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Abstract We describe the early evolution of theories with
fermion–boson symmetry.

1 Introduction

By the 1940s, physicists had identified two classes of ‘ele-
mentary’ particles with widely different group behavior,
bosons and fermions. The prototypic boson is the photon
which generates electromagnetic forces; electrons, the essen-
tial constituents of matter, are fermions which satisfy Pauli’s
exclusion principle. This distinction was quickly extended to
Yukawa’s particle (boson), the generator of Strong Interac-
tions, and to nucleons (fermions). A compelling characteri-
zation followed: matter is built out of fermions, while forces
are generated by bosons.

Einstein’s premature dream of unifying all constituents of
the physical world should have provided a clue for that of
fermions and bosons; yet it took physicists a long time to
relate them by symmetry. This fermion–boson symmetry is
called ‘supersymmetry’.

Supersymmetry, a necessary ingredient of string theory,
turns out to have further remarkable formal properties when
applied to local quantum field theory, by restricting its ultravi-
olet behavior, and providing unexpected insights into its non-
perturbative behavior. It may also play a pragmatic role as
the glue that explains the weakness of the elementary forces
within the Standard Model of Particle Physics at short dis-
tances.

2 Early hint

In 1937, Wigner [1], with some help from his brother-in-
law, publishes one of his many famous papers ‘On Unitary
Representations of the Inhomogeneous Lorentz Group’. He
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was then at the University of Wisconsin at Madison, a refugee
from Princeton, which had denied him tenure. It was not an
easy paper to read, but its results were very simple: there
were five types of representations labeled by the values of
P2 ≡ pμ pμ = m2, one of the Poincaré group’s Casimir
operator.

All but two representations describe familiar particles
found in Nature. Massive particles come with momentum
p, spin j, and 2 j + 1 states of polarization, e.g. electrons and
nucleons with spin 1/2. There are also four types of massless
representations with spin replaced by helicity (spin projec-
tion along the momentum). The first two describe massless
particles with a single helicity (photons with helicity ±1), or
half-odd integer helicity, such as “massless” neutrinos with
helicity +1/2.

The last two representations O(Ξ) and O ′(Ξ) describe
states which look like massless ‘objects’, particle-like in
the sense that they have four-momentum, but with bizarre
helicities: each representation contains an infinite tower
of helicities, one with integer helicities, the other with
half-odd integer helicities. These have no analogues in
Nature.1

Physicists were slow in recognizing the importance of
group representations, even though Pauli provided the first
solution of the quantum-mechanical hydrogen atom using
group theory. Wigner’s paper does not seem to have moved
any mountains, and infinite spin representations were simply
ignored, except of course by Wigner.

Yet, O(Ξ) and O ′(Ξ) contained important information:
they are ‘supersymmetric partners’ of one another!

3 Hadrons and Mesons

Symmetries were gaining credence among physicists, not
as a simplifying device but as a guide to the organiza-

1 ‘Infinite spin’ representations do not appear in the Poincaré decom-
position of the conformal group.
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tion of Nature. Wigner and Stückelberg’s ‘supermultiplet
model’ unified SU(2) isospin and spin. Once Gell-Mann
and Ne’eman generalized isospin to SU(3), it did not
take long for Gürsey and Radicati [2], as well as Sakita
[3], to propose its unification with spin into SU(6). Pseu-
doscalar and vector mesons (bosons) were found in the
35 representation of SU(6), while the hadrons (fermions)
surprisingly lived in 56, not in 20 [3], as expected by
the statistics of the time. This non-relativistic unification
proved very successful, both experimentally and conceptu-
ally, since it led to the hitherto unsuspected color quantum
number.

In 1966, Miyazawa [4] proposed further unification. His
aim was to assemble the fermionic 56 and the bosonic 35 into
one mathematical structure, such as SU(9) but at the cost of
disregarding spin-statistics.

To explain the bounty of strange particle discovered in the
1950s, Sakata had proposed to explain mesons as T T bound
states of the spin one-half triplet

T = ( p, n, Λ ).

