
Eur. Phys. J. C 53, 467–471 (2008) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-007-0499-9

Special Article – Scientific Note

First experience and adaptation of existing tools
to ATLAS distributed analysis
S.G. De La Hoz1,a, L.M. Ruiz1, D. Liko2

1 IFIC – Instituto de F́ısica Corpuscular, Centro Mixto Universitat de València – CSIC, Valencia,
Apartado de Correos 22085, 46071, Spain

2 CERN – European Organization for Nuclear Research, 1211 Geneva, Switzerland

Received: 16 October 2007 / Revised version: 28 November 2007 /
Published online: 18 December 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. The ATLAS production system has been successfully used to run production of simulation data
at an unprecedented scale in ATLAS. Up to 10000 jobs were processed on about 100 sites in one day. The
experiences obtained operating the system on several grid flavours was essential to perform a user analysis
using grid resources. First tests of the distributed analysis system were then performed. In the preparation
phase data was registered in the LHC file catalog (LFC) and replicated in external sites. For the main test,
few resources were used. All these tests are only a first step towards the validation of the computing model.
The ATLAS management computing board decided to integrate the collaboration efforts in distributed an-
alysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large
scale Data production using grid flavors in several sites. GANGA allows trivial switching between running
test jobs on a local batch system and running large-scale analyses on the grid; it provides job splitting and
merging, and includes automated job monitoring and output retrieval.

1 Introduction

The primary goal of the distributed analysis is to bring
computation power to individual ATLAS physicists. This
is achieved by providing easy access to the computing re-
sources of the various grids, in a way that hides most of the
complexities of grid environments.
The distributed analysis model is included on the

ATLAS computing model [1] and stipulates that data is
distributed in various computing facilities. User jobs are in
turn routed depending on the availability of relevant data.
A typical analysis job consists of a Python [2] script that
configures and executes a user defined algorithm in Athena
(ATLAS software framework). The script specifies the in-
put data and produces one or more files containing plots
and histograms. The expected volume of data recorded for
offline reconstruction and analysis will be of the order of
1 PB (1015 bytes) per year. Due to the size of this expected
data volume it is necessary to use distributed resources all
over the world to perform reconstruction and analysis of
the data.
The ATLAS computing model covers all aspect of this

operation. It includes organized production of simulated
data, and also user analysis. In this paper we describe our
experience running ATLAS distributed analysis tools.
The ATLAS production system has been developed to

perform the simulation data production of the experiment

a e-mail: santiago.gonzalez@ific.uv.es

using grid resources. It provides a robust framework to ex-
ecute a large number of jobs in the grid infrastructures.
This experience will allow us to compare the execution

of analysis task using such a system versus using direct
submission to the infrastructure. This activity was part of
the data challenges (DC’s) that were organized to validate
the computing model to ensure the correctness of the tech-
nical choices.
The collaboration decided to perform these DC’s in the

context of the LHC computing grid project, LCG [3], which
contains the majority of ATLAS resources, but also to use
both the middleware and the resources of two other grid
projects, OSG [4] and NorduGrid [5]. The aim is to prepare
the computing infrastructure for the simulation, process-
ing and analysis of the LHC data.

1.1 Atlas production system

In order to handle the task of DC’s an automated pro-
duction system was designed Fig. 1. The ATLAS experi-
ment requires a large amount of simulated data. The AT-
LAS production system (ProdSys) [6] allows to manage the
production of a large amount of Monte Carlo data using
grid resources in an automatic way, with minimal human
intervention.
This system is implemented in a modular way to en-

able ATLAS to use resources out of these three infras-
tructures. All jobs are defined in a specific schema and

468 S.G. De La Hoz et al.: First experience and adaptation of existing tools to ATLAS distributed analysis

Fig. 1. Atlas production sys-
tem

stored in a central database. A supervisor agent picks
them up, and sends their definition as an XML message
to the various executors. Executors are specialized agents,
able to convert the ATLAS specific XML job description
into a grid specific language. Three executors were de-
veloped, for LCG (Lexor and CondorG), NorduGrid (Dul-
cinea) and OSG (Capone). All the data management op-
erations are performed using a central service, Don Qui-
jote (DQ) [7]. DQ moves files from their temporary out-
put locations to their final destination on some Storage
Element and registers this location in the Replica Loca-
tion Service of the corresponding grid flavor. Thus all the
copy and registration operations are performed through an
abstraction layer provided by DQ. This allows operating
the different replica catalogues of the three grid flavors in
a similar way.
The ATLAS ProdSys has been used since the ATLAS

