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Abstract A search for squarks in R-parity violating super-
symmetry is performed in e* p collisions at HERA using
the H1 detector. The full data sample taken at a centre-of-
mass energy /s = 319 GeV is used for the analysis, cor-
responding to an integrated luminosity of 255 pb~! of e*

and 183 pb~! of e~ p collision data. The resonant produc-
tion of squarks via a Yukawa coupling A’ is considered, tak-
ing into account direct and indirect R-parity violating decay
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modes. Final states with jets and leptons are investigated. No
evidence for squark production is found and mass dependent
limits on A’ are obtained in the framework of the Minimal
Supersymmetric Standard Model and in the Minimal Super-
gravity Model. In the considered part of the parameter space,
for a Yukawa coupling of electromagnetic strength A’ = 0.3,
squarks of all flavours are excluded up to masses of 275 GeV
at 95% confidence level, with down-type squarks further ex-
cluded up to masses of 290 GeV.
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1 Introduction

The ep collider HERA is ideally suited to search for
new particles coupling to electron'—quark pairs. In super-
symmetric (SUSY) models with R-parity violation (R )
squarks can couple to electrons and quarks via Yukawa cou-
plings A". At HERA, squarks with masses up to the electron—
proton centre-of-mass energy, /s = 319 GeV, could be pro-
duced resonantly via the fusion of the incoming 27.6 GeV
electron and a quark from the incoming 920 GeV proton.
Squark decays typically result in a number of high ener-
getic particles in the final state, thus several complementary
multi-lepton and multi-jet topologies are investigated. The
data used in this analysis correspond to an integrated lumi-
nosity of 255 pb~! for e p collisions and 183 pb~! fore™ p
collisions which represents the full data sample collected at
/s = 319 GeV. For the e~ p sample, this represents an in-
crease of a factor of thirteen compared to the previous H1
analysis [1], while for the et p sample this corresponds to
a factor of four. The search presented here supersedes the
results previously obtained by H1 [1, 2]. Complementary
direct searches for £, SUSY have been carried out at the
LEP eTe™ collider [3-11] and at the Tevatron pp collider
[12-17]. Indirect constraints from low energy precision ob-
servables are also available [18-25].

2 Phenomenology and Monte Carlo simulation

2.1 Production of squarks in R-parity violating
supersymmetry

Supersymmetric extensions of the Standard Model (SM) in-
troduce new elementary particles which are the superpart-
ners (sparticles) of SM particles but differ in spin by half
a unit. A new quantum number R, = (—1)38FL+25 j5 de-
fined, denoted R-parity, where B is the baryon number,
L the lepton number and S the spin of a particle. For parti-
cles R, = 1 and for their supersymmetric partners R, = —1.
Most of the collider searches focus on SUSY models that
conserve R-parity, allowing only pair-production of spar-
ticles. However, the most general supersymmetric theory
that is renormalisable and gauge invariant with respect to
the Standard Model gauge group does not impose R-parity
conservation. Couplings between two SM fermions and a
squark (§) or a slepton (/) are then possible, allowing the
single production of sparticles. The R, Yukawa couplings
responsible for squark production at HERA originate from
a lepton number violating term A j «LiQ jﬁk in the super-
potential, where i, j and k are family indices. L;, Q; and

!In the following the generic term electron refers to both electron and
positron unless explicitly stated otherwise.

a?k ﬂj
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u u,d d
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Fig. 1 Feynman diagrams for the single resonant s-channel produc-
tion of right-handed down-type squarks in e~ p collisions (a) and
left-handed up-type squarks in e™ p collisions (b) with subsequent de-
cays into SM particles via Yukawa couplings )‘/1 1 OF )‘/1,'1 , respectively.
The right-handed down-type squarks can decay either into e~ + u or
v, + d, while the left-handed up-type squarks decay into et + d only

Ek are superfields, which contain the left-handed leptons,
the left-handed up-type quarks and the right-handed down-
type quarks, respectively, together with their SUSY partners.
Non-vanishing couplings )‘/l. ik allow the resonant production
of squarks at HERA via eq fusion [26]. Feynman diagrams
of these processes are shown in Fig. 1. The values of the cou-
plings are not fixed by the theory but are required to be small
to conform with present observations. For simplicity, it is as-
sumed here that one of the 1 ik couplings dominates over all
the other trilinear R, couplings. At high Bjorken-x the den-
sity of antiquarks in the proton is significantly smaller than
that of the valence quarks. Hence e~ p scattering gives sen-
sitivity to the couplings A}, (k =1,2,3) which dominate
the production of dg-type squarks (i.e. the superpartners dg,
5k and bg of down-type quarks). The dominant contribution
to the production cross section is thus approximately pro-
portional to )‘/121 « - u(x) where u(x) gives the probability to
find a u quark in the proton carrying the momentum fraction
x= M(% /s, where Mg is the squared mass of the produced

squark. By contrast, e™ p scattering provides sensitivity to
the couplings A il (j =1, 2, 3) which dominate the produc-
tion of uy-type squarks (i.e. the superpartners iy, ¢; and
fL of up-type quarks). Here the dominant contribution to
the production cross section is approximately proportional
to )‘/121'1 -d(x). Due to the larger u quark density in the pro-
ton at large x with respect to the d quark density, larger pro-
duction cross sections are expected in e~ p interactions for
identical couplings and squark masses.

Signal cross sections are obtained in the narrow width
approximation by using the leading order amplitudes given
in [27, 28], corrected to account for next-to-leading order
QCD effects using multiplicative correction factors [29].
The parton densities are evaluated at the hard scale Mg.

2.2 Final states from squark decays
In R, SUSY all sparticles are unstable. Squarks can de-
cay directly via the Yukawa coupling A" into SM fermions.