Miyazawa adds a pseudoscalar triplet

t = ( K +, K 0, η ),

to the Sakata spinor triplet. The hadron octet would then
be described by another bound state, T t̄ , but he could not
describe the spin three-half baryons decimet in the 56.

He introduces a toy model with two fundamental con-
stituents, a spin one-half and a spin zero particle, p =
(α↑, α↓, γ ). The nine currents

p†λi p =
{

Fi , i = 0, 1, 2, 3, 8;
Gi , i = 4, 5, 6, 7,

satisfy a current algebra with both commutators and anti-
commutators

[
Fi , Fj

] = i fi jk Fk,[
Fi , G j

] = i fi jk Gk,{
Gi , G j

} = di jk Fk,

a ‘generalized Jordan algebra’ which he calls V (3). This is
the first example, albeit non-relativistic, of a superalgebra,
today called SU(2/1) with even part SU(2)× U (1).

In 1967, he expanded his construction [5], to general
superalgebras he calls V (n,m)with the idea of including the
decimet. Alas, the phenomenology was not as compelling as
that of SU(6); two of the quarks inside a nucleon do not seem
to live together in an antitriplet color state.

In 1969, Berezin and G. I. Kac [6,7] show the mathemati-
cal consistency of graded Lie algebra which contains both
commutators and anticommutators; they give its simplest

example generated by the three Pauli matrices σ+, σ−, σ3.
Physical applications are not discussed, although Berezin’s
advocacy of Grassmann variables in path integrals was no
doubt a motivation.

4 Dual resonance models

In the 1960s, physicists had all but given up on a Lagrangian
description of the Strong Interactions, to be replaced by
the S-matrix program: amplitudes were determined from
general principles and symmetries, locality, causality, and
Lorentz invariance. Further requirements on the ampli-
tudes such as Regge behavior and its consequent boot-
strap program were still not sufficient to determine the
amplitudes.

In 1967, Dolen et al. [8] discovered a peculiar relation
in π − N scattering. At tree-level, its fermionic s-channel
(π N → π N ) is dominated by resonances (Δ++, …), as
shown by countless experiments. On the other hand, its
bosonic t-channel (π π̄ → N N ) is dominated by the ρ-
meson. Using the tools of S-matrix theory in the form of
‘finite energy sum rules’, they found that the Regge shadow of
the bosonic t-channel’s ρ-meson averaged the fermionic res-
onances in the s-channel! This was totally unexpected, since
these two contributions, described by different Feynman dia-
grams, should have been independent. Was this the additional
piece of information needed to fully determine the amplitudes
of Strong Interactions? This early example of fermion–boson
kinship led, through an unlikely tortuous path, to modern
supersymmetry.

An intense theoretical search for amplitudes where the
s- and t-channel contributions are automatically related to
one another followed. Under the spherical cow principle,
spin was set aside and the search for DHS-type amplitudes
focused on the purely bosonic process ω → πππ [9]. Soon
thereafter, Veneziano [10] proposed a four-point amplitude
with the desired crossing symmetry,

A(s, t) ∼ Γ (−α(s))Γ (−α(t))
Γ (−α(s)− α(t)

,

where α(x) = α0 + α′x is the linear Regge trajectory. It
displays an infinite number of poles in both s-channel s >
0, t < 0 and t-channel s < 0, t > 0.

Veneziano’s construction was quickly generalized to n-
point ‘dual’ amplitudes. The infinite series of poles were
recognized as the vibrations of a string [11–13].

The amplitudes were linear combinations of tree chains
which factorize into three-point vertices and propagators. A
generalized coordinate emerged [14] from this analysis

Qμ(τ) = xμ + τ pμ +
∞∑

n=1

1√
2nα′

(
anμeinτ − a†

nμe−inτ
)
,
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with an infinite set of oscillators[
anμ, a†

mν

]
= δnm gμν.

The vertex for emitting a particle of momentum kμ from the
linear chain was simple

V (k, τ ) =: eik·Q(τ ):.

Out of its corresponding generalized momentum

Pμ(τ) = dQμ

dτ
, (1)

one derived the operators

Ln = 1

2π

π∫
−π

dτeinτ :PμPμ: ≡ 〈:PμPμ:〉n,

which satisfy the Virasoro algebra2

[ Lm , Ln ] = (m − n)Ln+m + D

12
m(m2 − 1)δm,−n .

