Skip to main content

Advertisement

Log in

Ground state of the hydrogen atom via Dirac equation in a minimal-length scenario

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this work we calculate the correction to the ground state energy of the hydrogen atom due to contributions arising from the presence of a minimal length. The minimal-length scenario is introduced by means of modifying the Dirac equation through a deformed Heisenberg algebra (Kempf algebra). With the introduction of the Coulomb potential in the new Dirac energy operator, we calculate the energy shift of the ground state of the hydrogen atom in first order of the parameter related to the minimal length via perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use boldface to a vector operator for a sake of simplicity.

  2. There is a summation over dummy indices.

  3. We use “ordinary quantum mechanics” in opposition to quantum mechanics in a minimal-length scenario.

  4. α and \(\hat{\beta}\) must be not confused with the fine structure constant α and the minimal-length parameter β.

  5. Note that x i is not eigenvalue of the \(\hat{X}_{i}\) operator. In fact, the existence of the minimal length implies that \(\hat{X}_{i}\) operator cannot have any eigenstate which is a physical sate, that is, any eigenfunction within the Hilbert space [5, 26]. Nevertheless, the “position” representation is particularly useful when the shifts in the energy can be calculate via perturbation theory in X-space [9].

References

  1. H. Kragh, Heisenberg’s lattice world: the 1930 theory sketch. Am. J. Phys. 63, 595 (1995)

    Article  ADS  Google Scholar 

  2. W. Heisenberg, Über die in der Theorie der Elementarteilchen auftretende universelle Länge. Ann. Phys. 424, 20 (1938)

    Article  Google Scholar 

  3. H.S. Snyder, Quantized space-time. Phys. Rev. 71(1), 38 (1947)

    Article  ADS  MATH  Google Scholar 

  4. S. Majid, H. Ruegg, Bicrossproduct structure of κ-Poincaré group and non-commutative geometry. Phys. Lett. B 334, 348 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Kempf, G. Mangano, R.B. Mann, Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Bronstein, Quantum theory of weak gravitational fields. Gen. Relativ. Gravit. 44, 267 (2012) (republication)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C.A. Mead, Possible connection between gravitation and fundamental length. Phys. Rev. 135, B849 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  8. C.A. Mead, F. Wilczek, Walking the Planck length through history. Phys. Today 54, 15 (2001)

    Article  Google Scholar 

  9. L.N. Chang, Z. Lewis, D. Minic, T. Takeuchi, On the minimal length uncertainty relation and the foundations of string theory. Adv. High Energy Phys. 2011, 493514 (2011)

    MathSciNet  Google Scholar 

  10. M. Sprenger, P. Nicolini, M. Bleicher, Physics on the smallest scales: an introduction to minimal length phenomenology. Eur. J. Phys. 33, 853 (2012)

    Article  Google Scholar 

  11. S. Hossenfelder, Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 2 (2013)

    ADS  Google Scholar 

  12. S. Hossenfelder, A note on theories with a minimal length. Class. Quantum Gravity 23, 1815 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Kempf, Non-pointlike particles in harmonic oscillators. J. Phys. A 30, 2093 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. L.G. Suttorp, S.R. De Groot, Covariant equations of motion, for a charged particle with a magnetic dipole moment. Nuovo Cimento A 65, 245 (1970)

    Article  ADS  Google Scholar 

  15. E.A. De Kerf, G.G.A. Bäuerle, A position operator for a relativistic particle with spin. Physica 57, 121 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  17. T. Appelquist, H.C. Cheng, B.S. Dobrescu, Bounds on universal extra dimensions. Phys. Rev. D 64, 035002 (2001)

    Article  ADS  Google Scholar 

  18. S. Hossenfelder, M. Bleicher, S. Hofmann, J. Ruppert, S. Scherer, H. Stöcker, Signatures in Planck regime. Phys. Lett. B 575, 85 (2003)

    Article  ADS  MATH  Google Scholar 

  19. F. Brau, Minimal length uncertainty relation and hydrogen atom. J. Phys. A 32, 7691 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. R. Akhoury, Y.P. Yao, Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 572, 37 (2003)