The c?fe—type (k =1, 2,3) squarks can decay via the cou-
pling A/, either into e~ + u or v, + d, while the ﬂJL-type

@ Springer
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U
Atk o = > -
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Fig. 2 Feynman diagrams for squark decays proceeding via gauginos
in the case of right-handed down-type squarks (a) and left-handed
up-type squarks (b) with subsequent }é p decay into SM fermions via
Yukawa couplings A}, or A ;1 respectively. The resulting final states

(j =1, 2, 3) squarks decay via the coupling )‘/ljl into e™ +d
only, as illustrated in Fig. 1. Squarks may also decay via R,
conserving gauge couplings as illustrated in Fig. 2. The uy -
type squarks can undergo a gauge decay into states involving
a neutralino Xio (i=1,2,3,4), a chargino Xi+ (i=1,2)or
a gluino g. In contrast, dg-type squarks mainly decay to X,~0
or g and decays into charginos are suppressed [26].

The squark decay chains analysed in this paper are clas-
sified by event topology [1, 2]. This classification relies on
the number of isolated electrons, muons and hadronic jets in
the final state, and on the presence of missing energy (indi-
cating undetected neutrinos). The channels labelled eq and
vg are the squark decay modes that proceed directly via R,
couplings resulting in event topologies with an isolated elec-
tron or neutrino and a single jet. The remaining channels
result from the gauge decays of the squark and are charac-
terised by multijet (MJ) final states with additional leptons.
The channels labelled eMJ and vMJ involve one or two
gauginos (x or g) in the decay cascade. In the eMJ chan-
nel et and e~ are possible in the final state, such that with
respect to the incident lepton charge, a “right” (same sign)
charge eMJ (RC) and a “wrong” (opposite sign) charge eMJ
(WC) channel are distinguished. Channels with an electron
and an additional charged lepton £ (where £ = e, u) denoted
by eeMJ, epMJ or neutrinos and a charged lepton evMJ,
vuMJ (generically written as efMJ and v¢MJ) necessarily
involve two gauginos. Decay patterns involving more than
two gauginos are kinematically suppressed and are there-
fore not explicitly studied here. Processes leading to final
states with tau leptons are not expected to increase the sen-
sitivity of this analysis and are not explicitly investigated.
A dedicated search for isolated tau leptons in H1 shows good
agreement with the SM [30].

2.3 Event simulation
For each of the signal topologies described above a dedi-

cated Monte Carlo (MC) simulation is done. For the direct
lepton—quark decay channels eq and vqg, as shown in Fig. 1,

@ Springer
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may contain multi-leptons and multi-jets. The dg-type squarks decay
to Xio (i=1,2,3,4) or g, decays into charginos are suppressed while
it -type squarks couple also to charginos Xi+ i=12)

events are generated using LEGO [31]. For the gauge de-
cays of squarks (Fig. 2) events are generated using SUSY-
GEN3 [32, 33].

To allow a model independent interpretation of the re-
sults, the squark decay processes are simulated for a wide
range of masses of the sparticles involved. The final states
contain only SM fermions (f) considered as massless. The
squark mass is varied from 100 GeV to 290 GeV in steps
of typically 25 GeV. For gauge decays of squarks involving
a gaugino, which decays directly via R, the process § —
q X? is generated for x? masses ranging between 30 GeV
and Mj;. In order to study cascade gauge decays which in-
volve two gauginos, the processes § — qx; — qx)f f’
and ¢ — CIXS — qx?ff’ are generated for X1+ and xé’
masses ranging between 40 GeV and M, and for X10 masses
between 30 GeV and M X or M L The masses of the gaug-
inos are varied in steps of approximately 10 GeV. The lower
mass values for squarks and gauginos are motivated by the
exclusion domains resulting from R, SUSY searches at
LEP [3-11]. The mass intervals are sufficiently small to al-
low linear interpolation of signal detection efficiencies as a
function of the masses of the sparticles involved.

SM processes may mimic the characteristics of the fi-
nal states of squark decays. This SM background is dom-
inated by neutral current (NC) and charged current (CC)
deep inelastic scattering (DIS), with additional small contri-
butions from photoproduction, single W boson production
and lepton pair production. The RAPGAP [34] event gener-
ator, which implements the Born level, QCD Compton and
boson—gluon fusion matrix elements, is used to model inclu-
sive NC DIS events. The QED radiative effects arising from
real photon emission from both the incoming and outgoing
electrons are simulated using the HERACLES [35] program.
Direct and resolved photoproduction of jets and prompt
photon production are simulated using the PYTHIA [36]
event generator. The simulation is based on Born level scat-
tering matrix elements with radiative QED corrections. In
RAPGAP and PYTHIA, jet production from higher order
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QCD radiation is simulated using leading logarithmic par-
ton showers and hadronisation is modelled with Lund string
fragmentation [37]. Inclusive CC DIS events are simulated
using the DJANGO [38] program, which includes first or-
der leptonic QED radiative corrections based on HERA-
CLES. The production of two or more jets in DJANGO is
accounted for using the colour dipole model [39]. The lead-
ing order MC prediction of processes with two or more high
transverse momentum jets in NC DIS, CC DIS and photo-
production is scaled by a factor of 1.2 to account for the
incomplete description of higher orders in the MC genera-
tors [40, 41]. Contributions arising from the production of
single W bosons and multi-lepton events are modelled using
the EPVEC [42] and GRAPE [43] event generators, respec-
tively.

Generated events are passed through a GEANT [44]
based simulation of the H1 apparatus, which takes into ac-
count the actual running conditions of the data taking. Sim-
ulated events are reconstructed and analysed using the same
program chain as is used for the data.

3 Experimental method
3.1 HI1 detector

A detailed description of the H1 experiment can be found
elsewhere [45, 46]. Only the detector components relevant
to this analysis are briefly described here. A right-handed
Cartesian coordinate system is used with the origin at the
nominal primary ep interaction vertex. The proton beam di-
rection defines the positive z axis (forward direction). The
polar angle 6 and the transverse momenta Pr of all particles
are defined with respect to this axis. The azimuthal angle
¢ defines the particle direction in the transverse plane. The
pseudorapidity is defined as n = — Intan %.