Its finite subalgebra, L0, L±, the Gliozzi algebra, generates
conformal transformations in two dimensions. The propaga-
tor was given by

1

(α′L0 + 1)
.

5 Superstrings

The Klein–Gordon equation for a point particle

0 = p2 + m2 = 〈Pμ〉0〈Pμ〉0 + m2,

could then be interpreted as a special case of

0 = 〈PμPμ〉0 + m2

suggesting a correspondence [15] between point particles and
dual amplitudes,

〈A〉〈B〉 → 〈A B〉.
Fermions should satisfy the Dirac equation

0 = γμ pμ + m = 〈Γμ〉0〈Pμ〉0 + m.

This requires a generalization of the Dirac matrices as
dynamical operators

γμ → Γμ = γμ + iγ5

∞∑
n=0

(
bnμeinτ + b†

nμe−inτ
)

2 A c-number is added anachronistically.

where the oscillators are Lorentz vectors3, which satisfy anti-
commuting relations

{bnμ, b†
nμ} = δnm gμν,

the sum running over the positive integers.
This led me to propose the string Dirac equation in the

winter of 1970 [16], which readily followed from that corre-
spondence:

0 = 〈Γμ Pμ〉0 + m.

The basic Dirac algebra, {γ · p, γ · p} = p2 is seen to be
generalized to an algebra with both commutator and anti-
commutators

{Fn, Fm} = 2Ln+m, [Ln, Fm] = (2m − n)Fm+n,

where Fn = 〈ΓμPμ〉n , and these new Ln’s also satisfy the
Virasoro algebra, but with a different c-number.

Neveu and Schwarz then compute the amplitude for a dual
fermion emitting three pseudoscalars with the Yukawa vertex

Γ5:eik·Q(τ ):, Γ5 = γ5(−1)
∑

b†
n ·bn ,

and find that the resulting amplitude contains an infinite num-
ber of poles in its fermion–antifermion channel, and even
identify the residue of the first pole [17]!

A new model with bosonic poles and vertices emerges,
written in terms of an infinite tower of anticommuting vector
oscillators,

{brμ, b†
sν} = δrs gμν, r, s = 1

2 ,
3
2 , . . ..

The triple boson vertex is given by

VN S(k, τ )k
μ = Hμ(τ):e

ik·Q(τ ):,

where

Hμ(τ) =
∑

r=1/2,3/2,...

[
brμe−irτ + b†

rμeirτ
]
.

These are the building blocks of the ‘Dual Pion model’ [18,
19], published in April 1971. The algebraic structure found in
the generalized Dirac equation remains the same, producing
a super-Virasoro algebra which decouples unwanted modes
[20], with Γμ replaced by Hμ, through the operators

Gr = 〈H · P〉r , r = 1
2 ,

3
2 , . . ..

The close relation of the two sectors is soon after formal-
ized by Gervais and Sakita [21] who write them in terms of
a world-sheet σ -model, with different boundary conditions,
symmetric for the fermions, antisymmetric for the bosons.
They call the transformations generated by the anticommut-
ing Virasoro operators, supergauge transformations, the first
time the name ‘super’ appears in this context.

3 Later was it realized that this made sense only in ten space-time dimen-
sions where the little group is the spinor–vector schizophrenic SO(8).
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The following years saw the formulation of the RNS (NSR
to some) ‘Dual Fermion Model’, generating dual amplitudes
with boson and fermion legs. It lived in ten space-time dimen-
sions, with states determined in terms of transverse fermionic
and bosonic harmonic oscillator operators.

In the fermionic ‘R-sector’, the spectrum of states is
spanned by the fermionic ground state, u|0 > where u is
a fixed 32-dimensional spinor, annihilated by both trans-
verse bosonic and fermionic oscillators, ani and bni , i =
1, 2 . . . , 8, and integer n. The fermion masses are determined
by

α′m2
R =

∞∑
n=1

n
[
a†

n · an + b†
n · bn

]
.

