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Abstract. We recapitulate recent developments of the functional renormalization group (FRG) approach to
the steady state of systems out of thermal equilibrium. In particular, we discuss second-order truncation
schemes which account for the frequency-dependence of the two particle vertex and which incorporate
inelastic processes. Our focus is on two different types of one-dimensional fermion chains: (i) infinite, open
systems which feature a translation symmetry, and (ii) finite systems coupled to left and right reservoirs. In
addition to giving a detailed and unified review of the technical derivation of the FRG schemes, we briefly
summarize some of the key physical results. In particular, we compute the non-equilibrium phase diagram
and analyze the fate of the Berezinskii–Kosterlitz–Thouless transition in the infinite, open system.

1 Introduction

Correlations play a vital role in low-dimensional quan-
tum many body systems, and their accurate theoretical
description requires sophisticated methods. Treating a
system that is not in thermal equilibrium is particu-
larly challenging. For quantum impurity problems (i.e.,
in zero dimensions), a variety of powerful tools have
been developed [1]. These include the numerical renor-
malization group [2], tensor network approaches [3,4],
quantum Monte Carlo [5–8], Wegner’s flow equations
[9], the perturbative renormalization group [10,11], the
real-time renormalization group [12–14], and the func-
tional renormalization group [15].

The situation becomes more complicated in one-
dimensional non-equilibrium, in particular if one is
interested not only in the transient short to interme-
diate time dynamics but the steady state of an open
system. Tensor networks can reliably simulate the time
evolution (and in certain cases also the steady state)
but are generally limited by the amount of entangle-
ment and thus short time scales [16–19]. Exact diag-
onalization is feasible only for small, closed systems
or open systems modelled by Lindblads (which con-
stitutes an additional approximation). Iterative path
integral or quantum Monte Carlo based approaches are
generically restricted to small or intermediate interac-
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tions and short times [6,7,20,21]. Bethe-ansatz based
approaches have been generalized to non-equilibrium
but can only address closed, integrable systems [22,23].
Methods based on Keldysh-Schwinger Green’s func-
tions are not limited by dimensionality and can treat
open systems but require a reliable way to compute the
self-energy [24,25]. One route is provided by perturba-
tion theory [26], but high-order expansions are demand-
ing. Dynamical mean-field theory yields a local approx-
imation for the self-energy in the thermodynamic limit
and for long times [27,28]. However, this is strictly con-
trolled only in infinite dimensions, and accounting for
non-local terms via cluster expansions is demanding.

The functional renormalization group recasts a given
many-body problem analytically in terms of flow equa-
tions for correlation functions [15,29–31]. A common
approach is to focus on the flow of vertex functions
such as the self-energy or the effective two-particle ver-
tex. The method is set up by introducing an artifi-
cial, infrared cutoff Λ into the non-interacting Green’s
function. All vertex functions become Λ-dependent, and
their flow equations can be derived, e.g., using gener-
ating functionals. The self-energy can then be obtained
by solving the flow equations, and without truncation
this procedure is exact. The FRG is not restricted by
dimensionality, and reservoirs can be incorporated ana-
lytically at no extra cost.

In thermal equilibrium, the FRG can be set up
either on the Matsubara or the Keldysh axis. In non-
equilibrium, one necessarily needs to work in Keldysh
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space, and FRG approaches for fermionic problems have
been developed to study the steady state [32–42], the
real-time dynamics [43–45], and Floquet setups [46,47].
Other FRG studies for out-of-equilibrium problems can
be found in [25,43,48–50].

To solve the flow equations in practice, they need to
be truncated. The simplest approach is to consider only
the flow of the self-energy. The resulting approximation
is strictly correct to leading order in the interaction U
but contains an infinite number of higher-order terms.
In equilibrium, such an approach successfully captures
Luttinger-liquid power laws to first order in U [51,52]
or transport properties of quantum dots [53,54]. In non-
equilibrium, one can tackle power laws in the inter-
acting resonant level model [34,35,40,44,46,47] and
also address properties of the single impurity Anderson
model [32], Luttinger liquid behavior [33], or excited
states [55].

The first-order FRG approximation yields a frequency-
independent self-energy which can be interpreted in
terms of renormalized system parameters. Inelastic pro-
cesses are not accounted for. This can be remedied by
incorporating the flow of the two-particle scattering
(which is the next-higher vertex function); the result-
ing approach is correct to order U2. In principle, it is
straightforward to set up such a scheme. However, the
two-particle vertex depends on two ingoing and two
outgoing single-particle and frequency indices, which
results in a large number of flow equations that are often
hard to handle in practice (i.e., in a numerical imple-
mentation). Thus, one needs to devise further approx-
imation schemes such as the so-called channel decom-
position [56].

