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Abstract. This topical issue compiles a series of articles on recent developments in the functional renor-
malization group approach to correlated electron systems. In our Editorial, we provide some background
on the motivation for the special issue and briefly introduce the topics covered in it.

Strong correlations in systems of many constituents
give rise to a large variety of phenomena in many
fields of physics and even beyond. In condensed-matter
physics, for example, strong correlations between elec-
trons in materials and devices are responsible for the
formation of many intriguing states of matter or,
more generally, emergent phenomena, including various
types of magnetism, (unconventional) superconductiv-
ity, Kondo-like effects or interaction-induced topologi-
cal phases. The exploration of strongly-correlated elec-
tron systems, both experimentally as well as theoret-
ically, has been a leading theme in condensed-matter
research for many decades now, with high-temperature
superconductors being arguably the most prominent
time-honored representative of such systems. Interest
in this long-standing topic has received another push
through a variety of recent groundbreaking experimen-
tal advances in the synthesis and analysis of novel corre-
lated quantum materials, e.g., twisted bilayer graphene
and related Moiré materials, but also nickelate super-
conductors, and kagome metals, just to name a few.

Theoretical progress in the exploration of correlated
electron systems requires the dedicated development
of modern and powerful quantum many-body meth-
ods. This is a formidable task which in most cases
relies on the conception of suitable approximations that
are often specific to the problem at hand. One of the
first and straightforward tools to approach an inter-
acting electron system are mean-field approximations
or related single-channel resummation schemes, such
as, e.g., the random-phase approximation. On the one
hand, mean-field approximations are broadly applica-
ble to many models of interacting electrons and are
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frequently employed to obtain a first guess about a
systems emergent many-body phenomena. In particu-
lar, they can also be used to investigate quite involved
models, which may be provided, e.g., by ab initio quan-
tum material methods, while being well-manageable
in terms of their numerical costs. On the other hand,
mean-field approaches are an insufficient tool for the
analysis of many physically relevant scenarios in the
context of correlated electrons as they inherently disre-
gard the presence of competing correlated states and,
in particular in low-dimensional systems, might lead
to spurious symmetry breaking. Ignoring the interplay
of ordering tendencies is known to have a fundamen-
tal impact not only on a quantitative level but even
qualitatively, e.g., by potentially completely changing
the types of appearing correlated states of matter. Sev-
eral more advanced quantum many-body methods sys-
tematically overcome the shortcomings of mean-field
approaches, typically at the expense of a much higher
numerical effort, e.g., exact diagonalization, tensor net-
work methods including the density-matrix renormal-
ization group, or quantum Monte Carlo (QMC) simu-
lations. Despite the high numerical costs these methods
have seen tremendous progress, recently, through pow-
erful implementations of tensor-network methods as
well as sign-problem free QMC formulations for specific
models. On the other hand, each of these approaches
comes with its own caveats including more or less severe
limitations in system sizes – which blocks the road
towards the asymptotic low-energy regime – and the
applicability to models of correlated electrons in rele-
vant parameter ranges.

Within the scope of quantum many-body approaches,
the functional renormalization group (FRG) is a
method that can bridge the gap between the versa-
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tile but mundane mean-field approximations and the
sophisticated numerical many-body approaches suf-
fering from parameter and size constraints. In fact,
already in a comparatively simple and straightfor-
ward implementation, the FRG combines the possibil-
ity to explore correlated electronic states and compet-
ing orders in complex quantum materials and devices
with multi-orbital/-band character or spatial structur-
ing and in a broad range of parameters including, e.g.,
non-local Coulomb interactions and general charge-
carrier filling. In addition, it further facilitates the sys-
tematic improvement of approximations and trunca-
tion schemes. Thereby, it embodies the transformative
potential of a combined analytical and numerical toolkit
aiming at quantitative predictions of collective phenom-
ena in quantum many-body systems. In the last decade,
the FRG approach to correlated electrons has witnessed
major methodological advances and extensions, which
go beyond the topics covered in the reviews by Metzner
et al., cf. Ref. [1], and by Platt, Hanke, and Thomale,
cf. Ref. [2], as well as the textbook by Kopietz, Bar-
tosch, and Schütz, cf. Ref.[3]. This includes aspects of
the renormalization-group formulation, increased com-
puter power and enhanced interlinks to ab initio quan-
tum material methods, and extensions to electronic sys-
tems out of equilibrium.