The bosonic ‘NS-sector’ spectrum starts with a tachyon, |0 >
annihilated by the same ani , but also by the NS fermionic
oscillators bri , where r runs over half-integers. The boson
masses satisfy

α′m2
N S =

∞∑
n=1

na†
n · an +

∑
r= 1

2

rb†
r · br − 1

2
.

But there were idiosyncrasies. The correspondence
between Neveu–Schwarz and the dual fermion states differed
for states with an even number (G ≡ (−1)

∑
b†

r ·br = −1) of
b†

r , and states with an odd number, and there is a tachyon in
the even number spectrum, at α′m2

N S = −1/2.
In 1976, Gliozzi et al. [22] noticed that the NS tachyon can

be eliminated by requiring an odd number of anticommuting
operators in the bosonic spectrum, (G = −1). The NS ground
state

α′m2
N S = 0: b†

1i |0〉,
now consists of eight bosons, transforming as the vector
(=spinor) SO(8) representation. The first excited states are

α′m2
N S = 1: b†

1
2 i

b†
1
2 j

b†
1
2 k

|0〉, b†
1
2 i

a†
1 j |0〉, b†

3
2 i

|0〉,

that is, 128 = 56(8.7.6/1.2.3)+ 64(8.8)+ 8 bosonic states,
and so on.

In their next step, they show that the R ground state solu-
tion could also be reduced to eight fermionic degrees of
freedom. In ten dimensions, while a spinor has naturally 32
degrees of freedom, they showed that one can impose both
chiral and Majorana (reality) restrictions on it, and reduce
the spinor to eight dimensions: the spinor (=vector) SO(8)
representation

α′m2
R = 0: ψα|0〉, α = 1, 2 . . . 8.

The first excited state of the R-sector consists of

α′m2
R = 1: b†

1iψα|0〉, a†
1 jψα|0〉,

with 128 = 8.8 + 8.8 fermionic states! This was no acci-
dent, and using one of Jacobi’s most obtuse relations, they
showed that this equality obtained at all levels. Indeed this
was supersymmetry, with the same number of bosons and
fermions, albeit in ten space-time dimensions.

Fermion–boson symmetry, born in its world-sheet realiza-
tion, reappears as supersymmetry in ten-dimensional space-
time.

Meanwhile, behind the iron curtain, …

6 Russians

In March 1971, there appears a remarkable and terse paper
by Gol’fand and Likhtman [23,24] who extend the Poincaré
algebra generated by Pμ and Mμν to ‘bispinor generators’,
Wα and Wβ , which generate spinor translations.

Cognizant that spin–statistics requires anticommutating
spinors, they arrive at the parity-violating algebra

{W,W } = [
Pμ, Pν

] = 0, {W,W } = (1 + γ5)

2
γμPμ.

(2)

assuming no other subalgebra of the Poincaré group. With
little stated motivation, they have written down the N = 1
superPoincaré algebra in four dimensions!

They identify its simplest representation: two ‘scalar her-
mitean’ fields φ(x) and ω(x), and one left-handed spinor
field ψ1(x), of equal mass, the earliest mention of the Wess–
Zumino supermultiplet. They do not consider auxiliary fields
nor display the transformation properties of these fields.
However, they show the spinor generators as bilinears in
those fields

W = (1 + γ5)

2

∫
d3x

[
φ∗ ↔
∂0ψ1(x)+ω(x)

↔
∂0ψ

c
1 (x)

]
.

(3)

They also describe that the massive vector multiplet fol-
lows with the vector field Aμ(x), a scalar field χ(x) and a
spinor field ψ2(x). They write down its spinor current

W = (1+γ5)

2

∫
d3x

[
χ

↔
∂0ψ2(x)+ Aμ(x)

↔
∂0 γμψ2(x)

]
.

(4)

This ground-breaking paper ends with the difficult task of
writing interactions. Self-interactions of the WZ multiplet are
not presented, only its interactions with a massive Abelian
vector supermultiplet. This, the last formula in their paper, is
a bit confusing since φ and ω now appear as complex fields
(setting ω = 0 and replacing the complex φ by φ + iω is
more what they need), but it contains now-familiar features,
such as the squared D-term.