Second-order FRG schemes have been developed for
impurity problems both in and out of equilibrium [36–
38,56–58] as well as for one-dimensional systems in
equilibrium [59–64]. The equilibrium FRG can address
second-order Luttinger liquid power laws [60] and cap-
tures the phase transition between a Luttinger liquid
and a Mott insulating phase [63].

In two dimensions, equilibrium FRG schemes which
account for the flow of the two-particle vertex (but not
necessarily the self-energy) are commonly used to study
ordering tendencies in Hubbard-type models; see [65–
67] for early seminal works and [15] for a recent review.

In sum, this demonstrates that the FRG is a flexible
approach which is not limited by the dimensionality of
the system at hand, which can access large systems and
large times, is not bound by the amount of entangle-
ment, and which can treat open systems. However, in
the context discussed here the method is perturbatively
motivated in the strength of the two-body interaction
U , and the results are strictly controlled only to the
order of the truncation (e.g., U or U2). This issue needs
to be addressed for each problem under investigation.
In a nutshell, the FRG can play out its strengths when
one is interested in studying complex setups that can-
not be treated using more accurate methods (such as
tensor networks).

Second-order FRG schemes which can treat one-
dimensional systems out of thermal equilibrium have

only been devised recently [68–71]. It is the aim of this
paper to review these developments, to present techni-
cal details of the different works in a unified fashion,
and to briefly recapitulate the main results as well as
the failures of the method.

In Ref. [69], a second-order FRG approach was
developed to study the steady state of infinite one-
dimensional chains which are translation-invariant up
to shifts in on-site energy. In addition to devising a
meaningful truncation scheme, this also requires deal-
ing with Green’s functions of infinite systems. The
method was subsequently applied to investigate the
non-equilibrium phase diagram of a chain that is cou-
pled to a substrate (i.e., reservoirs) and that is driven
out of equilibrium by a longitudinal electrical field (a
generalized Wannier–Stark ladder). One should note
that such a setup cannot be tackled easily using other
approaches such as tensor networks and is thus well-
suited for a FRG treatment. Results are published both
in Ref. [69] and Ref. [68].

In Ref. [70], a second-order FRG framework was
developed to study the steady state of finite one-
dimensional system which are driven out of equilibrium
by (usually left and right) reservoirs. Using paralleliza-
tion over hundreds of compute nodes, one can access the
steady-state of chains of up to ∼50 sites. It turns out,
however, that this setup behaves non-perturbatively
and is not susceptible to a FRG treatment.

This exposition is structured as follows. After speci-
fying the model in Sect. 2, we recapitulate the Keldysh
formalism and also discuss details on how to deal with
infinite systems (Sect. 3). We then introduce the gen-
eral FRG formalism in the common framework (e.g., the
cutoff or channel decomposition) that underlies both
the infinite and the finite system (Sect. 4). We move
forward by discussing specifics of the FRG implemen-
tation for the infinite, translation-invariant case as well
as a few exemplary results (Sects. 5 and 6). We proceed
similarly for the finite system (Sects. 7 and 8).

The original works that this review is based on can
be found in Refs. [68–71].

2 Hamiltonian

We will focus on the study of open quantum systems,
where the full Hilbert space is a composite space of
the system’s degrees of freedom and the environment
attached to it. The system is allowed to exchange energy
and particles with the environment through a coupling
term in the Hamiltonian. The total Hamiltonian reads:

H = Hsys + Hres + Hcoup,

Hres =
∑

ν

Hν
res, Hcoup =

∑

ν

Hν
coup. (1)

Here Hsys and Hν
res stand for the independent Hamil-

tonians of the system and the reservoir labelled by the
index ν, respectively, whereas Hν

coup represents the cou-
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pling between the system and a specific reservoir. In
what follows, both the system and environment are
assumed to contain only fermionic particles following
Fermi-Dirac statistics. The microscopic description of
the general interacting fermionic system is given in sec-
ond quantized notation:

Hsys =
∑

i,j

hijc
†
i cj +

1
4

∑

ijkl

vijklc
†
i c

†
jclck, (2)

with the anti-symmetrized interaction tensor vijkl =
−vjikl = −vijlk and the Hermitian single-particle
Hamiltonian hij = h∗

ji. The single particle indices rep-
resent any microscopic degrees of freedom in the sys-
tem. The operators ci denote annihilation of a fermion
with quantum number i and satisfy the anticommuta-
tion relations:

[
ci, c

†
j

]

+
= cic

†
j + c†

jci = δij . (3)

The environment is represented by a macroscopically
large number of degrees of freedom, with each reservoir
governed by a non-interacting Hamiltonian of the form:

Hν
res =

∑

k

εν
ka†

k,νak,ν , (4)

with k representing some microscopic degree of free-
dom labeling the state. For fermionic baths, one has
the anticommutation relations

[
ak,ν , a†

k′ν′
]
+

= δkk′δνν′ .
Finally, we allow the system and the reservoir ν to be
coupled to each other by a term:

Hν
coup =

∑

k,i

tνi,kc†
iak,ν + H.c., (5)

where tνi,k are the couplings between the system and the
reservoir.