Data Challenge 2 (DC2) and is currently being used for
the ATLAS Data Challenge 3 (DC3, also called Computing
System Commissioning, CSC).
The ATLAS ProdSys distinguishes between two levels

of abstraction: task and job. A task transforms input
datasets into output datasets by applying a task trans-
formation. Datasets are usually quite large and consist
of many logical files. In this case, a job transforms in-
put logical files into output logical files by applying a job
transformation. In this way, one could say that a task is
split into several jobs and these jobs are managed by AT-
LAS ProdSys on the different grid flavour resources, so the
overall production system relies on the performance of the
individual grid systems.
According to the ATLAS full simulation chain, one

can classify these jobs as: event generation (evgen), simu-
lation (simul), digitalization (digit) and reconstruction
(recon) jobs. The ATLAS full simulation requires a chain
of different programs with different characteristics in
term of memory usage and CPU time consumption. Typ-

ically, a simulation (long) job runs for 24 h, whereas
a digitization or reconstruction (short) job runs for 3
to 4 h.
The ATLAS production system was successfully used

in DC2 to run production jobs at an unprecedented scale
for a system deployed on about 100 sites around the world.
On successful days there were more then 10000 jobs pro-
cessed. In the ATLAS DC2 exercise a total of 10 million
events were processed in ∼ 260 thousand jobs, consuming
∼ 200 kSI2k years of CPU and producing ∼ 60 TB of data.
During DC2 period, which took 6 moths, the automatic

production system submitted about 235000 jobs, reach-
ing approximately an average of 2500–3500 jobs per day,
distributed over the three grid flavours. Overall, they con-
sumed ∼ 1.5 million SI2k-months of CPU (∼ 5000 CPU
months on that average present day CPU) and produced
more than 30 TB of physics data. About 6 TB of these data
were moved using DQ servers.

2 Distributed analysis strategy

The ATLAS distributed analysis system is in evolvement
and several approaches are being studied and evaluated. In
this way, ATLAS has adopted a multi-pronged approach
to distributed analysis by exploiting its existing grid in-
frastructure via the various supported grid flavours and
indirectly via the ATLAS production system (see Fig. 2).
Figure 2 shows various front-end clients enabling dis-

tributed analysis on the existing grid infrastructures.
These front-end clients (PanDA [8]/Pathena, GANGA [9]
and ATCOM [10]) are intended to perform distributed an-
alysis according to Fig. 2.
PanDA (production and distributed analysis) is a job

management system associated with OSG designed specif-
ically for both distributed production and analysis. PanDA

S.G. De La Hoz et al.: First experience and adaptation of existing tools to ATLAS distributed analysis 469

Fig. 2. Various front-end clients are intendet to perform dis-
tributed analysis on the existing grid infrastructure. These
front-end are PanDA/Pathena, ATCOM and GANGA

has native support for the ATLAS distributed data man-
agement (DDM) system allowing accepting datasets as
input (pre-staging it whenever required) and producing
datasets as output (retrievable using DDM tools). PanDA
offers users a comprehensive system view presenting het-
erogeneous distributed resources as a single uniform re-
source, accessible via a standard interface. It also has ex-
tensive web-based job monitoring and browsing capabili-
ties. Panda does not have a graphical user interface (GUI)
but looks to GANGA [9] in order to provide a graphical job
definition and submission interface. PanDA has achieved
this by exposing a useful set of client API.
Pathena is a python script designed to enable access

to OSG resources via the PanDA job management sys-
tem. It is in the process of becoming a drop-in replacement
for the executable used in the ATLAS software frame-
work. Users are able to exploit distributed resources for
their analysis activities with minimal inconvenience. Pa-
thena makes the submission of analysis jobs to the PanDA
system a painless two-stage process involving an optional
build step (where user code can be compiled) followed
by an execution step (with built-in job splitting capa-
bilities). A further merge step is in development, allow-
ing the resulting output datasets from split jobs to be
consolidated.
ATCOM (the ATLAS commander) [10] was the dedi-

cated graphical user interface front-end to the production
system, designed to be used by a few expert users involved
in large-scale organized production of data. It had the po-
tential to be used for distributed analysis purposes as well.
The ATLAS management computing board decided to in-
tegrate the collaboration efforts in distributed analysis in
only one project, GANGA.
GANGA (Gaudi/Athena and grid alliance) is a pow-

erful user friendly front-end tool for job definition and
management, jointly developed by the ATLAS and LHCb
experiments. GANGA provides distributed analysis users
easy access to the whole grid infrastructure supported by