Gol’fand and Likhtman had firmly planted the flag of
supersymmetry in four dimensions.
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Interestingly, physicists on both sides of the iron curtain
seemed oblivious to this epochal paper.

Likhtman [25] seems to be the only one who followed up
on this paper. He notices that the vacuum energy cancels out
because of the equal number of mass bosons and fermions
with the same mass. He finds scalar masses only logarith-
mically divergent, which he mentions in a later publication
[26].

In December 1972, in an equally impressive paper, Volkov
and Akulov [27,28] want to explain the masslessness of neu-
trinos in terms of an invariance principle. They note that the
neutrino-free Dirac equation is invariant under the transfor-
mations

ψ → ψ + ζ, xμ → xμ − a

2i
(ζ †σμψ − ψ†σμζ ),

where ζ is a global spinor. When added to the Poincaré gener-
ators, they form a group, of the type Berezin and G. I. Kac had
advocated [6,7] for algebras with commuting and anticom-
muting parameters. The translation of ψ makes the neutrino
akin to a Nambu–Goldstone particle with only derivative
couplings.

There follows a Lagrangian that describes its invariant
interactions, which we can identify as a non-linear represen-
tation of supersymmetry.

The end of their paper contains this remarkable sentence
‘We note that if one introduces gauge fields corresponding to
the(se) transformations, then, as a consequence of the Higgs
effect, a massive gauge field with spin 3/2 arises, and the
Goldstone particles with spin 1/2 vanish’. This remark is
followed in October 1973, when Volkov and Soroka [29,
30] generalize their transformations to local parameters and
show explicitly that the fermionic Nambu–Goldstone particle
indeed becomes a gauge artifact. Thus was born what became
known as the ‘Super Higgs Effect’.

7 Wess–Zumino

In October 1973, Wess and Zumino [31] generalize the
world-sheet supergauge transformations of the RNS model
to four dimensions.

Their’s is the paper that launched the massive and system-
atic study of supersymmetric field theories in four dimen-
sions.

The scalar (now called chiral or Wess–Zumino) multi-
plet is introduced. It consists of two real scalar bosons, A
and B, a Weyl (Majorana) fermion ψ and two auxiliary
fields F and G. Supergauge transformations generate the
algebra

δA = iαψ, δB = iαγ5ψ,

δψ = ∂μ(A − γ5 B)γ μα+n(A − γ5 B)γμ∂μα+Fα+Gγ5α

δF = iαγ μ∂μψ + i

(
n − 1

2

)
∂μαγ

μψ

δG = iαγ5γ
μ∂μψ + i

(
n − 1

2

)
∂μαγ5γ

μψ,

where α is an ‘infinitesimal’ anticommuting spinor, and n is
an integer assigned to the multiplet. With impressive alge-
braic strength, they are shown to close on both conformal
and chiral transformations. In particular, two transforma-
tions with parameters α1 and α2 result in a shift of xμ by
iα1γμα2.

The free Lagrangian for the scalar multiplet follows:

LW Z =−1

2
∂μA∂A− 1

2
∂μB∂μB− i

2
ψγμ∂

μψ+ 1

2
(F2+G2).

It is not invariant under supergauge transformations but since
it transforms as a derivative, the action is invariant. To intro-
duce invariant interactions, they derive the calculus necessary
to produce covariant interactions, by assembling two scalar
multiplets into a third, etc.

They also introduce the vector supermultiplet, consisting
of four scalar fields, D,C,M, N , a vector field vμ, and two
spinor fields χ and λ, on which they derive the supergauge
transformations. By identifying the vector field with the chi-
ral current generated by a scalar multiplet

vμ = B∂μA − A∂μB − 1

2
iψγ5γμψ,

and following it through the algebra, they express all the
vector multiplet fields as quadratic combinations of the scalar
supermultiplet. In particular D = 2LW Z .