The Liquid Argon (LAr) calorimeter [47] covers the polar
angle range 4° < 6 < 154° with full azimuthal acceptance.
The energies of electromagnetic showers are measured in
the LAr with a precision of ¢ (E)/E ~ 11%/+/E/GeV &
1% and hadronic energy depositions with o (E)/E >~ 50%/
JVE/GeV @ 2%, as determined in test beam measurements
[48, 49]. A lead-scintillating fibre calorimeter (SpaCal)
[50] covering the backward region 153° < 6 < 178° com-
pletes the measurement of charged and neutral particles.
For electrons a relative energy resolution of o(E)/E =~
7%//E]GeV @ 1% is reached, as determined in test beam
measurements [51]. The central (20° < 6 < 160°) and for-
ward (7° < 6 < 25°) inner tracking detectors are used to
measure charged particle trajectories and to reconstruct the
interaction vertex. The LAr calorimeter and inner tracking
detectors are enclosed in a super-conducting magnetic coil
with a field strength of 1.16 T. From the curvature of charged

particle trajectories in the magnetic field, the central track-
ing system provides transverse momentum measurements
with a resolution of op, / Pr = 0.005Pr /GeV @ 0.015 [52].
The return yoke of the magnetic coil is the outermost part
of the detector and is equipped with streamer tubes form-
ing the central muon detector (4° < 6 < 171°). In the very
forward region of the detector (3° < 6 < 17°) a set of drift
chambers detects muons and measures their momenta using
an iron toroidal magnet. The luminosity is determined from
the rate of the Bethe—Heitler process ep — epy, measured
using a photon detector located close to the beam pipe at
z = —103 m, in the backward direction.

3.2 Particle identification and event reconstruction

Electromagnetic particle (electron and photon) candidates
are identified as compact and isolated clusters of energy in
the electromagnetic part of the LAr calorimeter. Electron
candidates are identified as electromagnetic particle candi-
dates with an associated track. Identification of muon candi-
dates is based on a track in the inner tracking detectors, asso-
ciated to a signal in the muon system. Tracks and calorimeter
deposits not identified as originating from isolated electro-
magnetic particles or muons are combined into cluster-track
objects to reconstruct the hadronic final state [53]. Jets are
reconstructed from these objects using an inclusive k7 algo-
rithm [54, 55] with a minimum Pr of 4 GeV. The missing
transverse momentum P}“iss, which may indicate the pres-
ence of neutrinos in the final state, is derived from all recon-
structed particles in the event. A neutrino four-vector P, is
reconstructed by exploiting momentum and energy conser-
vation. The transverse momentum of the neutrino is recon-
structed by assuming one neutrino with significant energy in
the event ﬁT” = 13}“135. The energy of the neutrino is then re-
constructed exploiting the energy and longitudinal momen-
tum balance: Y, (E' — P!)+(E" — P”) =2E? = 55.2 GeV,
where the sum runs over all detected particles, P, is the mo-
mentum along the proton beam axis and ES denotes the en-
ergy of the incident electron.

For further selection the following observables are used
which in SM DIS events correspond to the Lorentz-invariant
quantities: inelasticity y, negative four-momentum transfer
squared Q2 and Bjorken’s scaling variable x. They can be
reconstructed as:

E.(1 —coséb,)

Ye=1- s
2E0
2
Q2: PT,e
¢ l_ye’
2
xéz &7
YeS

where the polar angle 6., energy E, and transverse mo-
mentum P7 of the electron with the highest Py found in

@ Springer
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the event are used. If no electron is reconstructed in the
event similar quantities can be calculated using the Jacquet—
Blondel method [56] from the hadronic final state variables:

Z(E - Pz)h
yh = S
2E]
2
Q2— PT,h
"=
2
T
yns

where Prj, is the transverse momentum of the hadronic fi-
nal system calculated from the before mentioned cluster—
track objects. The sum ) (E — P;); runs over energies and
momenta of jets only.

3.3 Trigger and data quality

All data events used for this search are triggered by the LAr
calorimeter [57]. Events with an electromagnetic deposit in
the LAr with an energy greater than 10 GeV are detected
with an efficiency close to 100% [58]. Events are also trig-
gered by hadronic jets, with a trigger efficiency above 95%
for a jet transverse momentum PJTe[ > 20 GeV and almost

100% for PJTet > 25 GeV [59]. For events with missing trans-
verse energy of 20 GeV, the trigger efficiency is about 90%
and increases to above 95% for missing transverse energy
above 30 GeV [60].

In order to remove background events induced by cos-
mic showers and other non-ep sources, the event vertex is
required to be within 35 cm in z of the mean position for ep

Table1 Total numbers of selected events, SM expectations and ranges
of signal efficiencies for the squark decay channels considered in e~ p
and in e™ p collisions. The range of signal efficiencies gives the ex-
treme values for squark masses ranging from 100 GeV to 290 GeV
and gaugino masses ranging from 30 GeV up to the squark mass. The
vg channel is not relevant for et p data since the iy -type squarks

HI Search for Squarks in ﬁ » SUSY

collisions. In addition, topological filters and timing vetoes
are applied [61] in order to reject beam related and cosmic
background.

4 Data analysis

The event selection is carried out in several exclusive analy-
sis channels. The resulting event rates for each channel and
the range of efficiencies for the selection of signal events are
given in Table 1.

4.1 Electron-jet final state eq

The final state of a squark decaying into an electron and a
high Pr jetis identical to the NC DIS signature at high x and
Q?. For the signal the reconstructed invariant mass distrib-
ution M, = ,/x.s shows a resonance peak at the nominal
squark mass with a resolution §M, = 4-10 GeV depend-
ing on the mass of the squark. Differences in the M, and
ye distributions of the two processes allow to discriminate
them statistically. Squarks produced in the s-channel decay
isotropically leading to a flat do/dy distribution, whereas
for NC DIS events a distribution proportional to 1/y? is ex-
pected.