Fig. 3. Building blocks for constructing a GANGA job

ATLAS. This is achieved by interfacing to an array of sub-
mission back-end mechanisms.
It currently provides two user interface clients: a com-

mand line interface (CLI) and a graphical user interface.
In addition, it can also be embedded in scripts for non-
interactive/repetitive use. GANGA, intended to satisfy
both ATLAS and LHCb requirements (unlike Pathena and
ATCOM that are designed for specific ATLAS tasks), has
been designed from the onset to be a highly extensible
generic tool with a component plug.-in architecture. This
pluggable framework makes the addition of new applica-
tions and backends an easy task.
GANGA allows switching between testing on a local

batch system and large-scale processing on the Grid, and
helps to keep track or results. A job in GANGA is con-
structed from a set of building blocks (Fig. 3). All jobs have
to specify the software to be run (application) and the pro-
cessing system (back-end) to be used. Many jobs specify
an input dataset to be read and/or an output dataset to
be produced. Optionally, a job may also define functions
(splitters and mergers) for dividing a job into subjobs that
can be processed in parallel, and for combining the vari-
ous outputs. In this case, after splitting, the job becomes
a master job and provides a single pint of access for all sub-
jobs.
GANGA is currently in active development with fre-

quent software releases and has an increasing pool of active
developers.

2.1 Distributed analysis using the production system
and using GANGA

Distribution of data on several sites and local access to the
data is a very important issue to minimize failures. In total
155GB of merged datasets were used for distributed analy-
sis. The dataset were registered at CERN in Logical File
Catalog (LFC) and were replicated in the sites shown in
Table 1.
The algorithm of choice has been a ZH → tt̄, a heavy Z

decaying into tops in the little Higgs model. This dataset
was made in the official production for exotics working

470 S.G. De La Hoz et al.: First experience and adaptation of existing tools to ATLAS distributed analysis

group using the ATLAS full chain. A total of 400 analy-
sis object data (AOD’s) were produced using the Athena
full simulation chain, each one containing 50 events (20 000
events in total). The analysis has been performed using the
production system and GANGA.
Despite the possibility to run analysis jobs via the

production system, not all functionalities to support dis-
tributed analysis were currently available. In the following,
the technical issues that had to be addressed are discussed
in turn.
A dedicated database was setup for analysis jobs to sep-

arate private work from the ongoing production. A generic
analysis transformation was created, that compiles user
code or the user package on the worker node, processes
AOD input files and produces histograms as output.
ATCOM was used to define jobs. It was also used to moni-
tor the status.
To perform an analysis the user has to define a task and

associated jobs according to the conventions of the ATLAS
production system. The task contains summary informa-
tion about the jobs to be run (input/output datasets,
transformation parameters, resource and environmental
requirements), while individual jobs are defined by their
specific parameters needed for execution. Task and jobs
were created in the ATLAS dedicated analysis database
using ATCOM, a pilot tool to provide a GUI for the pro-
duction system. This tool supported only creating, editing
and submitting jobs. A task and four jobs were defined.
Each job had as input 100 AOD’s (5000 events in total).
We used a production system instance to pick up the

jobs defined in the database and submit them to LCG
resources. Moreover, ATCOM was used to monitor the
progress status of tasks and jobs. Some performance test
were made running these analysis jobs at sites shown
in Table 1, because jobs should be submitted where data
are located. The time consumed by copy of input data
(stage in) from the storage element (usually data on tapes)
to the worker node was around 11min per job, algorithm
CPU processing time around 4min and copy of output
data to local storage element (stage out) around 1min.
Output data were stored using the IFIC/CERN CAS-

TOR storage system. These output ROOT files containing
histograms were merged using ROOT.
We defined the same jobs using GANGA. It provides

a set of ATLAS-specific features such as application con-
figuration based on the Athena framework and input data
location based on DDM. It can be run either on the com-

Table 1. Sites where datasets were replicated

Site Storage element Computing element

IFIC castorgrid.ific.uv.es lcg2ce.ific.uv.es
Sinica Lcg00123.grid.sinica.edu.tw lcg00126.grid.sinica.edu.tw
Cnaf grid007g.cnaf.infn.it gridit-ce-001.cnaf.infn.it
PIC castorgrid.pic.es ce01.pic.es
MI t2-se-01.mi.infn.it t2-ce-01.mi.infn.it
Cern castorgrid.cern.ch lxgate13.cern.ch
RO T2-se-01.roma1.infn.it t2-ce-01.roma1.infn.it

mand line, with Python scripts or through a GUI. Users
need to enter just a few commands to set application prop-
erties and submit jobs to run the application on selected
back-ends (grid flavours or local batch system).
In this case the time for each job in the stage in was

around 12min, algorithm CPU processing time around
5min and stage out around 1minute.
In both cases, with the production system and with