Finally, they notice that one can drop some of these fields,
C, N ,M , and χ , without affecting the algebra (soon to be
called the Wess–Zumino gauge), and write the vector multi-
plet Lagrangian in a very simple form:

LV = − 1

4
vμνv

μν − 1

2
iλγμ∂

μλ+ 1

2
D2.

This paper contains many of the techniques that were soon
to be used in deriving many of the magical properties of
supersymmetric theories in four dimensions.

In December 1973, Wess and Zumino present the one-
loop analysis [32] of an interacting Wess–Zumino multi-
plet, and find remarkable regularities: the SUSY tree-level
relations are not altered by quantum effects, the vertex cor-
rection is finite (leaving only finally where they find that
one has only wave function renormalization), and finally the
quadratic divergences of the scalar and pseudoscalar fields
cancel. As it was realized later, this addresses the “gauge hier-
archy problem”, and strongly suggests SUSY’s application
to the Standard Model.
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8 Representations

The representations of the supersymmetry algebra were first
systematically studied by Gell-Mann and Ne’eman (unpub-
lished). They mapped the algebra in light-cone coordinates
to a Fermi oscillator, and they found that in supersymmetry,
the massless representations of the Poincaré group assemble
into two states with helicities separated by one-half

(
λ± 1

2
, λ

)
,

and with the same light-like momentum, yielding an equal
number of bosons and fermions. The simplest is λ = 0,
with a real scalar and half a left-handed Weyl fermion. How-
ever, CPT-symmetric local field theories require the other half
of the Weyl fermion, ( 1

2 , 0)+ (0,− 1
2 ), which describes one

Weyl fermion and a complex scalar boson, the ingredients of
the Gol’fand–Likhtman–Wess–Zumino multiplet.

The massless gauge supermultiplet, (1, 1
2 )+ (− 1

2 ,−1),
describes a gauge boson, and its companion Weyl (Majorana)
fermion describes the gaugino.

The supergravity supermultiplet (2, 3
2 )+ (− 3

2 ,−2) con-
tains the graviton and the gravitino, remarkably the ingredi-
ents of interacting supergravity [33,34]

They extend their analysis to the case of N supersymme-
tries. Disregarding particles of spin higher than two, they find
two cases with manifestly self-conjugate supermultiplets.

First, we have an N = 4 supermultiplet, with helicities

(1)+ 4
( 1

2

) + 6(0)+ 4
(− 1

2

) + (−1),

and led in 1976 to the N = 4 superYang–Mills theory [35],
which was found much later to have magical properties, such
as an enhanced conformal symmetry, and ultraviolet finite-
ness!

Second, we have N = 8 supergravity with helicities

(2)+ 8
( 3

2

) + 28(1)+ 56
( 1

2

) + 70(0)

+56
(− 1

2

) + 28(−1)+ 8
(− 3

2

) + (−2),

which also led to a fully interacting theory, N = 8 Super-
gravity [36].

Massive representations of supersymmetry can be assem-
bled using a group theoretical Higgs mechanism. The mas-
sive vector representation contains a Dirac spinor, a massive
vector, and a scalar particle

(
1, 1

2

) + (−1,− 1
2

) + (
0,− 1

2

) + (
0, 1

2

)
,

all of equal mass, as considered by Gol’fand and Likhtman.

9 Towards the supersymmetric standard model

With the Wess–Zumino paper, the flood gates had been
opened [37]. In short order, a supersymmetric version [38]
of QED is written down, with Abelian gauge invariance, in
which the Dirac electron spinor is accompanied by two com-
plex spin zero fields. In January 1974, Salam and Strathdee
[39,40] assemble the fields within a supermultiplet into one
superfield with the help of anticommuting Grassmann vari-
ables. The same authors [41] coin the word ‘super-symmetry’
in a May 1974 paper which generalizes supersymmetry to
Non-Abelian gauge interactions.

Before applying supersymmetry to the real world, several
conceptual problems must be resolved. Firstly, the absence
of fermion–boson symmetry at low energies requires it to be
broken. Secondly, its application to the electroweak theory
demands the extension of the Higgs mechanism. Finally, the
known particles must be assigned to supermultiplets.

In 1974, Fayet and Iliopoulos [42] produce the first paper
on spontaneous breaking of supersymmetry in theories with
a gauged Abelian symmetry by giving its D auxiliary field
a constant value. Their proposal is remarkably simple, just
add to the Lagrangian for a U (1) vector multiplet a D-term

LF I
V = LV + ξD.