Events are selected by requiring P}“iss < 15 GeV and
40 GeV < Y _(E — P;) <70 GeV where the sum runs over
all particles in the final state. An isolated electron with P7 >
16 GeV in the region 5° < 6, < 145°, Q% > 2500 GeV?
and y, < 0.9 is required. The high y region is excluded to
reduce background contributions arising from photoproduc-
tion events. An M, dependent cut on y, is determined by
minimising the expected limit from signal and SM MC. The

produced in et p do not undergo this decay. Only dg-type squarks,
which are produced dominantly in e~ p collisions, can undergo direct
decay leading to a vq final state. The total error on the SM prediction
is determined by adding the effects of all model and experimental sys-
tematic uncertainties in quadrature

Selection channel e p (183 pb_l) et p (255 pb_l) Range of signal
Data SM Expectation Data SM Expectation efficiencies
eq 3121 32154336 2946 2899 + 302 30%—-40%
Vg 2858 2983 4358 - - 50%-60%
eMJ (RC) 147 158.3+£23.9 140 146.0 £21.4 10%—-40%
eMJ (WC) 1.3£0.3 1 0.6+0.4 5%-20%
eeMJ 1.5+0.5 2 1.7+0.5 5%-35%
euMJ 0 0.03+£0.02 0 0.03+0.03 5%—-15%
evMJ 56+1.2 5 82420 5%—40%
vMJ 204 235.5+63.3 113 134.0 £33.8 5%—15%
vuMJ 0 0.04 £0.02 0 0.06 £0.03 5%—-20%
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cut ranges from y, > 0.5 for masses around 100 GeV to
ye > 0.2 for masses around 290 GeV. In order to remain
exclusive with respect to other channels, events with muon
candidates with P# > 5 GeV or two jets with PJTm > 15 GeV
are rejected.

The M, spectra after this selection for data and SM back-
ground are shown in Figs. 3a and 4a for e~ p data and e™ p
data, respectively. For both data samples no significant de-
viation from the SM expectation is observed. In the e™ p
sample, 3121 events are observed while the SM expectation
yields 3215 =+ 336. In the e™ p data sample 2946 candidate
events are found compared to 2899 4302 expected from SM
processes.

4.2 Neutrino-jet final state vg

Squarks decaying into a neutrino and a high Pr jet lead
to the same signature as CC DIS events with high miss-
ing transverse momentum. Similarly to the eq channel, the
resonant s-channel production and isotropic decay allows a
statistical separation of signal and background. The resolu-
tion 6 M, of the reconstructed invariant mass My, = /X;5
varies between 12 and 22 GeV depending on the mass of
the squark considered.

The presence of a neutrino in the event is required by
imposing P}“iss > 30 GeV and Y (E — P;) < 50 GeV. The
phase space is restricted to Q% > 2500 GeV? and y; < 0.9.
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Similar to the eq channel, a cut on y, dependent on the
reconstructed mass M), is applied. The cut ranges from
yp > 0.3 for masses around 100 GeV to y; > 0.1 for masses
around 290 GeV. In order to remain exclusive with respect
to other channels, events with any electron or muon candi-
date with P, > 5 GeV or events containing two jets with

PJTet > 15 GeV are rejected.

Only d r-type squarks, which are produced dominantly
in e p collisions, can undergo direct decay leading to a vq
final state. For selected events the M}, spectrum of this data
set and of the simulation of SM background events is shown
in Fig. 3b. No significant deviation from the SM expectation
is found. In data 2858 events are observed while 2983 =358
are expected from SM processes.

@ Springer

4.3 Electron-multijet and electron-lepton-multijet final
states

4.3.1 Common preselection for eMJ(RC), eMJ(WC),
eeMJ, euMJ and evMJ

Squarks decaying via neutralinos or charginos are expected
to have a higher multiplicity of jets and leptons in the final
state. The signatures correspond to final states detectable in
higher order NC DIS processes. However, as heavy particles
are boosted forward, in events with squarks the decay prod-
ucts are mainly emitted into the forward part of the detector.
This feature is used to distinguish between the signal and
SM background.
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A common preselection is applied for the eMJ(RC),
eMJ(WCQC), eeMJ, euMJ and evMJ channels: At least one
isolated electron with P; > 6 GeV and E, > 11 GeV in
the region 5° < 6, < 110° is required. In addition, the con-
dition y, > 0.3 is used to reduce the background from NC
DIS. Central electrons with 30° < 6, < 110° are required
to have a well measured track associated to the cluster and
the distance of closest approach between the track impact
point and the centre-of-gravity of the cluster should not ex-
ceed 12 cm. Furthermore the energy of the track is required
to match the energy of the associated cluster according to
Ecluster/ Etrack > 0.5. At least two jets with PJTet > 15GeVin
the jet polar angle range 7° < 8t < 145° are also required.

By requiring Q% > 1000 GeV? the steep decrease of the
NC DIS cross section with increasing Q2 is exploited. This
corresponds to an implicit upper cut on the electron polar
angle as Q2 is strongly correlated with the polar angle of
the scattered electron. For signal events at least one high Pr
particle is expected to be emitted in the forward direction,
therefore the highest Pr electron or one of the two highest
Pr jets has to fulfill , jer < 40°. Moreover, of the two high-
est Pr jets, the one with the largest polar angle, Gpackw, must
satisfy the condition Bpackw < (ye — 0.3) - 180°, separating
efficiently signal events from NC DIS background [62].

For selected events an invariant mass M. is calculated
as Mrec = JAEY(D_ E; — EV), where the energies E; of
electrons, muons and jets found in the event with PJTEt >
5 GeV are included in the sum. The resolution § M. of
this method ranges between 6 and 10 GeV depending on
the mass of the squark considered.

4.3.2 Electron-multijet final state eMJ(RC), eMJ(WC)

Decays of squarks via gauginos are likely to produce a single
isolated electron and multiple jets in the final state. Events
produced in e* p collisions with exactly one electron and
multiple jets in the final state are also expected in the SM,
where in general the measured charge of the electron cor-
responds to that of the incident electron. A selection chan-
nel labelled “right” (same sign) charge eMJ (RC) is used for
events fulfilling this criterion. A selection channel where the
electron charge is identified as opposite to the incident elec-
tron, denoted “wrong” (opposite sign) charge eMJ (WC),
represents therefore a powerful test of the SM and is ex-
pected to be essentially background free. The distinction be-
tween RC and WC eMJ events is based on the curvature of
the electron track measured in the central tracking system.
Events are allocated to the WC channel if the electron is
found in the central region 30° < 6, < 110° and its charge
is measured to be opposite to that of the incident electron,
with a charge significance greater than two standard devia-
tions [62]. Otherwise the event is assigned to the RC chan-
nel.