It will always be assumed that the quantities hij and
vijkl are finite-ranged. This motivates the introduction
of range parameters Rh and Rv for which

hij = 0 ∀|i − j| ≥ Rh, vijkl = 0 ∀dist(i, j, k, l) ≥ Rv,

(6)

where |i− j| refers to the distance between single parti-
cle indices i, j, and dist(i, j, k, l) represents the pairwise
distance between indices.

3 Green functions in the Keldysh formalism

The Keldysh formalism is employed to study the steady
state of non-equilibrium quantum systems [72–74]. The
configuration of the system at some initial time t0 corre-
sponds to a non-interacting, equilibrium state. The time
evolution is governed by the Hamiltonian H, which is

time-independent. To make this work self-contained, we
now recapitulate a few basic concepts.

3.1 Fundamentals

3.1.1 Definitions

Although different conventions might be found in the
literature, here we use the following representation for
the Green’s functions in the Keldysh basis:

G =
(

G11 G12

G21 G22

)
=
(

Gret GK

0 Gadv

)
, (7)

where the indices α = 1, 2 will be termed the Keldysh
indices in what follows, indicating that the appropriate
rotation of the contour operators has already been per-
formed. The fact that G21 = 0 is a consequence of the
causality constraint. The components of the retarded
propagator are given by:

Gret
λ1λ2

(t, t′) = −iθ(t − t′)
〈[

d†
λ2

(t′), dλ1(t)
]
+

〉
,

dλ ∈ {ci, ak,ν},

Gret
λ1λ2

(ω) =
∫ +∞

−∞
dteiωtGret

λ1λ2
(t) = Gadv

λ2λ1
(ω)∗,

(8)

where the operators dλ(t) are represented in the Heisen-
berg picture, and in the last equation the limit t0 →
−∞ has been taken so that it is reasonable to assume
that Gret(t, t′) solely depends on t − t′. The statistical
average of operators is defined by:

〈...〉 = Tr (ρ̂0...) , ρ̂0 = ρ̂sys ⊗ ρ̂res. (9)

In this work, we focus on the case where the density
matrix ρ̂0 of the initial equilibrium configuration does
not couple the system and environment parts. More-
over, the initial density matrices ρ̂sys and ρ̂res must be
each associated with non-interacting Hamiltonians (to
set up diagrammatics on the Keldysh contour).

The components of the Keldysh propagator are
defined by:

GK
λ1λ2

(t, t′) = i
〈
d†

λ2
(t′)dλ1(t) − dλ1(t)d

†
λ2

(t′)
〉

,

dλ ∈ {ci, ak,ν},

GK
λ1λ2

(ω) =
∫ +∞

−∞
dteiωtGK

λ1λ2
(t). (10)

The above definitions for the Green’s functions are
completely general and hold whether or not interactions
are present. In case where interactions in the system
are not accounted for, the free Green’s functions will
be represented by a lowercase letter g(ω):

g(ω) =
(
gret(ω) gK(ω)

0 gadv(ω)

)
, vijkl = 0. (11)
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Finally, when referring explicitly to the bare Green
functions of a non-interacting, decoupled Hamiltonian,
we will add a superscript g0(ω) to all components of
Eq. (11):

g0(ω) =

(
g0,ret(ω) g0,K(ω)

0 g0,adv(ω)

)
, Hcoup = 0, vijkl = 0.

(12)

Note that all Green’s functions are matrices which carry
single-particle indices from the set {i, (k, ν)}.