This topical issue

The recent developments of functional renormalization
and the vibrant environment of experimental advances
in novel correlated quantum materials and devices nat-
urally calls for broadening the basis of FRG practition-
ers and a continued refinement of this versatile theoreti-
cal tool. The present focus issue attempts to contribute
to this ambition by presenting recent methodological
advances in functional renormalization group. It further
provides practical references for new FRG practitioners
by covering aspects of code development for numerical
implementations, algorithmic adaptions, and concrete
examples of quantum materials and device analysis.

A new practitioner of the FRG approach to cor-
related electrons may want to get acquainted with
the method by numerically implementing the FRG
flow of a basic and rather straightforward truncation
scheme. A widespread basic truncation scheme exclu-
sively keeps track of the renormalization group evo-
lution of the momentum-dependent two-particle inter-
action vertex thereby neglecting frequency dependen-
cies, self-energy corrections, and higher-order vertices.
In another scheme, employed to one-dimensional and
inhomogeneous systems, it is exactly the flow of the
self-energy which matters most and the flow of the two-
particle vertex is only captured approximately if at all.
Despite these severe approximations, these basic trun-
cations have been successfully applied to explore the
leading Fermi-surface instabilities of many correlated
electron systems, including high-temperature supercon-
ducting cuprates, pnictide superconductors, graphene,

Moireé materials, and many more, as well as equilib-
rium and non-equilibrium many-body phenomena in
spatially structured devices.

In their contribution to this special issue, Beyer,
Hauck, and Klebl, cf. Ref. [4], provide benchmark
results for three different numerical implementations
of the above-described basic truncation. The three
implementations employ a different handling of the
momentum-dependence of the interaction vertex, i.e.
they use a momentum-grid-based scheme, a
momentum-space truncated-unity scheme, and a real-
/mixed-space truncated-unity scheme, which they explic-
itly study at the examples of the square lattice Hub-
bard model, a graphene model, and a Rashba-Hubbard
model. Each of these implementations comes with a
series of advantages and disadvantages, which are dis-
cussed in Ref. [4], thereby providing an important ref-
erence for choosing the suitable scheme for application
to relevant models of correlated electrons. On the same
level of truncation, Beyer, Goth, and Müller, cf. Ref. [5],
then investigate various numerical integration proce-
dures for the FRG flow equations and explore them
particularly in the region where singularities develop
in the FRG flow. Ref. [5] concludes by recommend-
ing specific integrator choices based on accuracy and
numerical performance. In a third contribution on this
basic truncation, Gneist et al., cf. Ref. [6], focus on
the discussion of Fermi-surface instabilities of a simple
triangular-lattice model for spinless fermions represent-
ing a relevant core model, e.g., for Moiré materials or
systems with sizable spin-orbit coupling. To that end,
they present an efficient and scalable implementation
of the truncated-unity FRG scheme, explore its con-
vergence in the momentum and form-factor resolution,
and they compare their results to a standard Fermi-
surface-patching (or N -patch) scheme. Another variant
of the truncated-unity scheme, presented by Hauck and
Kennes in Ref. [7], aims at further improving the scala-
bility of the FRG flow equations to facilitate application
to models with large unit cells or broken translational
symmetry. An alternative implementation of the FRG
flow for a channel-decomposed two-particle interaction
vertex is explored by Fraboulet et al. in Ref. [8], employ-
ing a single-boson exchange formulation. Therein, the
authors discuss computational but also interpretative
advantages of the single-boson exchange formulation at
the example of the square lattice Hubbard model with
a particular focus on the quality of the involved approx-
imations in terms of their rest functions.