Events are selected from the common preselection de-
scribed above by requiring in addition P;‘iss < 15 GeV and
40 GeV < ) (E — P;) <70 GeV since no neutrinos are ex-
pected in these channels. To ensure that the selection chan-
nels are exclusive, no additional electron or muon candidate
with P;’“ > 5 GeV may be present in the event.

In the eMJ (WC) channel no event is observed in the e™ p
data while 1.3 + 0.3 are expected from SM processes and
one candidate event is observed in the e™ p data while 0.6 +
0.4 are expected. For e™ p collisions the mass spectrum is
shown in Fig. 4b.

For events in the eMJ (RC) channel an M. dependent
cut on y, is applied to increase the sensitivity for signal
events. The cut ranges from y, > 0.7 for masses around
100 GeV to y, > 0.5 for masses around 290 GeV. The M.
distributions for data and simulation are shown in Figs. 3c
and 4c for e~ p and e™ p collisions, respectively. No signifi-
cant deviation from the SM expectation is observed. In total
147 events are observed in the e™ p data while the SM sim-
ulation yields 158.3 & 23.9 and in the ™ p data 140 events
are observed for an expectation of 146.0 = 21.4 from SM
processes.

4.3.3 Electron-lepton-multijet final states, eeMJ, euMJ,
evMJ

Final states from squark decays may contain more than one
isolated lepton if the decays proceed via cascades of gaug-
inos. In addition to the common preselection the eeMJ and
euMJ channels require either an additional electron with
the same criteria as described in the common preselection
or an isolated muon with P# > 5 GeV in the polar angle
range 10° < 6, < 110°. After applying this selection the SM
background expectation is very low in these channels. For
the euMJ channel there are no candidate events observed
in the e~ p and e™ p collision data for a SM expectation
of 0.03 £ 0.02 and 0.03 £ 0.03, respectively. In the e™ p
collision data no candidate event for a SM expectation of
1.5 £ 0.5 is observed in the eeMJ channel and two events in
the e™ p data are observed compared to a SM expectation of
1.7 £ 0.5. The mass spectrum for the eeMJ channel in the
e p data is shown in Fig. 4d.

In the evMJ channel a neutrino is expected in the final
state, therefore in addition to the common preselection, large
missing transverse momentum P}“iss > 15 GeV is required.
Due to the presence of the neutrino » (E — P;) is signifi-
cantly reduced causing yj, to be substantially smaller than
Ye, while in NC DIS events y, =~ y, is expected. Thus a
cut y.(ye — yp) > 0.04 is used to discriminate the SUSY
signal from background events [62]. Exclusivity with re-
spect to the eeMJ and euMJ channels is achieved by re-
jecting events containing an additional electron or muon
with P7" > 5 GeV. The method used to reconstruct a mass
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M.,y for selected events taking the energy of the neutrino
into account is explained in Sect. 4.4.

In the e~ p collision data three events are observed in the
evMJ channel while 5.6 4= 1.2 are expected and in e™ p col-
lision data five events are observed while 8.2 & 2.0 are ex-
pected from SM processes. The mass spectra are shown in
Figs. 3d and 4e for the ¢~ p data and e™ p data, respectively.

4.4 Neutrino-multijet and neutrino-muon-multijet final
states

4.4.1 Common preselection for vMJ and vuMJ

Squark decays with single or multiple neutrinos produced
via neutralino or chargino decays can result in final states
similar to that of higher order CC DIS processes.

A substantial missing transverse momentum P;“iss >
26 GeV is required and at least two jets must be found with
PJTet > 15 GeV in the range 7° < 0ir < 145°. No electron
candidate with Pf > 5 GeV is allowed. A cut ) (E — P;) <
50 GeV is used to ensure the neutrino energy is positive.

For each selected event a squark mass M.,y is calculated
as Myec,y = /4EY()_ E; — EV) where the sum includes the
energies of the reconstructed neutrino, electrons, muons and
jets with PJTet > 5 GeV in the event. This method assumes
that all missing energy is carried by a single neutrino and
yields a resolution 6 My ,, of about 15 to 20 GeV depending
on the squark mass.

4.4.2 Neutrino-multijet final state vMJ

Squark decays via gauginos are likely to produce final states
with multiple jets and a single neutrino. Events are selected
in the vMJ channel if no muon candidate is found.

A cut on y;, dependent on the reconstructed mass Mg
is applied to enhance the signal. The cut ranges from y, >
0.5 for masses around 100 GeV to y, > 0.4 for masses
around 290 GeV. The M., spectra are shown in Figs. 3e
and 4f for e~ p and e™ p collision data and SM background
simulation. In the ¢~ p data 204 candidate events are se-
lected while 235.5 & 63.3 are expected and in the e™ p data
113 candidate events are selected while 134.0 4+-33.8 are ex-
pected from SM processes.

4.4.3 Neutrino-muon-multijet final state viuMJ

If an isolated muon with P# > 5 GeV in the polar angle
range 10° < 6, < 110° is found in an event in the com-
mon vMJ selection, the event is classified as vuMJ can-
didate. No candidate events are found, in the ¢~ p or in the
e p collision data, in agreement with the SM expectations
of 0.04 £ 0.02 and 0.06 £ 0.03, respectively.
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4.5 Systematic uncertainties

The following experimental systematic uncertainties are
considered:

e The uncertainty on the electromagnetic energy scale
varies depending on the polar angle from 0.7% in the
central region to 2% in the forward region [60]. The polar
angle measurement uncertainty of electromagnetic clus-
ters is 3 mrad.

e The jet energy scale is known within 2% [60]. The uncer-
tainty on the jet polar angle determination is 10 mrad.

e The luminosity measurement has an uncertainty of 3%.