3.1.2 Bare Green’s functions

The bare Green’s functions for the initially isolated sys-
tem are given by:

g
0,ret/adv
ij (ω) =

1
ω − h ± i0+

∣∣∣∣
ij

,

g0,K
ij (ω) = (1 − 2ns)

[
g0,ret(ω) − g0,adv(ω)

] ∣∣
ij

,

(13)

where h represents the single-particle Hamiltonian
matrix with entries hij , and ns refers to a matrix con-
taining the statistical occupation numbers in the initial
state of the system at t0:

ns
ij = 〈c†

jci〉. (14)

It is instructive to relate the expressions in Eq. (13) to
the ones in time domain [55]:

g0,ret
ij (t, t′) = −iθ(t − t′)e−ih(t−t′)

∣∣
ij

,

g0,K
ij (t, t′) = −ie−ih(t−t0) (1 − 2ns) e−ih(t0−t′)

∣∣
ij

=︸︷︷︸
[ns,h]=0

−i (1 − 2ns) e−ih(t−t′)
∣∣
ij

. (15)

We have used that necessarily [ns, h] = 0; otherwise
g0,K(t, t′) does not become a function of the time dif-
ference t − t′. Performing a Fourier transform with the
appropriate infinitesimal convergence factors 0+ in the
integrals, we obtain:

g0,ret
ij (ω) =

1
ω − h + i0+

∣∣∣∣
ij

,

g0,K
ij (ω) = [1 − 2ns]

(
1

ω − h + i0+
− 1

ω − h − i0+

) ∣∣∣∣
ij

= [1 − 2ns]
[
g0,ret(ω) − g0,adv(ω)

] ∣∣
ij

.

For the environment degrees of freedom, the bare
Green’s functions read:

g
0,ret/adv
(kν)(k′ν′)(ω) =

1
ω − εν

k ± i0+
δkk′δνν′ ,

g0,K
(kν)(k′ν′)(ω) = [1 − 2nν(ω)]

×
[
g0,ret
(kν)(k′ν′)(ω) − g0,adv

(kν)(k′ν′)(ω)
]
,

(16)

where we chose the initial statistics to be governed by
the Fermi distribution nν(ω):

nν(ω) =
1

exp[(ω − μν)/Tν ] + 1
, (17)

with μν and Tν representing the chemical potential and
temperature of a specific reservoir ν, respectively.

3.1.3 Fluctuation–dissipation theorem

In thermal equilibrium, not all three components Gret,
Gadv, GK are independent from each other; they are
related by the fluctuation–dissipation Theorem (FDT)
[75,76]:

GK(ω) = [1 − 2n(ω)]
[
Gret(ω) − Gadv(ω)

]
, (18)

where n(ω) is the Fermi function of a global tempera-
ture T and a global chemical potential μ. As one goes
away from the equilibrium limit, the FDT is not pre-
served; however, the relation between different Green’s
functions can still be investigated by using effective dis-
tributions for the non-equilibrium steady state. A com-
mon choice is to represent the distribution functions by
a Hermitian matrix 1 − 2neff(ω) so that:

GK(ω) = Gret(ω) [1 − 2neff(ω)] − [1 − 2neff(ω)] Gadv(ω),

(19)

with neff(ω) representing an effective distribution of
particles in the non-equilibrium, steady state limit.

3.2 Dyson’s equation

In frequency space, Dyson’s equation reads:

G̃−1(ω) = g̃(ω)−1 − Σ̃(ω) ⇔
G̃(ω) = g̃(ω) + g̃(ω)Σ̃(ω)G̃(ω). (20)

For the time being, we employ a general notation (G̃,
g̃, and Σ̃) where the only condition is that the splitting
into a ‘free part’ g̃ and a ‘self-energy’ Σ̃ must be chosen
such that Wick’s theorem holds. The reason is that we
will employ Eq. (20) in two different scenarios, namely
(i) to compute the free Green’s function g from the bare
Green’s function g0 in the purely non-interacting case,
and (ii) to express the full Green’s function G in terms
of a self-energy Σ associated with the two-body terms.
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The self-energy Σ̃(ω) in Keldysh space takes the
form:

Σ̃(ω) =
(

Σ̃ret(ω) Σ̃K(ω)
0 Σ̃adv(ω)

)
, (21)

where Σ̃21(ω) = 0 due to the causality constraint. The
individual components of Dyson’s equation are given by

G̃ret(ω) =
1

g̃ret(ω)−1 − Σ̃ret(ω)
,

G̃adv(ω) =
1

g̃adv(ω)−1 − Σ̃adv(ω)
,

G̃K(ω) = g̃K(ω) + g̃ret(ω)Σ̃ret(ω)G̃K(ω)

+g̃ret(ω)Σ̃K(ω)G̃adv(ω) + g̃K(ω)Σ̃adv(ω)G̃adv(ω)

= G̃ret(ω)
[
g̃ret(ω)−1g̃K(ω)g̃adv(ω)−1

+Σ̃K(ω)
]
G̃adv(ω). (22)

