may not, possess Killing sym-
metries and can be characterized by effective induced masses,
anisotropic polarized interactions, and cosmological con-
stants. For nonholonomic deformations with (conformal)
ellipsoid/ toroid and/or solitonic symmetries and, in par-
ticular, for small eccentricity rotoid configurations, we can
generate wormhole-like objects matching an external black
ellipsoid—de Sitter geometries. We conclude that there are
nonholonomic transforms and/or non-trivial limits to exact
solutions in general relativity when modified/massive grav-
ity effects are modeled by off-diagonal and/or nonholonomic
parametric interactions.

1 Introduction

The bulk of physically important exact solutions in gravity
theories (for instance, defining black holes and wormholes)
are described by metrics with two Killing symmetries, see for
summaries of the results the monographs [1,2]. For such solu-
tions, there are certain ‘canonical’ frames of reference, when
the coefficients of fundamental geometric/physical objects
depend generically on one or two (from maximum four, in
four dimensional, 4-d, theories) spacetime coordinates. This
class of metrics can be diagonalized by coordinate transfor-
mations or contain off-diagonal terms generated by rotations.
To construct generic off-diagonal solutions parameterized by
metrics with six independent coefficients depending gener-
ically on three and/or, in general, on all spacetime coordi-
nates is a very difficult technical and geometric task and the
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physical meaning of such generalized/modified, or Einstein,
spacetimes is less clear.

In our work, see [3,4] and references therein, we elabo-
rated a geometric method which allows us to deform nonholo-
nomically any ‘prime’ diagonal metric into various classes of
‘target’ off-diagonal solutions with one Killing and/or non-
Killing symmetries. For deformations on a small parame-
ter, the new classes of target solutions may preserve certain
important physical properties of a prime metric (for instance,
of a black hole/ring one, or for a wormhole) but may also pos-
sess new characteristics related to anisotropic polarizations
of constants, nonlinear off-diagonal interactions with new
symmetries etc.

Wormhole configurations with spacetime handles (short-
cuts), non-trivial topology and exotic matter [5] have attracted
attention for theoretical probes of foundations of gravity the-
ories and as possible objects of nature (for reviews, see [6–8]
and references therein). Such solutions are determined in
reverse direction when some tunneling metrics of prescribed
(for instance, spherical and/or conformal) symmetry are con-
sidered and then one could try to find some corresponding
exotic matter sources. A number of interesting and/or pecu-
liar solutions were found when time-like curves and respec-
tive causality violations are allowed, for stress–energy ten-
sors with possible violation of the null energy conditions.
The wormhole subjects were revived some times in connec-
tion to black hole solutions, coupling with gauge interactions,
singularities, generalized/modified gravity theories etc.

We studied locally anisotropic wormhole and/or flux tubes
in five dimensional (5-d) gravity [9–11]. Such objects can be
determined by extra dimensional or warped/ trapped config-
urations and/or possible ellipsoidal, toroidal, bipolar, soli-
tonic etc. gravitational polarizations of vacuum and/or gravi-
tational constants. The corresponding spacetime geometries
are described by generic off-diagonal metrics1 with coeffi-

1 These cannot be diagonalized by coordinate transformations.
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cients depending on three or four coordinates and various
types of (pseudo) Riemannian or non-Riemannian connec-
tions.

In the present paper, we address the problem of con-
structing deformations of prime wormhole metrics in gen-
eral relativity, GR, resulting in generic off-diagonal solutions
in modified gravity, MG, and theories with nonholonom-
ically induced torsion, effective masses and bi-metric and
bi-connection structures. We shall work with two equivalent
connections (the Levi–Civita and an auxiliary one) defined
by the same metric structure and apply and extend the anholo-
nomic frame deformation method (AFDM, see details in
[3,4], and references therein) of constructing exact solutions
in gravity theories.

The idea of the AFDM is to find certain classes of nonholo-
nomic (equivalently, anholonomic/ non-integrable) frames
with conventional 2 + 2 + · · · , or 3 + 2 + · · · , splitting of
dimensions on (pseudo) Riemannian spacetime when the (in
general, modified) Einstein equations decouple for a corre-
spondingly defined ‘auxiliary’ connection. This results in
systems of nonlinear partial differential equations (PDE)
which can be integrated in very general forms. The corre-
sponding solutions are with generic off-diagonal metrics and
generalized connections. They may depend on all spacetime
coordinates via generating and integration functions. The for-
malism is different from that with a ‘simpler’ diagonal ansatz
when the Einstein equations are transformed into certain sys-
tems of nonlinear ordinary differential equations (ODE). For
instance, for the second order ODE, we get only integra-
tion constants which are related to certain physical ones like
the gravitational constant, a point particle mass, and/or an
electric charge etc. following certain asymptotic/boundary
conditions.

We argue that it is possible to impose such constraints on a
nonholonomic frame structure, via corresponding classes of
generating/integration functions, when the ‘auxiliary’ torsion
vanishes and we can ‘extract’ solutions for the Einstein grav-
ity theory and various modifications. To provide a physical
interpretation of certain off-diagonal exact solutions with one
Killing symmetry or non-Killing symmetries is usually a very
difficult task. In general, it is not clear if any physical mean-
ing/importance can be found for a newly derived class of
generalized solutions. Nevertheless, it is possible to elaborate
realistic physical models with nonholonomically constrained
nonlinear off-diagonal gravitational and matter field interac-
tions if we consider deformations on a small parameter (for
instance, small eccentricities for ellipsoid/rotoid configura-
tions). This allows us to construct new classes of off-diagonal
solutions determining parametric deformations of wormhole
and black hole physical objects resulting in new observable
physical effects and more complex spacetime configurations.

The article is organized as follows: We formulate a geo-
metric approach to modified massive gravity theories in

Sect. 2. A proof that the corresponding gravitational field
equations can be decoupled and integrated in general forms
with respect to certain classes of nonholonomic frames of
references is provided in Sect. 3. The method of off-diagonal
deformations of wormhole–de Sitter configurations is out-
lined in Sect. 4. Small parametric deformations are consid-
ered, resulting in physically interesting solutions. In Sect. 5,
four classes of ‘locally anisotropic’ deformations of orig-
inal wormhole metrics are constructed. We deduce space-
time metrics for rotoid deformations of wormholes, consider
solitonic waves on such wormholes and (if possible) black
ellipsoids, and we explore a model with a torus ringing the
throat of a wormhole. In a more general context, massive
gravity and f -modifications to configurations with nonholo-
nomically induced (by metric coefficients) torsions are con-
sidered. Section 6 is devoted to concluding remarks.

2 Nonholonomic deformations in modified massive
gravity

We outline certain geometric methods on nonholonomic 2+2
spacetime splitting provided in detail in Refs. [3,4].

2.1 Geometric preliminaries

We shall refer to gravity theories formulated on a four
dimensional, 4-d, generalized pseudo-Riemannian manifold
V endowed with metric structure g and a metric compati-
ble linear connection D,Dg = 0. There will be considered
distortion relations of type

D = ∇ + Z, (1)

when both ‘auxiliary’, D, and Levi–Civita, ∇ = {�α
βγ },

connections and the distortion tensor, Z = {Zα
βγ }, are com-

pletely defined by the coefficients g = {gαβ(uγ )}. To con-
struct a natural splitting (1) following a well-defined geo-
metric principle we can introduce a conventional horizontal
(h) and vertical (v) splitting of the tangent space T V, when
a non-integrable (equivalently, nonholonomic, or anholo-
nomic) distribution

N : T V = hV ⊕ vV (2)

is determined locally via a set of coefficients N = {N a
i (x, y)};

a 2+2 splitting can be parameterized by local coordinates
u = (x, y), uμ = (xi , ya), where the indices run over val-
ues i, j, . . . = 1, 2 and a, b, . . . = 3, 4.2

2 The coefficients �α
βγ , Zα

βγ and gαβ are computed with respect to

certain (co) frames of reference, eα = eα
′
α(u)∂α′ and eβ = eβ

β ′ (u) duβ ′
,

for ∂α′ := ∂/∂uα′
. The Einstein rule on summation on ‘up–low’ cross

indices will be applied if the contrary is not stated. For convenience,
‘primed’, ‘underlined’ etc. indices will be used. The local pseudo-
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A h–v splitting (2) results in a structure of N -adapted local
bases, eν = (ei , ea), and cobases, eμ = (ei , ea), when

ei = ∂/∂xi − N a
i (u)∂/∂ya, ea = ∂a = ∂/∂ya, (3)

and ei = dxi , ea = dya + N a
i (u) dxi . (4)

For such frames, the nonholonomy relations are satisfied:

[eα, eβ ] = eαeβ − eβeα = W γ
αβeγ , (5)

with non-trivial anholonomy coefficients

W b
ia = ∂a N b

i , W a
ji = �a

i j = e j
(
N a

i

) − ei (N a
j ). (6)

We can distinguish the coefficients of geometric objects on
V with respect to N -adapted (co) frames (3) and (4) and call
them, in short, d-objects. For instance, a vector Y (u) ∈ T V
can be parameterized as a d-vector, Y = Yαeα = Yi ei +
Yaea, or Y = (hY, vY ), with hY = {Yi } and vY = {Ya}.