The effects of the experimental systematic uncertainties on
the SM expectation and signal efficiencies are determined
by varying the corresponding experimental quantities within
one standard deviation in the MC samples and propagating
the variations to the final distributions. The resulting experi-
mental uncertainties are determined for each analysis chan-
nel individually and added in quadrature. In the eg chan-
nel the uncertainty on the overall SM event yield was found
to be 3%, while in the vg channel an uncertainty of 7% is
determined. In the eMJ (RC and WC) channels the result-
ing systematic uncertainty amounts to 4%, in the e MJ and
evMJ channels to 7%, in the eeMJ channel to 10% and in
the vMJ and viuMJ channels to 20%.

Additional model uncertainties are attributed to the SM
MC event generators described in Sect. 2.3. A conserva-
tive error of 10% is attributed to NC (RAPGAP) and CC
(DJANGO) DIS processes with only one high Pr jet. To ac-
count for the uncertainty on higher order QCD corrections,
an uncertainty of 15% is attributed to NC DIS and photopro-
duction processes (PYTHIA) with at least two high Pr jets,
determined from a comparison of the leading order MC sim-
ulation with next-to-leading order QCD calculations. The
normalisation uncertainty of CC DIS processes with at least
two high Pr jets is estimated to be 20% [60]. These uncer-
tainties cover discrepancies between data and MC prediction
in control samples with relaxed selection cuts. A 5% un-
certainty is attributed to the contribution from multi-lepton
events (GRAPE) and a 15% uncertainty on the production
of single W bosons (EPVEC). These uncertainties include
contributions from the proton parton distribution functions
and from missing higher order QCD corrections. The total
error on the SM prediction is determined by adding the ef-
fects of all model and experimental systematic uncertainties
in quadrature.

For the signal cross section further uncertainties arise
from the determination of signal efficiencies (10% due to
available MC statistics), the theoretical uncertainty on the
squark production cross section (7% for low squark masses,
up to 50% for the highest masses from the PDF uncertainty)
and an uncertainty due to the scale at which the PDFs are
evaluated (7%) [62].
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5 Exclusion limits

No significant deviation from the SM expectation is ob-
served in any channel. Consequently the observations in all
analysis channels are combined to set constraints on vari-
ous supersymmetric models. Exclusion limits are obtained
on the production of squarks parameterised by the strength
of the R, couplings A/ j1 and A}y, and dependent on the
mass of the squark.

5.1 Procedure

For the interpretation of the results a version of the Min-
imal Supersymmetric Standard Model (MSSM) is consid-
ered where the masses of the neutralinos, charginos and
gluinos are determined via the usual parameters: the “Higgs-
mass” term p, which mixes the Higgs superfields; the SUSY
soft-breaking mass parameter M;; and the ratio of the vac-
uum expectation values of the two neutral scalar Higgs fields
tan B [63, 64]. The parameters are defined at the electroweak
scale.

A set of parameters (tanp, u, M») together with the
sfermion masses and a coupling A ik define a supersym-
metric scenario where the masses of the gauginos and the
branching ratios for squark decays into the different final
state topologies are fixed and can be obtained using the
SUSYGENS3 [32, 33] package. The branching ratios for the
specific parameters of the model are taken into account in
the combination [65]. A sliding mass window technique is
used in channels with high contributions of irreducible SM
background (eq, vg, eMJ and vMJ) to improve the signal to
background ratio for the squark mass examined. The width
of the mass window is determined by minimising the ex-
pected limit, and increases towards high squark masses, re-
flecting the corresponding mass reconstruction resolution.
The small efficiency losses due to the finite mass window
width are taken into account. A 95% confidence level (CL)
upper limit oy, on the squark production cross section com-
patible with the simultaneous observation in all channels
is derived using a modified frequentist approach based on
Likelihood ratios [65]. Sets of model parameters leading to
signal cross sections above o}jy, are excluded.

If the squark width is non-negligible, in particular for
squark masses approaching the kinematic limit, the produc-
tion cross section decreases at the resonance peak and con-
tributions from the lower tail of the squark mass distribution
become important, enhanced by the rapid increase of proton
parton distributions at low Bjorken-x [62]. This is taken into
account by generating events for negligible squark widths
to determine signal efficiencies at all masses. The selection
efficiencies are then corrected for the actual squark width
by reducing the efficiency for the signal selection accord-
ingly [62].

In the special case of stop and sbottom squark produc-
tion, namely via R, couplings )‘/lgl a£1d A 13- the mixing of
the weak eigenstates 7, tg (and by, br) to the mass eigen-
states 71, 73 (b1, by) via an angle 6; (6;;) becomes important
for the calculation of branching ratios and production cross
sections. The gauge decay via a top quark would lead to de-
cay products different from the first two generation squarks,
for which the efficiencies are determined. Final states with
top quarks are not considered explicitly. Since top signals
would in any case be present in one of the selection topolo-
gies, this approach is conservative.

5.2 Constraints on a phenomenological MSSM

Constraints are set in a scenario of a phenomenological
MSSM [63, 64] where the lightest supersymmetric particle
(LSP) is the neutralino X?- Slepton masses M are fixed at
90 GeV, close to the lowest mass bound from R, sfermion
searches at LEP [3-10] and squark masses are treated as
free parameters. For higher slepton masses only very small
degradations in the derived constraints are expected [1].
For a single point in the parameter space, characterised
by u = —200 GeV, M, = 80 GeV and tan 8 = 2, constraints
on the strength of the £ p couplings depending on the mass

of the squark are derived for ‘?1]'{6 (k=1,2) (Fig. 5a) and ﬂi
(j = 1,2) (Fig. 5b) production. The HERA sensitivity al-
lows tests of A’ values as low as 10~ for squark masses of
100 GeV. For high squark masses the sensitivity degrades
since the production cross section decreases strongly. The
limits from the previous H1 analysis on a smaller data sam-
ple [1] are also indicated.