A common thread in the previously mentioned con-
tributions is the discovery and description of unconven-
tional superconducting states in multi-orbital models
with repulsive Coulomb interactions, which is typically
considered as one of the strengths of FRG. Dürrnagel
et al., cf. Ref. [9], pick up that thread by considering
the weak-coupling RG (WCRG) which is closely related
to the FRG framework. In their contribution, they dis-
cuss an optimized numerical framework for the WCRG
approach which is applicable to a broad class of mod-
els in two and three dimensions, including multi-orbital
models with spin-orbit coupling.
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Beyond the applicability of the FRG to models of
itinerant electrons with weak to intermediate coupling,
there have also been advances in the exploration of the
strong-coupling regime starting from a description in
terms of local moments. A decomposition of the local
moments into pseudo-fermion degrees of freedom then
has facilitated the application of the FRG framework
to generic spin models and to investigate their mag-
netic phases as well as to identify highly frustrated
parameter regions where quantum spin liquid behav-
ior can be expected. Motivated by recent experimental
advances in correlated Moiré materials, Gresista, Kiese,
and Trebst, extend the pseudo-fermion FRG approach
to models with additional valley or orbital degrees of
freedom, i.e. generalized Kugel–Khomskii models, cf.
Ref. [10], where they also present a concrete numeri-
cal implementation and magnetic phase diagrams for a
broad range of diagonal and off-diagonal exchange cou-
plings.

An important methodological development of the
last decade within the FRG framework is the mul-
tiloop FRG (mFRG) which extends the basic trun-
cation by including all contributions of the six-point
vertex to the flow of the four-point vertex and self-
energy, thereby reconstructing the parquet approxima-
tion (PA), i.e. the mFRG systematically improves the
standard FRG truncations to a level which, e.g., pro-
vides self-consistency at the one-/two-particle level and
regulator independence. In Ref. [11], Gievers et al. dis-
cuss the single-boson exchange decomposition of the
four-point vertex for which they then derive the cor-
responding mFRG flow equations preparing future effi-
cient numerical implementations. In a related contribu-
tion, Krien and Kauch, cf. Ref. [12], present first results
of a numerical implementation of the bosonization of
parquet diagrams for the half-filled Hubbard model on
the square lattice. The multiloop scheme can also be
readily applied to the pseudo-fermion FRG for spin
models providing a systematic extension of standard
truncation and including additional fluctuation effects.
Concrete numerical implementations of this scheme,
however, require to make specific choices of, e.g., inte-
gration algorithms and frequency discretizations. Ritter
et al., cf. Ref. [13] discuss two concrete implementa-
tions and provide an extensive collection of benchmark
calculations for the cubic-lattice Heisenberg model to
consolidate the multiloop scheme in the context of spin
models.

Another promising development within the FRG
framework concerns its extension to systems out of
equilibrium. Camacho et al. review the recent efforts in
that direction with a focus on one-dimensional fermion
chains in Ref. [14] where they also discuss relevant phys-
ical applications of these technical developments.

We hope that this topical issue gives a good account
for some of the recent developments in the FRG
approach to correlated electrons and that it can thereby
provide guidance to new practitioners but also to
experts in the field who intend to push the frontier
of research either in the application to novel quantum

materials or in the more conceptual development of
advanced quantum many-body methods.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: This is an editorial, the relevant data can be found
in the articles it refers to.]
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14. G. Camacho, C. Klöckner, D.M. Kennes, C. Karrasch,
Review of recent developments of the functional renor-
malization group for systems out of equilibrium. Eur.
Phys. J. B 95, 195 (2022)

123


	Recent developments in the functional renormalization group approach to correlated electron systems
	This topical issue
	References
	References