Any metric structure on V can be written (up to general
frame/coordinate transformations) in two equivalent forms:
with respect to a dual local coordinate basis,

g = g
αβ

duα ⊗ duβ,

where

g
αβ

=
[

gi j + N a
i N b

j gab N e
j gae

N e
i gbe gab

]
, (7)

or as a d-metric,

g=gα(u)eα ⊗ eβ =gi (x) dxi ⊗ dxi +ga(x, y)ea ⊗ea . (8)

On a nonholonomic manifold (V,N), we can consider a sub-
class of linear connections called distinguished connections,
d-connections, D = (h D, vD), preserving under parallelism
the N -connection splitting (2). Any D defines a covariant
derivative operator, DXY, for a d-vector field Y in the direc-
tion of a d-vector X. With respect to N -adapted frames (3)
and (4), the value DXY can be computed as in GR but with
the coefficients of the Levi–Civita connection substituted by
D = {�γ

αβ = (Li
jk, La

bk,Ci
jc,Ca

bc)}. The respective coef-
ficients are computed for the h–v-components of Deαeβ :=
Dαeβ using X = eα and Y = eβ.

A d-connection is characterized by three fundamental
geometric objects: the d-torsion, T , the nonmetricity, Q,

and the d-curvature, R, all defined by the standard equations

T (X,Y) := DXY − DYX − [X,Y],Q(X) := DXg,

R(X,Y) := DXDY − DYDX − D[X,Y].

Footnote 2 continued
Euclidean signature is fixed in the form (+ + +−). We shall write
boldface letters in order to emphasize that a nonlinear connection, N -
connection, structure (2) is fixed on a spacetime manifold V.

We can compute the corresponding N -adapted coefficients,

T =
{

Tγ
αβ =

(
T i

jk, T i
ja, T a

ji , T a
bi , T a

bc

)}
,Q =

{
Qγ

αβ

}
,

R =
{

Rα
βγ δ=

(
Ri

hjk,R
a
bjk,R

i
hja,R

c
bja, Ri

hba, Rc
bea

)}
,

of these geometric objects by introducing X = eα and Y =
eβ, and D = {�γ

αβ} into the above equations; see details in
[3,4].

It should be noted that the Levi–Civita connection ∇ (in
brief, LC,3) is not a d-connection because it does not pre-
serve under general frame/coordinate transformations the N -
connection splitting (2). Nevertheless, there is a canonical
d-connection D̂ also uniquely determined by any geometric
data (g,N) following two similar but a bit ‘relaxed’ con-
ditions: (1) it is metric compatible, D̂g = 0, and (2) with
zero h-torsion, hT̂ = {T̂ i

jk} = 0, and zero v-torsion,

vT̂ = {T̂ a
bc} = 0. This allows us to construct a canoni-

cal distortion relation of type (1) with respective splitting of
N -adapted coefficients �̂

γ
αβ = �

γ
αβ + Ẑγ

αβ . We can work

equivalently with the two metric compatible connections D̂
and ∇, because both such geometric objects are completely
defined by the same metric structure g.4 For the canonical
d-connection, there are non-trivial d-torsions coefficients,

T̂ i
jk = L̂i

jk − L̂i
k j , T̂ i

ja = Ĉi
jb, T̂ a

ji = −�a
ji , T̂ c

a j

= L̂c
a j − ea(N c

j ), T̂ a
bc = Ĉa

bc − Ĉa
cb. (9)

The geometric meaning of such a nonholonomically induced
torsion is different from that, for instance, in Riemann–
Cartan geometry because in our approach T̂ is completely
defined by the metric structure.

A (pseudo) Riemannian geometry can be formulated alter-
natively in ‘geometric variables’ (g,N,D̂) computing in stan-
dard form, respectively, the Riemann, R̂={R̂α

βγ δ}, and the

Ricci, R̂ic = {R̂ βγ }, d-tensors. For instance, the nonsym-
metric d-tensor R̂αβ := R̂γ

αβγ of D̂ is characterized by four
h–v N -adapted coefficients,

3 It is uniquely defined by the metric structure g if there are imposed
two conditions: T = 0 and Q = 0, if D → ∇.
4 The N -adapted coefficients of D̂ = { �̂

γ
αβ = (L̂i

jk , L̂a
bk , Ĉi

jc, Ĉa
bc)}

and Ẑγ
αβ , depending only on gαβ and N a

i , can be computed by the
following equations:

L̂i
jk = 1

2
gir (

ek g jr + e j gkr − er g jk
)
,

Ĉa
bc = 1

2
gad (ecgbd + ebgcd − ed gbc)

Ĉi
jc = 1

2
gikecg jk , L̂a

bk = eb(N a
k )

+1

2
gac

(
ek gbc − gdc eb N d

k − gdb ec N d
k

)
,

see proofs, for instance, in [3,4].
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R̂αβ =
{

R̂i j := R̂k
i jk, R̂ia := −R̂k

ika, R̂ai :
= R̂b

aib, R̂ab := R̂c
abc

}
, (10)

which allows us to compute an ‘alternative’ scalar curvature

R̂ := gαβR̂αβ = gi j R̂i j + gab R̂ab. (11)

We can also introduce the Einstein d-tensor of D̂,

Êαβ � R̂αβ − 1

2
gαβ R̂. (12)

The values R̂, R̂ic and R̂ for the canonical d-connection D̂
are different from the similar ones, R,Ric and R, computed
for the LC-connection ∇. Nevertheless, both classes of such
fundamental geometric objects are related via unique dis-
torting relations derived from (1) for a N -connection split-
ting (2). To work with D̂ is convenient for various purposes
in generalized gravity theories with non-trivial torsion. The
most surprising property of the Ricci d-tensor R̂ic = {R̂ βγ }
is that the corresponding modified Einstein equations of type
R̂ βγ = ϒ βγ decouple in very general forms with respect
to certain classes of N -adapted frames. This property holds
for a generic off-diagonal ansatz of type (7) (in principle,
depending on all coordinates) and for certain formally diag-
onalized and N -adapted sources ϒ βγ . This allows us to gen-
erate various classes of exact solutions in commutative and
noncommutative gravity theories with 4-d and higher dimen-
sions spacetimes, see details and examples in Refs. [3,4,9–
11]. Such a geometric method of constructing exact solutions
in gravity is conventionally called the anholonomic frame
deformation method (AFDM).

The AFDM can be used for constructing off-diagonal
exact solutions in general relativity (GR) and other theories
involving the LC-connection ∇. In such cases, D̂ = {�̂γ

αβ}
can be considered as an ‘auxiliary’ connection which together
with certain convenient sets of N -coefficients, N a

i , are intro-
duced with the aim to decouple certain systems of nonlin-
ear partial differential equations (PDE) and solve them in
very general forms. Such solutions are determined by corre-
sponding classes of generating and integration functions and,
in principle, by an infinite number of integration/symmetry
parameters. On corresponding integral varieties of solutions,
we can impose additional nonholonomic constraints when
the torsion (9) vanishes and D̂ → ∇. Such constraints result
in first order PDE equations which can be of type

L̂c
a j = ea(N c

j ), Ĉi
jb = 0,�a

ji = 0. (13)

These equations can be solved also in very general forms and
this allows us to extract LC-configurations. We note that if we
work from the very beginning with ∇, we cannot decouple for
general off-diagonal metrics, for instance, the Einstein equa-
tions. This is a consequence of the generic nonlinearity of the
gravitational field equations. The significance of D̂ is that we

can ‘relax’ a bit the zero torsion conditions, decouple the cor-
responding nonlinear PDEs for certain convenient systems
of reference determined by ‘flexible’ N a

i and find general
classes of solutions. At the end (after a class of generalized
metrics and connections was defined), we can constrain non-
holonomically/parametrically the nonlinear system and find
torsionless configurations.

The main goal of this work is to show that the AFDM
allows us to generate exact solutions with nonholonomic
deformations of wormhole objects in modified and/or mas-
sive gravity.

2.2 Nonholonomic massive f (R, T ) gravity

We study modified gravity theories derived for the action

S = 1

16π

∫
δu4

√|gαβ |

×
[

f (R̂, T ) − μ2
g

4
U(gμν,Kαβ) + m L

]

. (14)

Such theories generalize the so-called modified f (R, T )

gravity, see reviews and original results in [12–14], and the
ghost-free massive gravity (by de Rham, Gabadadze and Tol-
ley, dRGT) [15–17]. This evades from certain problems of
the bi-metric theory by Hassan and Rosen [18,19] and con-
nects us to a variety of recent research in black hole physics
and modern cosmology [20–22]. In this paper, we shall use
the units when h̄ = c = 1 and the Planck mass MPl is
defined via M2

Pl = 1/8πG with the 4-d Newton constant
G. We write δu4 instead of d4u because there are used N -
elongated differentials (3) and consider the constant μg as
the mass parameter for gravity. The geometric and physi-
cal meaning of the values contained in this formula will be
explained below.

There are at least three most important motivations to
consider in this work such generalized models of gravity.
(1) Using nonholonomic deformations described in previ-
ous section, we can transform certain classes of solutions
in modified gravity into certain equivalent ones for massive
gravity. (2) Via off-diagonal gravitational interactions in Ein-
stein gravity, it is possible to mimic various classes of physi-
cal effects in modified, massive, bi-metric, and bi-connection
gravity. (3) The AFDM seems to be an effective geometric
tool for constructing exact solutions in such ‘sophisticate’
gravity theories.