This choice of parameters leads to a dominant photino ()
component to the neutralino’s composition. As a conse-
quence, gauge decays are likely to result in charged lep-
tons in the final state. The branching ratios into the decay
topologies are shown at the observed limit for cill‘e (k=1,2)
(Fig. 5¢) and @5 (j = 1,2) (Fig. 5d) production. For dk
(k =1, 2) production the channels eMJ (RC) and eMJ (WC)
each contribute about 40% over a wide range of squark
masses and only 10% of squark decays appear in the vMJ
channel. For squark masses approaching the kinematic limit
of the centre-of-mass energy the lepton—quark channels eq
and vg begin to dominate the decays of the squarks, be-
cause gauge decay modes become negligible at high val-
ues of the R, couplings. Over the whole mass range the

sum of analysed branching ratios is close to 100%. For JZ]L
(j = 1,2) production the channels e£MJ have the highest
branching ratio over a wide mass range at the observed limit.

A different point in the parameter space yields a comple-
mentary scenario with the choice of u =200 GeV, M, =
150 GeV and tan 8 = 2. Again the neutralino XIO is the LSP
but its composition is now dominated by a zino (Z) compo-
nent. Squark decays are now more likely to produce neu-
trinos in the final state. The constraints on the couplings
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Fig. 5 Exclusion limits at
95% CL on (a) A}, (k=1,2)
andon(b))n/lj1 (j=1,2)ina
phenomenological MSSM with
a photino (y) like neutralino

( x?). For comparison, the
corresponding limit from the
previous H1 analysis [1] is also
indicated. Also shown are
branching ratios to the decay
channels considered in this
analysis for (c) A{;, and

(d) )L’]jl values at the observed
limit

Fig. 6 Exclusion limits at

95% CL on (a) A}, (k=1,2)
andon(b))\/lj1 (j=1,2)ina
phenomenological MSSM with
a zino (Z) like neutralino ( X?).
Also shown are branching ratios
to the decay channels
considered in this analysis for
(¢) A}y, and (d) )J]j] values at
the observed limit
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Fig. 7 Exclusion limits (95% CL) on )"111( for (a) k = 1,2 and
(b) k = 3 as a function of the squark mass from a scan of the MSSM
parameter space as indicated in the figures. The dark filled region in-
dicates values of the coupling 1}, excluded in all investigated sce-
narios whereas the light filled region is excluded only in part of the
scenarios. Indirect limits from neutrinoless double beta decay exper-
iments (BB0v) [18-22, 25] and tests of charged current universality
(CCU) [24, 25] are also shown. For comparison, the corresponding
limits from the previous H1 analysis [1] are also indicated

depending on the mass of the squark are shown for ‘?fe
(k=1,2) (Fig. 6a) and ﬁi (j = 1,2) (Fig. 6b) production
and are of the same order of magnitude as in the photino sce-
nario. Branching ratios at the observed limits show dominant
contributions from the vMJ and veMJ channels (Figs. 6¢c
and 6d).

These two scenarios illustrate the sensitivity for vari-
ous model configurations achieved by the combination of
the complementary search topologies. The sensitivity of
the analysis is explored in a scan of the MSSM parame-
ters. The parameters M, and u are varied in the range
70 GeV < M3, < 350 GeV and —300 GeV < u < 300 GeV
for tan 8 = 6. Parameter sets leading to a scalar LSP or to
LSP masses below 30 GeV are not considered. The latter re-
striction, as well as the lower boundary of the M> range, are
motivated by the exclusion domains resulting from gaugino
searches in R » SUSY at LEP [11]. Figures 7 and 8 show the
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Fig. 8 Exclusion limits (95% CL) on }‘/1 il for (a) j = 1,2 and
(b) j =3 as a function of the squark mass from a scan of the MSSM
parameter space as indicated in the figures. The dark filled region indi-
cates values of the coupling A/ ;, excluded in all investigated scenarios
whereas the light filled region is excluded only in part of the scenar-
ios. Indirect limits from neutrinoless double beta decay experiments
(BBOV) [18-22, 25] and atomic parity violation (APV) [23, 25] are also
shown. For comparison, the corresponding limits from the previous H1
analysis [1] are also indicated

resulting constraints on the couplings as a function of the
squark mass. The region of values excluded at 95% CL for
the couplings in all scenarios and the best exclusion limit
achieved in all scenarios are indicated for first and second
generation squarks dg, 5r (Fig. 7a) and uy, ¢ (Fig. 8a)
as well as for third generation squarks b (Fig. 7b) and 7,
(Fig. 8b). The resulting exclusion domains are compared to
the previous H1 results [1]. Constraints on the £, couplings
are also available as indirect limits from low energy exper-
iments probing virtual squark contributions [25]. The pro-
duction of up-type and down-type squarks via the 1/, cou-
pling is strongly constrained by the non-observation of neu-
trinoless double beta decay (880v) [18-22, 25]. The best
indirect limit on the couplings A/, and A},5 results from
tests of charged current universality (CCU) [24, 25] and can
be compared to the direct limits obtained in this analysis for
Ay in Fig. 7. The best indirect limit on the couplings A,,
and 1}, comes from atomic parity violation (APV) mea-

@ Springer



Page 14 of 16

Eur. Phys. J. C (2011) 71: 1572

N 11,=0.3, tanP=2, u<0, Ay=0
e (a) H1 excluded for k=1,2
e'p 183pb™’ [] excluded for k=3

R at 95% CL

150—

m,, [GeV]

100

L YL

200 300
m, [GeV]
N 11,=0.3, tanP=6, u<0, Ay=0
excluded for k=1,2
[] excluded for k=3
at 95% CL

® H1

ep 183pb™’

m,, [GeV]
z
T T I T T

Fig. 9 Exclusion limits (95% CL) in the mg, m1/> plane assuming
}‘lllk = 0.3 for (a) tan8 =2 and (b) tan 8 = 6 for k = 1, 2 (hatched
region) and k = 3 (light filled region). A curve of constant squark mass
is illustrated for m(c?) =280 GeV. Also indicated are constraints ob-
tained by the L3 experiment at LEP [11] and the D@ experiment at
the Tevatron [17]. The dark filled region labelled as “not allowed” in-
dicates where no REWSB solution is possible or where the LSP is a
sfermion

surements [23, 25] and can be compared to the direct limits
obtained for )‘/11'1 in Fig. 8.
In the part of the parameter space considered here,
Yukawa couplings of electromagnetic strength A j1or
"1 = VA4maem = 0.3, are excluded up to masses of
275 GeV at 95% CL for up-type squarks and up to masses
of 290 GeV for down-type squarks.