    Article  ADS  MATH  Google Scholar 

  21. S. Benczik, L.N. Chang, D. Minic, T. Takeuchi, Hydrogen-atom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104 (2005)

    Article  ADS  Google Scholar 

  22. K. Nouicer, Coulomb potential in one dimension with minimal length: a path integral approach. J. Math. Phys. 48, 112104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Bouaziz, N. Ferkous, Hydrogen atom in momentum space with a minimal length. Phys. Rev. A 82, 022105 (2010)

    Article  ADS  Google Scholar 

  24. M.I. Samar, Modified perturbation theory for hydrogen atom in space with Lorentz-covariant deformed algebra with a minimal length. J. Phys. Stud. 15(1), 1007 (2011)

    Google Scholar 

  25. A. Kempf, G. Mangano, Minimal length uncertainty relation and ultraviolet regularization. Phys. Rev. D 55, 7909 (1997)

    Article  ADS  Google Scholar 

  26. G.C. Dorsch, J.A. Nogueira, Maximally localized states in quantum mechanics with modified commutation relation to all orders. Int. J. Mod. Phys. A 27, 1250113 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  27. C.G. Parthey et al., Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  28. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), p. 672

    Google Scholar 

Download references

Acknowledgements

We would like to thank CAPES, CNPq and FAPES (Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Nogueira.

Appendices

Appendix A: Relativistic energy of the electron

From Eq. (18) we have a linear homogeneous system of equations for ϕ and χ,

$$\begin{aligned} &{ \begin{pmatrix} - E_{ML} + mc^{2} & c ( \boldsymbol {\sigma} \cdot\hat{\bf p} ) + \beta c ( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} \\ c ( \boldsymbol {\sigma} \cdot\hat{\bf p} ) + \beta c ( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} & - E_{ML} - mc^{2} \\ \end{pmatrix}} \\ &{\quad {}\times \begin{pmatrix} \phi\\ \chi\\ \end{pmatrix} = 0,} \end{aligned}$$
(A.1)

which has non-trivial solution only for

$$ \begin{vmatrix} - \bigl( E_{ML} - mc^{2} \bigr) & c ( \boldsymbol {\sigma} \cdot\hat{\bf p} ) \bigl( 1 + \beta p^{2} \bigr) \\ c ( \boldsymbol {\sigma} \cdot\hat{\bf p} ) \bigl( 1 + \beta p^{2} \bigr) & - \bigl( E_{ML} + mc^{2} \bigr) \\ \end{vmatrix} = 0. $$
(A.2)

Thus, after throwing away terms of order β 2, the relativistic energy of the free electron in the regarded scenario of minimal length can be obtained from

$$ E^{2}_{ML} = p^{2}c^{2} + m^{2}c^{4} + 2\beta c^{2} p^{4}, $$
(A.3)

as was expected from \(E^{2}_{ML} = c^{2}P^{2} + m^{2}c^{4}\).

Appendix B: Corrections in the first order of perturbation

In order to obtain

$$\begin{aligned} &{\langle\psi| ( \boldsymbol {\alpha} \cdot\hat{\bf p} )^{3} | \psi \rangle} \\ &{\quad {}= \int \bigl(\phi^{\dag}, \chi^{\dag} \bigr) \begin{pmatrix} 0 & ( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} \\ ( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} & 0 \\ \end{pmatrix} \begin{pmatrix} \phi\\ \chi\\ \end{pmatrix} \,d^{3}\boldsymbol {x},} \end{aligned}$$
(B.1)

where ϕ and χ are two-component eigenspinors of the state,

$$ \langle \boldsymbol {x} | \psi\rangle= \begin{pmatrix} \phi\\ \chi\\ \end{pmatrix} = \begin{pmatrix} F(r)Y^{j, m}_{j-1/2} (\theta, \phi ) \\ -if(r)Y^{j, m}_{j+1/2} (\theta, \phi ) \\ \end{pmatrix} , $$
(B.2)