In the action (14), the Lagrangian density m L is used for
computing the stress–energy tensor of matter via variation
in N -adapted form, using operators (3) and (4), on inverse

metric d-tensor (8), Tαβ = − 2√|gμν |
δ(
√|gμν | m L)

δgαβ , when the

trace is computed T := gαβTαβ. The functional f (R̂, T )

modifies the standard Einstein–Hilbert Lagrangian (with R
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for the CL connection ∇) to that for the modified f -gravity
but with dependence on s R̂ (11) and T . In a large class of
generalized cosmological models, we can assume that the
stress–energy tensor of the matter is given by

Tαβ = (ρ + p)vαvβ − pgαβ (15)

for the approximation of perfect fluid matter with the energy
density ρ and the pressure p; the four-velocity vα being
subject to the conditions vαvα = 1 and vαD̂βvα = 0, for
m L = −p in a corresponding local N -adapted frame. For

simplicity, we can parametrize

f (R̂, T ) = 1 f (R̂) + 2 f (T ) (16)

and denote 1 F(R̂) := ∂ 1 f (R̂)/∂ R̂ and 2 F(T ) :=
∂ 2 f (T )/∂T .

In addition to the usual f -gravity term (in particular, to
the Einstein–Hilbert one) in (14), we consider a mass term
with ‘gravitational mass’ μg and potential

U/4 = −12 + 6[√S]+[S] − [√S]2

+α3{18[√S] − 6[√S]2 + [√S]3 + 2[S3/2]
−3[S]([√S] − 2) − 24}
+α4{[

√
S](24 − 12[√S] − [√S]3

)

−12[√S][S] + 2[√S]2(3[S] + 2[√S])
+3[S](4−[S])−8[S3/2](√S − 1)+6[S2]−24},

(17)

where the trace of a matrix S = (Sμν) is denoted by [S] :=
Sν

ν; the square root of such a matrix,
√

S = (
√

Sν

μ), is

understood to be a matrix for which
√

Sν

α

√
Sα

μ = Sν
μ, and

α3 and α4 are free parameters. This nonlinearly extended
Fierz–Pauli type potential was shown to result in a theory
of massive gravity which is free from ghost-like degrees of
freedom and takes the special form of a total derivative in the
absence of dynamics (see [16,17] and additional arguments
in [23]). The potential generating matrix S is constructed in
a special form to result in a d-tensor Kν

μ = δνμ − √
Sν

μ

characterizing metric fluctuations away from a fiducial (flat)
4-d spacetime. The coefficients

Sν
μ = gναηνμeαsνeμsμ, (18)

with the Minkowski metric ηνμ = diag(1, 1, 1,−1), are
generated by introducing four scalar Stükelberg fields sν,
which is necessary for restoring the diffeomorphism invari-
ance. Using N -adapted values gνα and eα we can always
transform a tensor Sμν into a d-tensor Sμν characterizing
nonholonomically constrained fluctuations. This is possible
for the values Kν

μ,Sν
μ,

√
Sν

μ etc.; even sν transforms as a
scalar field under coordinate and frame transformations.

Varying the action (14) in N -adapted form for the coeffi-
cients of d-metric gνα (8), we obtain certain effective Einstein

equations, see (12), for the modified massive gravity,

Êαβ = ϒβδ, (19)

with source

ϒβδ = e f η G Tβδ + e f Tβδ + μ2
g

K Tβδ. (20)

The first component in such a source is determined by
the usual matter fields with energy–momentum Tβδ tensor
but with effective polarization of the gravitational constant
e f η = [1+ 2 F/8π ]/ 1 F . The f -modification of the energy–
momentum tensor also results in the section term as an addi-
tional effective source

e f Tβδ =
[

1

2
(1 f − 1 F R̂ + 2p 2 F + 2 f )gβδ

−(gβδ D̂αD̂α − D̂βD̂δ)
1 F

]
/ 1 F (21)

and the ‘mass gravity’ contribution (the third term) is com-
puted as a dimensionless effective stress–energy tensor

K Tαβ := 1

4
√|gμν |

δ(
√|gμν | U)

δgαβ

= − 1

12

{
Ugαβ/4 − 2Sαβ + 2([√S] − 3)

√
Sαβ

+α3

[
3(−6 + 4[√S] + [√S]2 − [S])√Sαβ

+6([√S] − 2)Sαβ − S3/2
αβ

]

−α4

[
24

(
S2
αβ − ([√S] − 1)S3/2

αβ

)]

+12(2 − 2[√S] − [S] + [√S]2)Sαβ

+(24 − 24[√S] + 12[√S]2 − [√S]3 − 12[S]
+12[S][√S] − 8[S3/2])√Sαβ

}
.

In ‘hidden’ form, K Tαβ encodes a bi-metric configuration
with the second (fiducial) d-metric fαμ = ηνμeαsνeμsμ

determined by the St ükelberg fields sν . The potential U
(17) defines interactions between gμν and fμν via

√
Sν

μ =√
gνμfαν and Sν

μ := gνμfαν.For simplicity, we shall study in
this paper bi-metric gravity models with K Tαβ = λ(xk) gαβ,

which can be generated by such sν when gμν = ι2(xk)fμν

up to a non-trivial conformal factor � 2. Using (18), we can
compute Sν

μ := ι−2δνμ which allows us to express the effec-
tive polarized anisotropic constant encoding the contribu-
tions of sν as a functional λ[ι2(xk)]. In general, the solutions
of (19) depend on the type of symmetries of the interactions
we prescribe for fαμ which, in our model, are N -adapted and
subjected to additional nonholonomic constraints.

The gravitational field equations (19) are similar to the
Einstein ones in GR but for a different metric compatible lin-
ear connection, D̂, and with nonlinear ‘gravitationally polar-
ized’ coupling in the effective source ϒβδ (20). Such nonlin-
ear systems of PDE can be integrated in general form for any
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N -adapted parameterizations

ϒ
β
δ = diag[ϒα : ϒ1

1 = ϒ2
2 = ϒ(xk, y3);

ϒ3
3 = ϒ4

4 = vϒ(xk)], (22)

in particular, if

ϒ = vϒ = � = const, (23)

for an effective cosmological constant �, see details in [3,4].
A solution of equations (19) for a source (22) can be mod-
eled effectively by certain classes of solutions generated by
N -adapted constant coefficients (23) if the generating and
integration functions are redefined to mimic certain classes
of solutions. This is equivalent to a procedure of fixing a value
for the auxiliary scalar curvature R̂ (11) by frame/coordinate
transformations of N a

i and related N -adapted bases which
does not holds true for arbitrary 2+2 splitting but for certain
classes of nonholonomic frames resulting in decoupling of
the generalized Einstein equations and necessary parameter-
izations for the sources. Here we note that D̂δ

1 F|ϒ=� = 0
in (21) if we prescribe a functional dependence R̂ = const.
For rather general distributions of matter fields and effec-
tive matter, we can prescribe such values for (23) with
Tβδ = Ť (xk)gβδ and s R̂ = �̂ in (22),

ϒ = � = e f η G Ť (xk)

+1

2
(1 f (�̂) − �̂ 1 F(�̂) + 2p 2 F(Ť )

+ 2 f (Ť )) + μ2
g λ(xk),

e f η = [1 + 2 F(Ť )/8π ]/ 1 F(�̂). (24)

In general, any term may depend on the coordinates xi , but
via re-definition of generating functions they can be trans-
formed into certain effective constants, see footnote 6. Pre-
scribing values �̂, Ť , λ, p and functionals 1 f and 2 f, we
describe the nonholonomic matter and effective matter fields
dynamics with respect to N -adapted frames.

Finally, we note that the effective source ϒ
β
δ = �δ

β
δ (via

nonholonomic constraints and the canonical d-connection D̂)
encodes all information on modifications of the GR theory
to certain classes of f -modified and/or massive gravity theo-
ries. Imposing additional constraints when D̂T =0 → ∇, i.e.
solving equations (13), we extract LC-configurations for the
above-mentioned gravitational models.

3 Decoupling and integrability of MG field equations

In this section, we formulate and analyze possible condi-
tions on the nonholonomic frame structure and matter fields
and effective matter distributions when the gravitational field
equations for f -modified bi-metric field equations decouple
and can be integrated in very general forms. We show that

such generic off-diagonal solutions depend on various classes
of generating and integration functions and parameters. Such
modified spacetimes describe nonholonomic deformations of
a prime (fiducial and/or well-defined metric in GR, for sim-
plicity, taken in a diagonal form with two Killing symme-
tries) into certain ‘target’ configurations in modified gravity
theories.

Three classes of target solutions are analyzed: (1) non-
vacuum off-diagonal deformations to LC configurations
with effective cosmological constants encoding contributions
from massive and f -modified gravity; (2) possible gener-
alizations to non-trivial nonholonomically induced torsion
configurations; and (3) nonholonomic deformations on a
small parameter.

3.1 Decoupling with respect to N -adapted frames

The local coordinates on a 4-d manifold V are parameterized
in the form uμ = (xi , ya) = (x1 = r, x2 = θ, y3 = ϕ, y4 =
t) (or, in brief, u = (x, y)), where the indices run over val-
ues i, j, . . . = 1, 2 and a, b, . . . = 3, 4 and t is a time-like
coordinate. In brief, the partial derivatives ∂α = ∂/∂uα will
be labeled in the forms s• = ∂s/∂x1, s′ = ∂s/∂x2, s∗ =
∂s/∂y3, s
 = ∂s/∂y4.