5.3 Constraints on the minimal supergravity model

Constraints are also obtained on the Minimal Supergrav-
ity Model (mSUGRA) [66-68] which is a complete SUSY
model using the assumption of gauge coupling unification
and radiative electroweak symmetry breaking (REWSB)
with the choice of 5 parameters: the common mass of scalar
sparticles mq; the common mass of fermionic sparticles
m1,2; the common trilinear coupling Ao; the ratio of Higgs
vacuum expectation values tan §; and the sign of the Higgs

@ Springer
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Fig. 10 Exclusion limits (95% CL) in the mg, m1,> plane assuming
A’ljl =0.3 for (a) tan =2 and (b) tanf = 6 for j = 1,2 (hatched
region) and j = 3 (light filled region). Curves of constant squark mass
are illustrated for m(ii) = 275 GeV and m(f) = 270 GeV. Also indi-
cated are constraints obtained by the L3 experiment at LEP [11] and
the D@ experiment at the Tevatron [17]. The dark filled region labelled
as “not allowed” indicates where no REWSB solution is possible or
where the LSP is a sfermion

mixing parameter u. The masses of squarks, sleptons and
gauginos as well as the branching ratios in the analysis chan-
nels are determined by the set (mg, m1 2, tan 8, sign(u), Ao)
for given values of the couplings A}, and A} i The pro-
gram SUSPECT 2.1 [69] is used to obtain the REWSB solu-
tion for |u| and to calculate the full supersymmetric mass
spectrum. Ap enters only marginally in the interpretation
and is set to zero. The parameter u is taken with negative
sign.

Figures 9 and 10 show constraints in the mq, m1,2 plane
when values of the couplings are assumed to be of the
electromagnetic coupling strength A},, = 0.3 or A} j1=03
for different values of tan 8. The excluded region typically
covers masses of m(it) = 275 GeV, m(f) = 270 GeV and
m(d) = 280 GeV, as indicated in the figures. Complemen-
tary constraints are obtained by the L3 experiment [11] at
LEP and the D@ experiment [17] at the Tevatron which ex-
ploit di-electron events. The LEP and Tevatron limits are in-
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Fig. 11 Exclusion limits for M = mo = m/2 in mSUGRA as func-
tion of tan . Shown are the 95% CL exclusion domains for the model
parameters from the production of squarks of first and second genera-
tion (i, ¢ and d, 5) and of third generation (7, b) assuming a value of
A" = 0.3 for the respective coupling. The area below the curves is ex-
cluded. The dark filled region labelled as “not allowed” indicates where
no REWSB solution is possible or where the LSP is a sfermion

dependent of the Yukawa coupling. For tan 8 = 2, the para-
meter space is more strongly constrained by the searches for
gauginos and sleptons at the L3 experiment at LEP, as shown
in Figs. 9 and 10. This is the only tan 8 value considered in
the L3 analysis, although results for higher values are ex-
pected to be similar [11]. Compared to the D@ experiment,
the H1 limits are more stringent only for low values of my
for tan B = 2, whereas for tan 8 = 6 the domain excluded by
HI is considerably larger.

The exclusion limits in Fig. 9 are very similar for all three
flavours of down-type squarks. Significant differences are
observed between the first two and the third generation of
up-type squarks. The stronger limit for stop squark produc-
tion results from strong mixing effects that occur for third
generation squarks with increasing tan 8, leading to masses
for stop squarks lower than for first and second generation
up-type squarks. The tan 8 dependence of the nSUGRA ex-
clusion limits is studied assuming a unified common mass
M =mo=my,; and R, couplings of electromagnetic cou-
pling strength. This is illustrated in Fig. 11 for the individual
flavours. For the first two generations of up-type and down-
type squarks no dependence on tan 8 is observed and values
of M < 105 GeV and M < 110 GeV, respectively, are ex-
cluded over the whole range. In the case of stop squark pro-
duction, significantly higher values (up to M < 148 GeV)
are excluded due to the presence of a light stop squark state.
This effect is also observed for sbottom production, where
increased values of tan 8 allow higher values of M to be
excluded. While there is a steep increase for the limit from
stop squark production at small tan 8 and a flat plateau over
the remaining tan 8 range, the limit from sbottom produc-
tion increases steadily over the range of tan 8 values. The

sharp edge in the stop exclusion curve at tan 8 ~ 38 follows
from mixing effects in the 7 sector at high tan 8 leading to
scenarios with strong contributions from events with 7 lep-
tons in the final state, which are not explicitely considered
in the analysis.

6 Summary

A search for R-parity violating production of squarks in
255 pb~! of et p and 183 pb~! of e~ p collisions at HERA
is presented. No significant deviation from the Standard
Model is observed in the study of final state topologies
which may result from direct or indirect R, squark decays.
Mass dependent limits on the R, couplings )L’ljl and A},
(j,k =1,2,3) are derived within a phenomenological ver-
sion of the MSSM. The existence of iy -type and dg-type
squarks of all three generations with masses up to 275 GeV
and 290 GeV, respectively, is excluded at the 95% CL for
Yukawa couplings of electromagnetic strength. These mass
limits set the most stringent direct bounds on 1) j1 and M-
For lower squark masses, the results improve the indirect
bounds set by low-energy experiments. Exclusion limits are
also derived in the mSUGRA model, and are competitive
with and complementary to those derived at the LEP and
Tevatron colliders.
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