\(Y^{j, m}_{j \pm1/2} (\theta, \phi ) \) are the common eigenspinor-function of \(\hat{j}_{z}\) and \(\hat{J}^{2}\) and

$$\begin{aligned} &{F(r) = x^{\gamma} e^{-ax} \sum_{\nu= 0}^{n^{\prime}} a_{\nu} x^{\nu},} \end{aligned}$$
(B.3)
$$\begin{aligned} &{f(r) = x^{\gamma} e^{-ax} \sum_{\nu= 0}^{n^{\prime}} b_{\nu} x^{\nu},} \end{aligned}$$
(B.4)

where

$$\begin{aligned} &{n^{\prime} = n - \biggl( j + \frac{1}{2} \biggr),} \end{aligned}$$
(B.5)
$$\begin{aligned} &{\gamma= -1 + \sqrt{ \biggl( j + \frac{1}{2} \biggr)^{2} - \alpha^{2}},} \end{aligned}$$
(B.6)
$$\begin{aligned} &{a = \sqrt{1 - \frac{E^2}{m^2 c^4}},} \end{aligned}$$
(B.7)

and

$$ x = \biggl( \frac{mc}{\hbar} \biggr) r, $$
(B.8)

we employ the following identity [28]:

$$ \boldsymbol {\sigma} \cdot\hat{\bf p} = \boldsymbol {\sigma} \cdot \boldsymbol {e}_{r} \biggl( -i\hbar\frac{\partial}{\partial r} + i\frac{\boldsymbol {\sigma} \cdot\hat {\bf L}}{r} \biggr), $$
(B.9)

with

$$ \boldsymbol {\sigma} \cdot \boldsymbol {e}_{r}Y^{j, m}_{j \pm1/2} = - Y^{j, m}_{j \pm1/2}. $$
(B.10)

After some algebra we get

$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} ) \phi_{1}} \\ &{\quad {} = i\hbar \biggl[ \frac{dF}{dr} - \biggl(j - \frac{1}{2} \biggr) \frac {F}{r} \biggr] Y^{j, m}_{j+\frac{1}{2}} ,} \end{aligned}$$
(B.11)
$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} ) \phi_{2}} \\ &{\quad {} = \hbar \biggl[ \frac{df}{dr} + \biggl(j + \frac{3}{2} \biggr) \frac{f}{r} \biggr] Y^{j, m}_{j-\frac{1}{2}} ,} \end{aligned}$$
(B.12)

and

$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{2} \phi_{1}} \\ &{\quad {} = -\hbar^{2} \biggl[ \frac{d^{2}F}{dr^{2}} + 2 \frac{1}{r}\frac{dF}{dr}} \\ &{\qquad {} - \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr) \frac {F}{r^{2}} \biggr] Y^{j, m}_{j-\frac{1}{2}},} \end{aligned}$$
(B.13)
$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{2} \phi_{2}} \\ &{\quad {} = i \hbar^{2} \biggl[ \frac{d^{2}f}{dr^{2}} + 2 \frac{1}{r}\frac{df}{dr}} \\ &{\qquad {} - \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr) \frac {f}{r^{2}} \biggr] Y^{j, m}_{j+\frac{1}{2}},} \end{aligned}$$
(B.14)

and

$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} \phi_{1}} \\ &{\quad {} = - i\hbar ^{3} \biggl[ \frac{d^{3}F}{dr^{3}} - \biggl(j - \frac{5}{2} \biggr) \frac{1}{r}\frac{d^{2}F}{dr^{2}} \biggr] Y^{j, m}_{j+\frac{1}{2}}} \\ &{\qquad {}+ i\hbar^{3} \biggl[ \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr)\frac{1}{r^{2}}\frac{dF}{dr} \biggr] Y^{j, m}_{j+\frac{1}{2}}} \\ &{\qquad {}- i\hbar^{3} \biggl[ \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr)\frac{F}{r^{3}} \biggr] Y^{j, m}_{j+\frac{1}{2}},} \end{aligned}$$
(B.15)
$$\begin{aligned} &{( \boldsymbol {\sigma} \cdot\hat{\bf p} )^{3} \phi_{2}} \\ &{\quad {} = - \hbar ^{3} \biggl[ \frac{d^{3}f}{dr^{3}} + \biggl(j + \frac{7}{2} \biggr) \frac{1}{r}\frac{d^{2}f}{dr^{2}} \biggr] Y^{j, m}_{j-\frac{1}{2}}} \\ &{\qquad {}+ \hbar^{3} \biggl[ \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr)\frac{1}{r^{2}}\frac{df}{dr} \biggr] Y^{j, m}_{j-\frac{1}{2}}} \\ &{\qquad {}+ \hbar^{3} \biggl[ \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr) \frac{f}{r^{3}} \biggr] Y^{j, m}_{j-\frac{1}{2}}.} \end{aligned}$$
(B.16)