We shall study nonholonomic deformations of a prime
metric5

g̊ = g̊α(u)e̊α ⊗ e̊β = g̊i (x) dxi ⊗ dxi + g̊a(x, y)e̊a ⊗ e̊a,

for e̊α = (dxi , ea = dya + N̊ a
i (u) dxi ),

e̊α = (e̊i = ∂/∂ya − N̊ b
i (u)∂/∂yb, ea = ∂/∂ya),

into a target off-diagonal one

g = gα(u)eα ⊗ eβ = gi (x) dxi ⊗ dxi + ga(x, y)ea ⊗ ea

= ηi (x
k)g̊i dxi ⊗ dxi + ηa(x

k, yb)h̊aea ⊗ ea, (25)

where ea are taken as in (4). Our goal is to generate g as an
exact solution in a (modified) gravity theory even if g̊ is not
necessarily constrained to the condition to be a solution of
any gravitational field equations. For certain bi-metric mod-
els, the prime metric g̊ can be considered as a fiducial one
which via nonholonomic nonlinear gravitational interactions
results in a solution in modified/ massive gravity. In the next
sections, we shall take g̊ as a wormhole solution in GR and
study possible off-diagonal deformations induced in gener-
alized gravity theories. We shall study the conditions when
modified gravity effects can be explained alternatively by
certain effective nonlinear interactions in GR.

The non-trivial components of the Einstein equations (19)
with source (22) parameterized with respect to N -adapted

5 We assume that such a metric comes with two Killing vector symme-
tries and that in certain systems of coordinates it can be diagonalized.
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bases (3) and (4) for a metric ansatz (25) with data (31) for
ω = 1 are

−R̂1
1 = −R̂2

2 = 1

2g1g2

[

g••
2 − g•

1 g•
2

2g1
−

(
g•

2

)2

2g2

+ g′′
1 − g′

1g′
2

2g2
− (g′

1)
2

2g1

]

=v ϒ, (26)

−R̂3
3 = −R̂4

4 = 1

2h3h4

[

h∗∗
4 −

(
h∗

4

)2

2h4
− h∗

3h∗
4

2h3

]

= ϒ, (27)

R̂3k = wk

2h4

[

h∗∗
4 −

(
h∗

4

)2

2h4
− h∗

3h∗
4

2h3

]

+ h∗
4

4h4

(
∂kh3

h3
+ ∂kh4

h4

)
− ∂kh∗

4

2h4
= 0, (28)

R̂4k = h4

2h3
n∗∗

k +
(

h4

h3
h∗

3 − 3

2
h∗

4

)
n∗

k

2h3
= 0, (29)

when the torsionless (LC) conditions (13) transform into

w∗
i = (∂i − wi∂3) ln

√|h3|, (∂i − wi∂3) ln
√|h4| = 0,

∂kwi = ∂iwk, n∗
i = 0, ∂i nk = ∂kni . (30)

Proofs of such equations (but for other types of sources in
GR and commutative and noncommutative Finsler-like gen-
eralizations) are contained in Refs. [3,4]. The above system
of nonlinear PDE possess an important decoupling property
which allows us to integrate step by step such equations.

3.2 Generating off-diagonal solutions

We can integrate the Einstein equations (19) for a source (22)
if the N -adapted coefficients of a metric (25) are parameter-
ized in the form

gi = eψ(xk ), ga = ω(xk, yb)ha(x
k, y3), N 3

i = wi (x
k, y3),

N 4
i = ni (x

k), (31)

and assuming that frame/coordinate transformations are used
we can satisfy the conditions h∗

a �= 0, ϒ2,4 �= 0. In a more
general context, it is possible to consider any class of met-
rics which via frame and coordinate transformations can be
related to such an ansatz. For parameterizations (31), the sys-
tem (26)–(29) transforms correspondingly into

ψ•• + ψ ′′ = 2 vϒ (32)

φ∗h∗
4 = 2h3h4ϒ (33)

βwi − αi = 0, (34)

n∗∗
i + γ n∗

i = 0, (35)

∂iω − (∂iφ/φ
∗)ω∗ − niω


 = 0, (36)

for

αi = h∗
4∂iφ, β = h∗

4 φ∗, γ =
(

ln |h4|3/2/|h3|
)∗

, (37)

where

φ = ln |h∗
4/

√|h3h4|| (38)

is considered as a generating function. Equation (36) is nec-
essary if we introduce a non-trivial conformal (in the vertical
‘subspace’) factor depending on all four coordinates. It will
be convenient to work also with the value � := eφ.

The above systems of nonlinear PDE can be integrated
step by step in very general forms following the following
procedure.

1. The (32) is just a 2-d Laplace equation which allows us
to find ψ for any given source vϒ.

2. For ha := εaz2
a(x

k, y3), when εa = ±1 depending on
the signature (we do not consider summation on repeat-
ing indices in this formula), equations (33) and (38 ) are
written correspondingly in the form

φ∗z∗
4 = ε3z4(z3)

2ϒ and eφz3 = 2ε4z∗
4. (39)

Multiplying both equations for nonzero z∗
4, φ

∗, za and
introducing the result instead of the first equation, this
system transforms into

�∗ = 2ε3ε4z3z4ϒ and �z3 = 2ε4z∗
4. (40)

Taking z3 from the second equation and introducing in

the first one, we obtain [(z4)
2]∗ = ε3[�2]∗

4ϒ . This allows
us to integrate on y3 and write

h4 = ε4(z4)
2 = 0h4(x

k) + ε3ε4

4

∫
dy3 [�2]∗

ϒ
, (41)

for an integration function 0h4(xk).6 Using the first equa-
tion in (39), we find

h3 =ε3(z3)
2 = φ∗

ϒ

z∗
4z4

z4z4
= 1

2ϒ
(ln |�|)∗(ln |h4|)∗. (42)

For ϒ = �, we can redefine the coordinates and �,

introduce ε3ε4 in � and consider solutions of type

h3[�] = (�∗)2/��2 and h4[�] = �2/4�. (43)

3. We have to solve algebraic equations for wi by introduc-
ing the coefficients (37) in (34) for the generating function
φ, or using any equivalent variables φ,�, and/or �̃,

6 We can always redefine a generating function �(xk , y3) →
�̃(xk , y3) and a source ϒ(xk , y3) → �, reconsidering (40), in a form
when [�2]∗/4ϒ = [�̃2]∗/4�, which allows us to perform a formal
integration in (41) and get h4 = 0h4(xk) + ε3ε4[�̃2]∗/4�.
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wi = ∂iφ/φ
∗ = ∂i�/�∗. (44)

4. The solution of equation (35) can be obtained by inte-
grating twice on y3,

nk = 1nk + 2nk

∫
dy3 h3/(

√|h4|)3, (45)

where 1nk(xi ), 2nk(xi ) are integration functions.
5. The LC-conditions (30) consist a set of nonholonomic

constraints which cannot be solved in explicit form for
arbitrary data (�,ϒ) and all types of integration func-
tions 1nk and 2nk . Nevertheless, we can find explicit
solutions if we assume that via frame and coordinate
transformations we can choose 2nk = 0 and 1nk =
∂kn with a function n = n(xk). We emphasize that
(∂i − wi∂3)� ≡ 0 for any �(xk, y3) if wi is defined by
(44). Introducing instead of � a new functional H(�),

we obtain (∂i −wi∂3)H = ∂H
∂�

(∂i −wi∂3)� = 0. Using
equations (43) for functionals of type h4 = H(|�̃(�)|),
we solve always the equations (∂i −wi∂3)h4 = 0, which
is equivalent to the second system of equations in (30)
because (∂i − wi∂3) ln

√|h4| ∼ (∂i − wi∂3)h4. For a
subclass of generating functions � = �̌ for which

(∂i �̌)∗ = ∂i �̌
∗, (46)

we compute for the left part of the second equation in
(30), (∂i − wi∂3) ln

√|h4| = 0. The first system of
equations in (30) can be solved in explicit form if the
wi are determined by equations (44), and h3[�̃] and
h4[�̃, �̃∗] are chosen, respectively, for ϒ = �. We
can consider �̃ = �̃(ln

√|h3|) for a functional depen-
dence h3[�̃[�̌]]. This allows us to obtain the equations
wi = ∂i |�̃|/|�̃|∗ = ∂i | ln

√|h3||/| ln
√|h3||∗. Taking

the derivative ∂3 on both sides of this equation, we get

w∗
i = (∂i | ln

√|h3||)∗
| ln

√|h3||∗ − wi
| ln

√|h3||∗∗

| ln
√|h3||∗ .

If the conditions (46) are satisfied, we can construct
generic off-diagonal configurations with w∗

i = (∂i −
wi∂3) ln

√|h3|, which is necessary for the zero torsion
conditions. Finally, we note that the conditions ∂kwi =
∂iwk from the second line in (30) are solved for any

w̌i = ∂i �̌/�̌∗ = ∂i Ã, (47)

with a non-trivial function Ã(xk, y3) depending func-
tionally on the generating function �̌.

The class of off-diagonal metrics of type (25) constructed
following steps 1–5 for ϒ = ϒ̆ = �, � = �̌ = �̃ and

2nk = 0 in (45) are determined by quadratic elements of
type

ds2 = eψ(xk )
[
(dx1)2+(dx2)2

]
+ (�̌∗)2

��̌2

[
dy3+(∂i Ã[�̌]) dxi

]2

− �̌2

4|�|
[
dt + (∂kn) dxk

]2
. (48)

We can consider arbitrary generating functions but take the
effective cosmological constant � for a model of f -modified
massive gravity for a source (24). If ϒ = � (44) is for
a source (22), we obtain an effective pseudo-Riemannian
metric with N -adapted coefficients determined by effective
sources in modified gravity. Via nonlinear off-diagonal inter-
actions in GR, and certain corresponding effective sources
encoding the contributions from modified gravity, we mimic
both massive gravitational and/or f -functional contributions.
Here we emphasize that off-diagonal configurations (of vac-
uum and non-vacuum type) are possible even if the effective
sources from modified bi-metric gravity are constrained to
be zero.