GANGA, each job produced three output files (ntuple, his-
togram and log) stored on Castor based storage elements
(SE). All the jobs were running at several sites (see Table 1)
and were instructed to save output at one single storage
elements close to the user. The ROOT package was used to
merge the histogram output files and to analyze the results.
Finally, after merging, Fig. 4 shows the analysis result.
The same AOD’s were copied in a local desktop in order

to have local disk access and they were analyzed with-
out using the production system or GANGA, therefore it
means without using the grid. In this case the time for the
algorithm CPU processing was around 100min, which was
worse than we got with GANGA or with the production
system using grid resources.
Our experience in the ATLAS Distributed system is

only limited to the LCG grid flavour, so it means that
we have not used Pathena yet. Comparing GANGA and
ProdSys prototypes:

– GANGA provides two user interface clients: A com-
mand line interface and a GUI. Prodsys provides a GUI
(ATCOM) also to define and monitor tasks and jobs,
but id doesn’t hide all the grid environment complexi-
ties for users as GANGA. In this sense, GANGA is more
user-friendly than ProdSys. Users only need to fulfil
some fields using GANGA GUI to submit jobs.
– ProdSys has been used by “expert users” who have
some background about the system. However, GANGA
is used by general users who don’t need to have any
background about the back-end systems.
– GANGA supports different back-ends to run the jobs
(see Fig. 2), including ProdSys as one of these back-
ends. However, ProdSys only supports itself.
– ProdSys is easy to use, but it needs a ProdSys instance
running, which makes the system more difficult to run.
In addition, it is unclear who should maintain this
ProdSys instance for analysis purposes: expert users,
ProdSys tem or any other group.

S.G. De La Hoz et al.: First experience and adaptation of existing tools to ATLAS distributed analysis 471

Fig. 4. ZH → tt invariant mass distribution after merging the
output files (GeV units in the y-axis)

All these tests are only a first step towards the valida-
tion of the computing model and distributed analysis.
More realistic tests have to involve many physicists work-
ing in concurrent mode. This requires not only progress
in the application, but also progress in the grid middle-
ware and the site configurations. An example is the on-
going discussion on job priorities in LCG which should
allow the coexistence of production and user analysis
activities.

3 Conclusions

The ATLAS production system and GANGA have been
used to submit physics analysis jobs to LCG grid flavor.
Using the production framework for analysis has the ad-
vantage to profit from the experience of the large scale pro-
duction. Only limited additional resources were necessary
to perform the required modifications to support analysis.
For the main test few resources were used in nine sites.

The production system and GANGA were able to pro-
cess jobs with 20 k events in about 10min. In these jobs
data were already in the worker node and the stage-in was
avoided. It is fair to say that it was difficult to achieve

this performance due to the instability of the major com-
ponents of the software that were still in a development
phase. Nevertheless we consider this first test as encourag-
ing and promising. With the startup of the LHC we expect
much more data and resources for analysis will be only
available using the grid.
Comparing the production system with GANGA, we

could observe a more robust execution and we were also
profiting from the advanced monitoring capabilities of the
production system. A drawback is that such a system rep-
resents an additional infrastructure element, which has to
be operated by the experiment.
Distributed analysis is still work in progress. With the

startup of LHC in the next year we expect a dramatic in-
crease of the data volume. This will require the general

ATLAS user to use resources on the grid to perform his
analysis.

Acknowledgements. This work is supported by the Spanish

National Research Council (CSIC). Work of D. Liko partially
supported by Marie Curie grant MERG-CT-2006-44258 of the
European Union.

References

1. ATLAS Computing Technical Design Report, CERN-
LHCC-2005-022

2. G. Van Rossum, F.L. Drake Jr. (eds.), Python Reference
Manual 2.4.3

3. M. Lamana et al., The LHC computing grid project. NIM
A 534, 1 (2004)

4. R. Gardner, Grid3, in: Proc. CHEP04 2, 1318
5. M. Ellert et al., The NorduGrid. Project, NIM A 502, 407
(2003)

6. L. Goossens, Production System in ATLAS DC2, in: Proc.
CHEP04, 501

7. M. Branco, Don Quijote, CERN Yellow Report 2005-002,
p. 661

8. PanDA
(http://twiki.cern.ch/twiki/bin/view/Atlas/Panda)

9. GANGA (http://ganga.web.cern.ch/ganga)
10. ATCOM (http://uimon.cern.ch/twiki.cern.ch/twiki/bin/
view/Atlas/AtCom)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