This extra term violates neither Abelian gauge invariance
nor supergauge invariance, since its supergauge variation is a
total derivative. The resulting field equation 〈D〉0 = ξ yields
a theory where both gauge and supergauge invariances are
broken.

A year later, O’Raifeartaigh [43] invents a different
way to spontaneous breaking of supersymmetry, in theories
with several interacting scalar supermultiplets. Its simplest
model involves three scalar supermultiplets with equations
of motion

F1 = −mφ∗
2 − 2λφ∗

1φ
∗
3 , F2 = −mφ∗

1 , F3 = λ(M2−φ2
1
∗
),

where m,M , and λ are parameters. There are no solutions
for which all three Fi vanish, and supersymmetry is broken.
From these two early examples, the auxiliary fields are the
order parameters of SUSY breaking.

Both schemes yielded an embarrassing massless Gold-
stone spinor, which may have impeded the application of
supersymmetry4. None of these authors were aware of
Volkov’s papers.

The second hurdle is the generalization of the Higgs mech-
anism to supersymmetry. This is done in the context of an
unusual model by Fayet [44] in December 1974. Like Volkov

4 In 1976, Weinberg and Gildener note that supersymmetry could
explain a low mass scalar boson, but bemoan that it would produce
a massless fermion!
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and Akulov before, Fayet builds models where the elec-
tron neutrino is the Goldstone spinor from the breakdown
of supersymmetry5 using the FI mechanism.

Although the model building in this paper did not sur-
vive the test of time, two important and more perma-
nent concepts emerged. One is that the Higgs mechanism
applies, but two scalar supermultiplets are needed to achieve
SU(2) × U (1) → U (1) electroweak breaking, in accord
with the number of surviving scalars in the massive vector
supermultiplets—also the existence of R-symmetry, a new
kind of continuous symmetry acting on both the fields and
the Grassmann parameters of the superfields.

It was not until July 1976 that Fayet [45] generalizes the
Weinberg–Salam (soon to be called the Weinberg–Salam–
Glashow, and then Standard) model to SUSY. Its distinctive
features are

• There are two scalar superfields, S, T , (today’s Hu,d ) for
EW breaking.

• Leptons and quarks are the fermions inside scalar super-
multiplet.

• We have a continuous R-symmetry.

The particle content is the ‘minimal supersymmetric model’
(MSSM). Some kinks still need to be ironed out, having to do
with SUSY breaking ( à la Fayet–Iliopoulos in this paper),
which produces a massless Goldstone spinor. The continuous
R-symmetry in this paper behaves like a ‘leptonic’ number,
but it prevents the spinor gluons from acquiring a mass.

Today, we know that SUSY breaking is an active area of
theoretical research, even without the presence of a Gold-
stone fermion, eaten by the Super-Higgs mechanism.

10 SUSY today

By stopping this history of fermion–boson symmetry in 1976,
we rob the reader of the many wonderful concepts since dis-
covered, but they are more than adequately covered in the
articles in this volume.

The seeds of today’s SUSY research were planted in these
early papers.

Almost 40 years later, superstring theories have blos-
somed into a dazzling array of connected theories; the study
of N = 4 superYang–Mills theories is an active field of
research, as is the possible finiteness of N = 8 supergravity.

The Hamiltonian is no longer fundamental, but derived
from translations along SUSY’s fermionic dimensions.

Few doubt the existence of a deeper connection between
bosons and fermions, but opinions differ at which scale it

5 In 1974, the Standard Model was not yet ‘standard’, and many authors
were still presenting alternatives.

will be revealed: the breaking of supersymmetry remains as
mysterious as ever.

Yet, the recent discovery of a low mass Higgs particle
suggests that the universe displays more symmetry at shorter
distances.

Today, SUSY is unfulfilled, beloved by theorists, but so
far shunned by experiments.

In the words of the late Sergio Fubini, ‘We do not know if
supersymmetry is just a beautiful painting to put on the wall,
or something more’.
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