For arbitrary φ and ϒ, and related �, or �̃, and �, we
can generate off-diagonal solutions of (26)–(29) with a non-
holonomically induced torsion,

ds2 = eψ(xk )[(dx1)2 + (dx2)2]
+ (z3)

2
[

dy3+ ∂i�

�∗ dxi
]2

−(z4)
2
[

dt+
(

1nk + 2nk

×
∫

dy3 (z3)
2

(z4)3 dxk
)]2

, (49)

for ε3 = 1, ε4 = −1, where the functions z3(xk, y3) and
z4(xk, y3) are defined by equations (42) and (41). In N -
adapted frames, the ansatz for such solutions define a non-
trivial distorting tensor as in Ẑ = {Ẑα

βγ } in (1).

3.3 Formal integration via polarization functions

We cannot distinguish the coefficients and multiples in a gen-
eral off-diagonal solution (48) and (49) which are determined
by a prime fiducial, f -modified and/or any diagonal exact
solution in GR. Such contributions mix for general coordi-
nate/frame transforms. Our goal is to find certain parame-
terizations of target metrics when the coefficients of prime
metrics can be defined in explicit form together with pos-
sible ‘gravitational polarizations’ of effective constants and
nonholonomic deformations of the coefficients of metrics.
For certain additional assumptions, such deformations can
be parameterized on a small parameter.

123



Eur. Phys. J. C (2014) 74:2781 Page 9 of 16 2781

3.3.1 Levi–Civita deformations in massive gravity

Metrics of type (25) can be used for constructing nonholo-
nomic deformations (g̊, N̊,

v
ϒ̊, ϒ̊) → (̃g, Ñ, vϒ̃, ϒ̃), when

the prime metric g̊ may, or may not be, an exact solution
of the Einstein or other modified gravitational equations but
the target metric g positively defines a generic off-diagonal
solution of field equations in a model of gravity.

We are interested in deformations of the metrics g̊(xk)

possessing two Killing vector symmetries (in particular, such
a metric may define a black hole, or wormhole solution). The
N -adapted deformations of the coefficients of the metrics,
frames, and sources are chosen in the form
[
g̊i , h̊a, ẘi , n̊i

]
→

[
g̃i = η̃i g̊i , h̃3 = η̃3h̊3, h̃4 = η̃4h̊4,

w̃i = ẘi + ηwi , ni = n̊i + ηni
]
,

vϒ̃ = vϒ̂(xk) vϒ̊, vϒ̂(xk) = ϒ̃ = μ2
g λ(xk)

(h̊3)
−1, �̌2 = exp[2� ] h̊3h̊4,

where the source μ2
g λ(xk) for massive gravity is taken as

in (24) and the values η̃a, w̃i , ñi and � are functions of
the three coordinates (xk, y3), and η̃i (xk) depends only on
the h-coordinates. The prime data g̊i , h̊a, ẘi , n̊i (which can
be determined by an exact solution in gravity theory, by any
fiducial metric) are given by the coefficients depending only
on (xk). The value vϒ̊ can be defined from certain physical
assumptions on the matter and effective sources if g̊ is cho-
sen as a solution of certain gravitational field equations in a
theory of gravity. Conventionally, we can take vϒ̊ = 1 if,
for instance, a general pseudo-Riemannian metric g̊ is trans-
formed into a solution of some (generalized) field equations
with source ( vϒ̃, ϒ̃).

In terms of the η-functions resulting in h∗
a �= 0 and gi =

ci eψ(xk ), the solutions (48) can be rewritten in the form

ds2 = eψ(xk )
[
(dx1)2 + (dx2)2

]

+ (� ∗)2

μ2
g λ

h̊3

[
dy3 + (∂i

η Ã) dxi
]2

− e2�

4μ2
g| λ| h̊4

[
dt + (∂k

ηn(xi )) dxk
]2

. (50)

The gravitational polarizations (ηi , ηa) and N -coefficients
(wi , ni ) are computed by the following equations:

eψ(xk ) = η̃1g̊1 = η̃2 g̊2, η̃3 = (� ∗)2

μ2
g λ

, η̃4 = e2�

4μ2
g|λ| ,

wi = ẘi + ηwi = ∂i (
η Ã[� ]), nk = n̊k + ηnk =∂k(

ηn),

where η Ã(xk, y3) is introduced via equations and assump-
tions similar to (46)–(47) and ψ•• + ψ ′′ = 2 vϒ̂(xk) vϒ̊.

For N -coefficients, the parameterizations wi = ẘi + ηwi =
∂i (e�

√
|h̊3h̊4|)/ � ∗e�

√
|h̊3h̊4| = ∂i

η Ã are used. We can

take any function ηn(xk) and put λ = const �= 0 for both
the prime (if this is an exact solution with non-trivial cosmo-
logical constant) and the target metrics.

3.3.2 Induced torsion in massive gravity

This class of solutions with non-trivial d-torsion (9) is deter-
mined by the metric (49) when the coefficients (41)–(45) are
computed for the source ϒ = μ2

g λ(xk) in massive grav-
ity and for possible effective anisotropic polarizations. The
corresponding off-diagonal quadratic element is given by

ds2 = eψ(xk )
[
(dx1)2+(dx2)2

]
+ (�∗)2

μ2
gλ�

2

[
dy3+ ∂i�

�∗ dxi
]2

− �2

4μ2
g|λ|

[
dt +

(

1nk + 2nk
4μg(�

∗)2

�5

)
dxk

]2

.

(51)

We can see that non-trivial stationary off-diagonal torsion
effects may result in additional effective rotation proportional
to μg if the integration function 2nk �= 0. Such terms do not
exist for the LC massive configurations of type (50). Using
different classes of off-diagonal metrics (51) and (50) we can
study if a massive gravity theory comes with induced torsion
or is characterized by additional nonholonomic constraints
as GR and zero torsion.

3.3.3 Small f -modifications and massive gravity

Additional modifications of GR are possible by f -functionals
with an effective source � (24). Using the two nonholo-
nomic deformations (g̊, N̊,

v
ϒ̊, ϒ̊) → (̃g, Ñ, vϒ̃, ϒ̃) →

(g[ε],N[ε], �), we construct off-diagonal solutions type
(25) with g and N depending on a small parameter ε, 0 <

ε � 1, when the source in massive gravity μ2
g|λ| is general-

ized to an effective cosmological constant � with additional
contributions by matter fields and f -modifications of gravity.
The corresponding N -adapted transforms are parameterized
thus:

[g̊i , h̊a, ẘi , n̊i ] → [gi = (1 + εχi )̃ηi g̊i , h3 = (1 + εχ3)̃η3

h̊3, h4 = (1 + εχ4)̃η4h̊4,

εwi = ẘi + w̃i + εwi ,
εni = n̊i + ñi + εni ], (52)

μ2
g λ(xk) = �[1 − ε μχ(xk)],� ∗[ε]

= � ∗(1 + ε �χ(xk, y3)),

where the values χi (xk), λχ(xk), ni (xk), �χ(xk, y3),

χa(xk, y3) and wi (xk, y3) can be computed to define LC-
configurations as solutions of the system (26)–(30).
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The deformations (52) of the off-diagonal solutions (50)
result in a new class of ε-deformed solutions if

χ3 = μχ + �χ, χ4 = μχ + �−1
∫

dy3(�χ� ∗),

wi = ∂i

(
�χ

√
|h̊3h̊4|

)
/ � ∗e�

√
|h̊3h̊4| = ∂i A, ni = ∂i n.

The coefficients for the h-metric gi = expψ(xi ) = (1 +
εχi )̃ηi g̊i are solutions of (26) with vϒ = � = ϒ̆(xk) +
μ2

gλ, where ϒ̆(xk) is determined by possible contributions
of matter fields and f -modifications parametrized in (24).

In the next sections, we shall construct such solutions in
explicit form for ellipsoid, toroid, and solitonic deformations.
If ε-deformations of type (52) are considered for the metrics
(51), we can generate new classes of off-diagonal solutions
with nonholonomically induced torsion determined both by
massive and f -modifications of GR.

4 Off-diagonal deformations of wormhole metrics

In this section, we construct and analyze two examples when
a wormhole solution matching an exterior Schwarzschild–
de Sitter spacetime is nonholonomically deformed into new
classes of off-diagonal solutions. The target metrics are
constructed for modifications of GR with effectively polar-
ized cosmological constants and ‘polarization’ multiples and
additional terms to, respectively, diagonal and non-diagonal
coefficients of metrics. The deformations resulting from mas-
sive gravity are studied for an effectively polarized cosmo-
logical constant proportional to μ2

g . The modifications deter-
mined by the f -terms are computed for a small deformation
parameter ε.

4.1 Prime metrics for 4-d wormholes

Let us consider a diagonal prime wormhole metric,

g̊ = g̊i (x
k) dxi ⊗ dxi + h̊a(x

k) dya ⊗ dya

= [1 − b(r)/r ]−1 dr ⊗ dr + r2(dθ ⊗ dθ

+ sin2 θdϕ ⊗ dϕ) − e2B(r) dt ⊗ dt, (53)

where B(r) and b(r) are called, respectively, the red-shift and
form functions; see details in [5–8]. The radial coordinate has
a range r0 ≤ r < a, where the minimum value r0 is for the
wormhole throat and a is the distance at which the interior
spacetime joins to an exterior vacuum solution (a → ∞ for
specific asymptotically flat wormhole geometries). Certain
conditions have to be imposed on the coefficients of (53) and
on the diagonal components of the stress–energy tensor,

T̊ μ
ν =diag[ r p = τ(r), θ p= p(r), ϕ p= p(r), t p = ρ(r)],

(54)

in order to generate wormhole solutions of the Einstein equa-
tions in GR.