Finally,

$$\begin{aligned} &{\langle\psi| ( \boldsymbol {\alpha} \cdot\hat{\bf p} )^{3} | \psi \rangle} \\ &{\quad {}= - \hbar^{3}\int \biggl( F^{*}\frac{d^{3}f}{dr^{3}} - f^{*} \frac {d^{3}F}{dr^{3}} \biggr) r^2 \,dr} \\ &{\qquad {}- \hbar^{3} \biggl(j + \frac{7}{2} \biggr)\int F^{*} \frac {d^{2}f}{dr^{2}} r \,dr} \\ &{\qquad {}- \hbar^{3} \biggl(j - \frac{5}{2} \biggr) \int f^{*} \frac {d^{2}F}{dr^{2}} r \,dr} \\ &{\qquad {}+ \hbar^{3} \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr) \int F^{*} \frac{df}{dr} \,dr} \\ &{\qquad {}- \hbar^{3} \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr) \int f^{*} \frac{dF}{dr} \,dr} \\ &{\qquad {}+ \hbar^{3} \biggl(j - \frac{1}{2} \biggr) \biggl(j + \frac{1}{2} \biggr) \biggl(j + \frac{3}{2} \biggr)} \\ &{\qquad {}\times \int \bigl( F^{*}f + f^{*}F \bigr) \frac{dr}{r}.} \end{aligned}$$
(B.17)

2.1 B.1 Ground state energy

For the ground state we have \(j = \frac{1}{2}\) and n′=0, then

$$\begin{aligned} &{F_{0}(r) = a_{0} x^{\gamma} e^{-ax},} \end{aligned}$$
(B.18)
$$\begin{aligned} &{f_{0}(r) = b_{0} x^{\gamma} e^{-ax},} \end{aligned}$$
(B.19)

where

$$\begin{aligned} &{\gamma= \epsilon- 1,} \end{aligned}$$
(B.20)
$$\begin{aligned} &{a_{0} = \biggl( \frac{2a}{b} \biggr)^{\gamma+ 1} \sqrt{ \frac{ (1 + \epsilon )}{\varGamma ( 2\gamma+3 ) }},} \end{aligned}$$
(B.21)
$$\begin{aligned} &{b_{0} = \sqrt{\frac{1 - \epsilon}{1 + \epsilon}}a_{0},} \end{aligned}$$
(B.22)

with \(\epsilon= \sqrt{1- \alpha^{2}}\).

Hence

$$ \langle\psi_{0} | ( \boldsymbol {\alpha} \cdot\hat{\bf p} )^{3} | \psi_{0} \rangle= m^{3}c^{3} \frac{ ( 1- \epsilon^{2} )^{2}}{\epsilon (2 \epsilon- 1 )}, $$
(B.23)

where E 0=mc 2 ϵ is the energy of the |ψ 0〉 ground state of the hydrogen atom obtained from the ordinary Dirac equation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonacci Oakes, T.L., Francisco, R.O., Fabris, J.C. et al. Ground state of the hydrogen atom via Dirac equation in a minimal-length scenario. Eur. Phys. J. C 73, 2495 (2013). https://doi.org/10.1140/epjc/s10052-013-2495-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2495-6

Keywords

Navigation