A well-known class of wormhole metrics is constructed
so as to possess the conformal symmetry determined by a
vector X = {Xα(u)}, when the Lie derivative Xα∂α g̊μν +
g̊αν∂μXα + g̊αμ∂ν Xα = σ g̊μν , where σ = σ(u) is the con-
formal factor. Such solutions are parameterized by

B(r) = 1

2
ln(C2r2) − κ

∫
r−1 (1 − b(r)/r)−1/2 dr,

b(r) = r [1 − σ 2(r)],
τ (r) = 1

κ2r2 (3σ
2 − 2κσ − 1), p(r) = 1

κ2r2

×(σ 2 − 2κσ + κ2 + 2rσσ •),

ρ(r) = 1

κ2r2 (1 − σ 2 − 2rσσ •). (55)

The data (55) generate ‘diagonal’ wormhole configurations
determined by ‘exotic’ matter because the null energy condi-
tion (NEC) T̊μνkμkν ≥ 0 (kν is any null vector) is violated.

We shall study configurations which match the interior
geometries to an exterior de Sitter one which (in general)
can also be determined by an off-diagonal metric. The exotic
matter and effective matter configurations are considered to
be restricted to spatial distributions in the throat neighbor-
hood which limit the dimension of the locally isotropic and/or
anisotropic wormhole not to be arbitrarily large.

4.2 Parametric deformations and exterior de Sitter
spacetimes

The Schwarzschild–de Sitter (SdS) metric,

ds2 = q−1(r)(dr2 + r2 dθ2) + r2 sin2 θ dϕ2 − q(r) dt2,

(56)

can be re-parameterized for any (x1(r, θ), x2(r, θ), y3 =
ϕ, y4 = t) when

q−1(r)(dr2 + r2 dθ2) = eψ̊(xk )
[
(dx1)2 + (dx2)2

]
.

Such a metric defines two real static solutions of the Einstein
equations with cosmological constant � if M < 1/3

√|�|,
for q(r) = 1 − 2M(r)/r, M(r) = M + �r3/6, where M is
a constant mass parameter. For diagonal configurations, we
can identify � with the effective cosmological constant (24).

In this work, we study conformal, ellipsoid, and/or soli-
tonic/toroidal deformations related in certain limits to the
Schwarzschild–de Sitter metric written in the form

�g = dξ ⊗ dξ + r2(ξ) dθ ⊗ dθ

+r2(ξ) sin2 θ dϕ ⊗ dϕ − q(ξ) dt ⊗ dt, (57)

for local coordinates,

x1 = ξ =
∫

dr/
√|q(r)|, x2 = ϑ, y3 = ϕ, y4 = t, (58)
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for a system of h-coordinates when (r, θ) → (ξ, ϑ) with ξ

and ϑ of length dimension. The data for this primary metric
are written

g̊i = g̊i (x
k) = eψ̊(xk ), h̊3 = r2(xk) sin2 θ(xk),

h̊4 = −q(r(xk)), ẘi = 0, n̊i = 0.

Let us analyze how such diagonal metrics can be off-
diagonally deformed by contributions from massive and
f -modified gravity.

4.2.1 Off-diagonal de Sitter deformations in massive
gravity

Solutions resulting in the LC configurations can be generated
similarly to (50) but using data (57),

ds2 = eψ̃(ξ,θ)(dξ2 + dϑ2)

+ (� ∗)2

μ2
g λ(ξ, ϑ)

r2(ξ) sin2 θ(ξ, ϑ)[dϕ + (∂ξ
η Ã) dξ

+(∂ϑ
η Ã) dϑ]2 − e2�

4μ2
g| λ(ξ, ϑ)|q(ξ)

×[dt + ∂ξ
ηn(ξ, ϑ) dξ + ∂ϑ

ηn(ξ, ϑ) dϑ]2, (59)

where eψ̃(ξ,ϑ) = η̃1g̊1 = η̃2 g̊2 are solutions of ψ̃•• + ψ̃ ′′ =
2 μ2

g λ(ξ, ϑ). The generating function �(ξ, ϑ, ϕ), the effec-
tive source λ(ξ, ϑ) and the mass parameter μg should be
fixed from physical assumptions on systems of reference,
fixed prime Stükelberg fields [using algebraic conditions of
type (18)] and observable effects in modern cosmology. The
value ñi = ηni (ξ, ϑ) = ∂i

ηn(ξ, ϑ) is an integration func-
tion and η Ã(ξ, ϑ, ϕ) is determined by e2� following equation
(47) and

w̃i = ηwi = ∂i (e� r(ξ) sin θ(ξ, ϑ)
√|q(ξ)|)

� ∗e� r(ξ) sin θ(ξ, ϑ)
√|q(ξ)|

= ∂i
η Ã, for xi = (ξ, ϑ). (60)

It should be noted here that the N -coefficients in (59)
result in nonzero anholonomy coefficients (6) for nonholo-
nomic relations of type (5). This proves that such solutions
cannot be diagonalized via frame/coordinate transformations
and that, in general, they are characterized by six (from pos-
sibly ten) independent coefficients of metrics. We can mimic
such configurations by off-diagonal interactions in GR with
corresponding effective matter source determined by terms
induced by μg taken as an integration parameter. It can be
related to Killing symmetries of such metrics; see details in
Ref. [24].

4.2.2 Ellipsoidal f -modifications

Deformations (52) on a parameter ε, 0 ≤ ε < 1, are consid-
ered for the solutions in massive gravity (59), with

χ3 = �χ, χ4 = �−1
∫

dϕ(�χ� ∗),

wi = ∂i (
�χr(ξ) sin θ(ξ, ϑ)

√|q(ξ)|)
� ∗e� r(ξ) sin θ(ξ, ϑ)

√|q(ξ)| = ∂i A, ni = ∂i n,

(61)

for xi = (ξ, ϑ), and we fix, for simplicity, μχ = 0 (a possible
physical motivation is to consider models with constant mass
gravity parameter and zero related polarization). The coef-
ficients of the h-metric gi = expψ(ξ, ϑ) = (1 + εχi )̃ηi g̊i

are solutions of (26) with vϒ = � = ϒ̆(xk) + μ2
gλ, where

ϒ̆(ξ, ϑ) is determined by possible contributions of matter
fields and f -modifications parameterized in (24). The result-
ing target off-diagonal quadratic element is parameterized in
the form

ds2 = eψ̃(ξ,ϑ)
(

dξ2 + dϑ2
)

+ (� ∗)2

μ2
g λ(ξ, ϑ)

×[1 + εχ3(ξ, ϑ, ϕ)]r2(ξ) sin2 θ(ξ, ϑ)(δϕ)2

− e2�

4μ2
g| λ(ξ, ϑ)| [1 + εχ4(ξ, ϑ, ϕ)]q(ξ)(δt)2,

δϕ = dϕ + [w̃i (ξ, ϑ, ϕ) + εwi (ξ, ϑ, ϕ)] dxi ,

δt = dt + [ñi (ξ, ϑ) + εni (ξ, ϑ)] dxi ,

when w̃i are given by equations (60). For such small deforma-
tions re-parameterized in (r, θ)-coordinates, the coefficient

h4 = − e2�

4μ2
g| λ(ξ, ϑ)| [1 + εχ4]q

� − e2�

4μ2
g| λ(r, θ)|

[
1 − 2M(r, θ, ϕ)

r

]
(62)

is related to small gravitational polarizations of the mass
coefficients,

M(r, θ, ϕ) � M(r)

[
1 + ε

(
1 − r

2M

)
χ4(r, θ, ϕ)

]
.

We generate rotoid f -deformations if

χ4 =χ4(r, ϕ) :=
2M(r)

r

(

1− 2M(r)

r

)−1

ζ sin(ω0ϕ+ϕ0),

(63)

for some constants ζ , ω0 andϕ0, taken as a polarization func-
tion. With respect to N -adapted frames, there is a smaller
”ellipsoidal horizon” (when h4 = 0 in (62), we get the para-
metric equation for an ellipse),
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r+ � 2 M(r+)

1 + εζ sin(ω0ϕ + ϕ0)
,

where ε is the eccentricity parameter. Using equations (61)
for a prescribed value �(r, θ, ϕ), and χ3 = �χ =
∂ϕ[χ4� ]/∂ϕ� , we compute

wi = ∂i (r(ξ) sin θ(ξ, ϑ)
√|q(ξ)|∂ϕ[χ4� ])

e� r(ξ) sin θ(ξ, ϑ)
√|q(ξ)|∂ϕ� = ∂i A.

The resulting solutions in massive f -gravity with rotoid
symmetry are parameterized

ds2 = eψ̃(ξ,ϑ)
(

dξ2+dϑ2
)
+ (� ∗)2

μ2
g λ

(
1+ε

∂ϕ[χ4� ]
∂ϕ�

)
r2(ξ)

× sin2 θ(ξ, ϑ) (δϕ)2

− e2�

4μ2
g| λ| [1 + εχ4]q(ξ) (δt)2, (64)

δϕ=dϕ+[∂i
η Ã+ε∂i A] dxi , δt =dt+[∂i

ηn+ε∂i n] dxi .

Such stationary configurations are generated by nonlinear
off-diagonal interactions in massive gravity with non-trivial
μ2

g λ(ξ, ϑ) terms. We note that, in general, the limit μg → 0
is not smooth for such classes of solutions. There are nec-
essarily additional assumptions on the nonholonomic con-
straints resulting in diagonal metrics with two Killing sym-
metries or for selecting black rotoid–de Sitter configurations.
It is possible to model such solutions via locally anisotropic
effective polarizations of the coefficients of metrics and phys-
ical constants (treated as integration functions and constants)
in GR. For this class of solutions, the contributions related to
‘massive’ gravity terms are very different from those gener-
ated by f -deformations. In the latter case, there are smooth
limits for ε → 0, when (for instance) rotoid symmetries may
transform into spherical ones.

5 Ellipsoid, solitonic, and toroid deformations
of wormhole metrics

In this section, we explore rotoid deformations of wormhole
configurations determined by off-diagonal effects in mas-
sive gravity and f -modifications. The general ansatz for such
metrics is taken in the form

ds2 = eψ̃ (̃ξ ,θ)(d̃ξ2 + dϑ2) + [∂ϕ� (̃ξ, ϑ, ϕ)]2

μ2
gλ(̃ξ , ϑ)

×
(

1 + ε
∂ϕ[χ4(̃ξ , ϑ, ϕ)� (̃ξ, ϑ, ϕ)]

∂ϕ� (̃ξ, ϑ, ϕ)

)
r2(̃ξ )

× sin2 θ (̃ξ , ϑ)(δϕ)2

− e2�(̃ξ,ϑ,ϕ)]

4μ2
g| λ(̃ξ, ϑ)| [1 + εχ4(̃ξ , ϑ, ϕ)]e2B(̃ξ )(δt)2, (65)

δϕ = dϕ + ∂̃ξ [ η Ã(̃ξ , ϑ, ϕ) + εA(̃ξ , ϑ, ϕ)] d̃ξ

+∂ϑ [ η Ã(̃ξ , ϑ, ϕ) + εA(̃ξ , ϑ, ϕ)] dϑ,

δt = dt + ∂̃ξ [ ηn(̃ξ , ϑ) + ε∂i n(̃ξ , ϑ)] d̃ξ

+∂ϑ [ ηn(̃ξ , ϑ) + ε∂i n(̃ξ , ϑ)] dϑ,

where ξ̃ = ∫
dr/

√|1 − b(r)/r |, and B(̃ξ ) are determined
by the prime metric (53). We can choose such generating
and integration functions when the metrics (in corresponding
limits) define exterior spacetimes (64), for coordinates (58)
and e2B(̃ξ ) → q(r), see (57).

The class of solutions (65) are for stationary config-
urations determined by respective general and small ε-
parametric μg- and f -modifications.

5.1 Ellipsoidal off-diagonal wormhole deformations

Rotoid ε-configurations are ‘extracted’ from (65) if we take
for the f -deformations

χ4 =χ4(r, ϕ) :=
2M(r)

r

(

1− 2M(r)

r

)−1

ζ sin(ω0ϕ+ϕ0),

(66)

for r considered as a function r (̃ξ ). This is different from
r(ξ) taken in the previous section but may be parameterized
to have r (̃ξ ) → r(ξ) in exterior spacetimes. Let us define

h3 = η̃3(̃ξ , ϑ, ϕ)
[
1 + εχ3(̃ξ , ϑ, ϕ)

] 0h3(̃ξ , ϑ),

h4 = η̃4(̃ξ , ϑ, ϕ)
[
1 + εχ4(̃ξ , ϕ)

] 0h4(̃ξ ),

for 0h3 = r2(̃ξ ) sin2 θ (̃ξ , ϑ), 0h4 = q (̃ξ ) and

η̃3 = [∂ϕ� (̃ξ, ϑ, ϕ)]2

μ2
g λ(̃ξ, ϑ)

, η̃4 = e2�(̃ξ,ϑ,ϕ)]

4μ2
g| λ(̃ξ , ϑ)|q (̃ξ )e2B(̃ξ ),

(67)

where e2B(̃ξ ) → q (̃ξ ) if ξ̃ → ξ. Introducing (66) in the
respective equations (61) for any prescribed generating func-
tion �̃ (̃ξ , ϑ, ϕ), we can compute

χ̃3 = χ3(̃ξ , ϑ, ϕ) = �χ = ∂ϕ[χ4�̃ ]/∂ϕ�̃ , and

wi = ∂i (r (̃ξ ) sin θ (̃ξ , ϑ)
√

|q (̃ξ )|∂ϕ[χ4� ])
e� r (̃ξ ) sin θ (̃ξ , ϑ)

√
|q (̃ξ )|∂ϕ�

=∂i A(̃ξ , ϑ, ϕ),

for xi = (̃ξ , ϑ). With respect to N -adapted frames, we
model an ellipsoidal configuration with r+(̃ξ = ξ̃+) �

2 M (̃ξ+)
1+εζ sin(ω0ϕ+ϕ0)

, for a corresponding value of ξ̃+, constants

ζ , ω0 and ϕ0, and eccentricity ε.
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Putting together the above equations, we obtain

ds2 = eψ̃ (̃ξ ,θ)(d̃ξ2 + dϑ2)

+[∂ϕ�̃ ]2

μ2
g λ

(
1 + ε

∂ϕ[χ4�̃ ]
∂ϕ�̃

)0

h3[dϕ+∂̃ξ (
η Ã

+εA) d̃ξ+∂ϑ(
η Ã+εA) dϑ]2

− e2�̃

4μ2
g| λ| [1+εχ4(̃ξ , ϕ)]e2B(̃ξ )[dt+∂̃ξ (

ηn+εn) d̃ξ

+∂ϑ(
ηn+εn) dϑ]2. (68)

If the generating functions �̃ and effective source λ in mas-
sive gravity are chosen in such a way that the polarization
functions (67) can be approximated by η̃a � 1, and η Ã
and ηn are ‘almost constant’, with respect to certain systems
of radial coordinates, the metric (68) mimics small rotoid
wormhole-like configurations with off-diagonal terms and
f -modifications of the diagonal coefficients. It is possible
to choose such integration functions and constants that this
class of stationary solutions define wormhole-like metrics
depending generically on three space coordinates with self-
consistent ‘embedding’ in an effective massive gravity back-
ground.

For more general classes of nonholonomic deformations,
we can preserve certain rotoid type symmetries but the
‘wormhole character’ of solutions becomes less clear.

5.2 Solitonic waves for wormholes and black ellipsoids

Let us consider two examples of gravitational solitonic defor-
mations in massive f -modified gravity.

5.2.1 Sine-Gordon two dimensional nonlinear waves

An interesting class of off-diagonal solutions depending on
all spacetime coordinates can be constructed by designing a
configuration when a 1-solitonic wave preserving an ellip-
soidal wormhole configuration. Such a spacetime metric can
be written in the form

ds2 = eψ̃(xi )(d̃ξ2 + dϑ2) + ω2(̃ξ , t)

×
[
η̃3

(
1 + ε

∂ϕ[χ4�̃ ]
∂ϕ�̃

)
0h3(δϕ)

2

−η̃4[1 + εχ4(̃ξ , ϕ)] 0h4(δt)2
]
,

δϕ = dϕ+∂i (
η Ã+εA) dxi , δt =dt+ 1ni (̃ξ , ϑ) dxi , (69)

for xi = (̃ξ , ϑ) and ya = (ϕ, t). The ‘vertical’ conformal
factor

ω(̃ξ, t) = 4 arctan emγ (̃ξ−vt)+m0 , (70)

where γ 2 = (1 − v2)−1 and constants m,m0, v, defines a
1-soliton solution of the sine-Gordon equation ∂2ω

∂t2 − ∂2ω

∂ξ̃2 +
sin ω = 0.

For ω = 1, the metrics (69) are of type (68). A non-
trivial value ω depends on the time-like coordinate t and
has to be constrained to conditions of type (36), which can
be written for 1n2 = 0 and 1n1 = const in the form
∂ω

∂ξ̃
− 1n1

∂ω
∂t = 0. A gravitational solitonic wave (70) will

propagate self-consistently in a rotoid wormhole background
with 1n1 = v, which solves both the sine-Gordon and the
constraint equations. Re-defining the system of coordinates
with x1 = ξ̃ and x2 = θ, we can transform any non-trivial

1ni (̃ξ , θ) into the necessary 1n1 = v and 1n2 = 0.

5.2.2 Three dimensional solitonic waves

In general, we can construct various types of vacuum gravi-
tational 2-d and 3-d configurations characterized by solitonic
hierarchies and related bi-Hamilton structures, for instance,
of the Kadomtsev–Petivashvili, KdP, equations [25,26] with
possible mixtures with solutions for 2-d and 3-d sine-Gordon
equations etc., see details in Ref. [27].

Let us consider a solution of the KdP equation for the v-
conformal factor ω = ω̌(̃ξ , ϕ, t), when y4 = t is taken as a
time-like coordinate, thus

± ω̌∗∗ + (∂t ω̌ + ω̌ ω̌• + εω̌•••)• = 0, (71)

with dispersion ε. In the dispersionless limit ε → 0, we can
assume that the solutions are independent on ϕ and deter-
mined by Burgers’ equation ∂t ω̌ + ω̌ ω̌• = 0. For 3-d soli-
tonic configurations, the conditions (36) are written in the
form e1ω̌ = ω̌• + w1(̃ξ , ϑ, ϕ)ω̌

∗ + n1(̃ξ , ϑ)∂t ω̌ = 0. If
ω̌′ = 0, we can fix w2 = 0 and n2 = 0.

Such solitonic deformations of the wormhole metrics and
their massive gravity and f -modifications can be parameter-
ized in the form

g = eψ(̃ξ,ϑ)(d̃ξ ⊗ d̃ξ + dϑ ⊗ dϑ) + [
ω̌(̃ξ , ϕ, t)

]2

× ha (̃ξ , ϕ) ea ⊗ ea,

e3 = dϕ + w1(̃ξ , ϑ, ϕ)d ξ̃ , e4 = dt + n1(̃ξ , ϑ)d ξ̃ .

This class of metrics does not have (in general) Killing sym-
metries but may possess symmetries determined by solitonic
solutions of (71).

In a similar form, we can construct solutions for any ω̌

defined by any 3-d solitonic and/or other nonlinear wave
equations, or we can generate solitonic deformations for
ω = ω̌(ϑ, ϕ, t).
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5.3 Ringed wormholes

Using the AFDM, we can generate an ansatz for a rotoid
wormhole plus a torus (ring) configuration,

ds2 = eψ̃(xi )(d̃ξ2 + dϑ2) + η̃3

(
1 + ε

∂ϕ[χ4�̃ ]
∂ϕ�̃

)
0h3(δϕ)

2

−F (̃ξ , ϑ, ϕ)̃η4[1 + εχ4(̃ξ , ϕ)] 0h4(δt)2

δϕ = dϕ + ∂i (
η Ã + εA) dxi , δt = dt + 1ni (̃ξ , ϑ) dxi ,

(72)

for xi = (̃ξ , ϑ) and ya = (ϕ, t), where the function
F (̃ξ , ϑ, ϕ) in conventional spherical coordinates can be
rewritten equivalently in conventional Cartesian coordinates
as F (̃x, ỹ, z̃) = (R0 − √

x̃2 + ỹ2)2 + z̃2 − a0, for a0 <

a, R0 < r0. We get a ring around the wormhole throat7. The
ring configuration is defined by the condition F = 0. For
F = 1, we get a metric of type (69) with ω = 1. In the above
equations, R0 is the distance from the center of the tube to
the center of the torus/ring and a0 is the radius of the tube.

If the wormhole objects exist, the variants ringed by a
torus may be stable for certain nonholonomic geometry and
exotic matter configurations. We omit in this work a rigorous
stability analysis as well as a study of issues related to cosmic
censorship criteria etc.

5.4 Modified wormholes with induced torsion

The examples for wormhole nonholonomic deformations
considered above are for effective LC-configurations which
can be effectively modeled by nonlinear off-diagonal inter-
actions in GR. Here, we provide an example of a class of sta-
tionary off-diagonal solutions with non-trivial torsion effects
resulting in additional effective rotation proportional to μg,

see the similar configuration (51). The corresponding off-
diagonal quadratic element is given by

ds2 = eψ̃ (̃ξ ,ϑ)(d̃ξ2 + dϑ2)

+ (∂ϕ�)2

μ2
gλ(̃ξ , ϑ)�2

[
dy3 + ∂i�

∂ϕ�
dxi

]2

− �2

4μ2
g|λ(̃ξ , ϑ)|

[
dt +

(

1nk (̃ξ , ϑ)

+ 2nk (̃ξ , ϑ)
4μg(∂ϕ�)2

�5

)
dxk

]2

, (73)

for xi = (̃ξ , ϑ) and generating function � = exp[2�̃
(̃ξ , ϑ, ϕ)]. The d-torsion coefficients (9) for this metric are
not trivial if 2nk �= 0. This and other settings for more
general sources ϒ(̃ξ, ϑ, ϕ), see (22), and different classes of

7 We can consider wormholes in the limit ε → 0 and for corresponding
approximations η̃a � 1 and η Ã and ηn to be almost constant.

N -coefficients lead to characteristic geometric and physical
properties, which are very different from LC-configurations.

We can parameterize (73) in any form (59), (65), (68),
and (69) in order to generate off-diagonal solutions with
μg- and/of f -modifications possessing rotoid and/or soli-
tonic symmetries characterized by nonholonomic torsion. If
a vertical conformal factor ω similar to (69) is considered,
the metric and induced torsion fields might depend on all four
spacetime coordinates. Toroidal configurations of type (72)
can be constructed if a toroidal function of type F (̃x, ỹ, z̃) is
introduced before the v-components of metrics in (73).

6 Concluding remarks and discussion

Modified gravity theories with functional dependence on cur-
vature and other traces of energy–momentum tensors for
matter fields, torsion sources etc. and/or with contributions
by massive/bi-metric and generalized connection terms for
Lagrangians belong to the most active research area oriented
to a solution of important problems in modern cosmology and
particle physics. As we can see in the recent literature, many
interesting and original classical and quantum scenarios can
be elaborated for naive additions of mass terms, non-trivial
geometric backgrounds, and nonlinear interactions via polar-
ized constants and quantum corrections. Such constructions
are grounded on geometric models and solutions for certain
(generalized) effective Einstein equations with high degrees
of symmetries (for Killing vectors) and diagonalizable met-
rics.

In our research, we focus on exact and approximate
generic off-diagonal solutions in gravity theories with gen-
eralized symmetries and dependencies via generating and
integration functions on as many as possible spacetime coor-
dinates (for instance, on three and four ones on 4-d mani-
folds). It is a difficult mathematical task to construct such
solutions in analytic form and to provide and study certain
physical important examples and interesting effects related
to outstanding issues, for instance, in cosmology and astro-
physics. Nevertheless, all candidates for gravity theories are
characterized by complex off-diagonal systems of nonlinear
partial equations, and the fundamental classical and quan-
tum properties of gravitational and matter fields interactions
should be studied with regard to the most general classes of
solutions and nonlinear nonholonomically constrained con-
figurations found. Here we note that although the equations
of modified gravity theories are rather involved, they became
very simple in certain adapted reference systems and cer-
tain types of nonholonomic constraints on certain classes for
generic off-diagonal solutions. The surprising thing is that, in
many cases, under well-defined geometric conditions, we can
model certain classes of nonlinear solutions both in an effec-
tive Einstein-like theory (with off-diagonal metrics and gen-

123



Eur. Phys. J. C (2014) 74:2781 Page 15 of 16 2781

eralized, or the LC connection) and in modified bi-metric/-
connection gravity models, in general, with non-trivial mass
terms. Hence, a generic off-diagonal solution with arbitrary
generating and integration functions and constants in GR can
be regarded as a possible analog of various types of similar
solutions in modified gravity theories. In many cases, we can
argue for a quite conservative opinion: maybe it is not nec-
essary to modify the ‘canonical’ Einstein gravity if in the
framework of this theory we are able to explain many funda-
mental issues and observable cosmological effects via certain
generalized off-diagonal solutions with generic off-diagonal
interactions and nonholonomic constraints?

In order to investigate certain physical implications of
off-diagonal solutions and the possibility to mimic physi-
cal effects in one theory by effective analogs of such solu-
tions in another class of theories, a general geometric/analytic
method of constructing exact solutions should be applied.
For such purposes, we developed the anholonomic frame
deformation method, AFDM; see [3,4,9–11] and references
therein. Following such a geometric method, various classes
of gravitational and matter field equations in modified grav-
ity (MG) and Einstein gravity theories can be decoupled and
integrated in very general forms if the necessary types of
adapted frame and connection structures are considered. We
can impose constraints, at the end, for extracting Levi Civita
configurations. In this way, a wide variety of generalized
locally anisotropic wormhole and matched exterior black
holes can be constructed. They can be derived for certain
exotic matter and/or for off-diagonal configurations of met-
rics describing nonlinear gravitational and matter field inter-
actions which may limit certain de Sitter spacetimes with
effective ‘anisotropically’ polarized cosmological and mat-
ter fields constants. The assumption on the stationary proper-
ties of such locally anisotropic spacetimes is introduced from
the very beginning; even solitonic waves may be involved.
Note that the method allows us to find a wide variety of non-
stationary exact solutions.

In this paper, we focused on generic off-diagonal solu-
tions which are constructed as nonholonomic deformations
of pseudo-Riemannian metrics with two Killing vectors (in
particular, they can be solutions of the Einstein equations)
into certain classes of generalized exact solutions in massive
gravity with possible small parametric deformations related
to f -modified gravity. We proved that there exists a formal
integration procedure via effective polarization functions,
which allows us to construct various classes of exact solu-
tions depending generically on three and four coordinates
on (generalized) four dimensional spacetimes. In explicit
form, we constructed and studied off-diagonal deformations
of wormhole solutions matching exterior (in general, non-
holonomically deformed) de Sitter spacetimes with contri-
butions by non-trivial massive gravitational terms and ellip-
soidal f -modifications of de Sitter metrics. We also analyzed

soliton waves, possible ‘ringed wormhole’-like configura-
tions, modified wormholes ‘distorted’ in nonholonomically
induced torsion, etc.

There is still much to be learned about the possibilities
of the AFDM and possible relations of off-diagonal solu-
tions constructed in such a way with massive, f -modified,
Finsler-like gravity theories, etc. Here, it should be noted
that such nonholonomic structures were originally consid-
ered in Finsler-like theories, fractional generalizations etc.
as applied to modern cosmological scenarios [28–31]. This
paper and the discussion provide just a glimpse to potential
applications and future work.
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