3.3 Integrating out the environment degrees of
freedom in the absence of interactions

We now employ the Dyson equation to compute g from
g0 by setting G̃ → g, g̃ → g0, and Σ̃ → Σcoup. The self-
energy is associated with Hcoup. We divide the system
and environment single-particle degrees of freedom into
two different block sectors P and Q, respectively:

(
gPP gPQ

gQP gQQ

)
=
(

g0
PP 0
0 g0

QQ

)

+
(

g0
PP 0
0 g0

QQ

)(
0 Σcoup

PQ

Σcoup
QP 0

)(
gPP gPQ

gQP gQQ

)
,

(23)

where we avoided writing out the ω-dependence and
stress that all quantities still carry a Keldysh index.
We have used that g0

PQ = g0
QP = 0 since there is no

coupling between the system and the environment (it
is important to stress that this also holds true for the
initial density matrix ρ̂0). The fact that Σcoup is asso-
ciated with Hcoup entails Σcoup

PP = Σcoup
QQ = 0. Since we

are ultimately interested only in the Green’s function
of the system, we solve for gPP :

g−1
PP = (g0

PP )−1 − Σcoup
PQ g0

QQΣcoup
QP . (24)

This motivates the introduction of hybridization func-
tions (we now write out the Keldysh structure explic-
itly):

(
Γret ΓK

0 Γadv

)
=

(
Σcoup,ret

PQ 0
0 Σcoup,adv

PQ

)

×
(

g0,ret
QQ g0,K

QQ

0 g0,adv
QQ

)(
Σcoup,ret

QP 0
0 Σcoup,adv

QP

)
. (25)

The retarded and advanced parts of the self-energy are
simply given by Σcoup,ret

i(k,ν) = tνi,k and Σcoup,adv
(k,ν)i = tν∗

i,k. On
the other hand, changing the non-interacting Hamil-
tonian does not yield a Keldysh term [55], and thus
Σcoup,K

PQ = 0. Using Eq. (16), the different components
are explicitly given by:

Γret
ij =

∑

ν

Γν,ret
ij (ω) =

∑

k,ν

tνi,ktν∗
j,k

1
ω − εν

k + i0+
,

ΓK
ij(ω) =

∑

ν

Γν,K
ij (ω) =

∑

k,ν

tνi,ktν∗
j,k [1 − 2nν(ω)]

×
[

1
ω − εν

k + i0+
− 1

ω − εν
k − i0+

]
. (26)

We now change the notation; in the following, we use
the symbol g with the implicit understanding that it
always refers to the Green’s function gPP of the system.
Since Eq. (24) has again the form of a Dyson equation,
we can directly use Eq. (22) to read off the individual
components:

gPP → g : gret(ω) =
1

ω − h − Γret(ω)
,

gK(ω) = gret(ω)ΓK(ω)gadv(ω), (27)

where we have simplified the Keldysh component via
Eqs. (16) and (22):

gK(ω) = gret(ω)
[
g0,ret(ω)−1g0,K(ω)g0,adv(ω)−1

+ΓK(ω)
]
gadv(ω)

= gret(ω)
[
g0,ret(ω)−1(1 − 2ns)

[
g0,ret(ω)

−g0,adv(ω)
]
g0,adv(ω)−1 + ΓK(ω)

]
gadv(ω)

= gret(ω)
[
2i0+ + ΓK(ω)

]
gadv(ω). (28)

If both gret(ω) and gadv(ω) have finite imaginary parts,
taking the limit 0+ → 0 in the above expression is well
defined, and only the second term contributes. The ini-
tial occupation ns of the system does not enter.

Later on, we will assume that the hybridization func-
tions are finite ranged and thus introduce a correspond-
ing range parameter:

Γret
ij = ΓK

ij = 0 ∀|i − j| ≥ RΓ. (29)

In this paper, we will always focus on the special situ-
ation of a flat density of states in each reservoir, which
is known as the wide band limit approximation:

Γν,ret
ij (ω) = −iΓν,ret

ij ,

Γν,K
ij (ω) = −2i [1 − 2nν(ω)] Γν,ret

ij . (30)

For zero or infinite reservoir temperatures (which are
the only cases relevant for this work), the Keldysh com-
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ponent takes the form

Γν,K
ij (ω) = −2i

{
sgn(ω − μν)Γν,ret

ij Tν = 0,

0 Tν = ∞.
(31)

3.4 Incorporating interactions

The effects of two-body interactions vijkl �= 0 is
expressed in terms of a self-energy via Dyson’s equa-
tion. As before, we make use of the projection tech-
nique, and divide the system and environment degrees
of freedom into blocks P,Q:

G =
(

GPP GPQ

GQP GQQ

)
=
(

gPP gPQ

gQP gQQ

)

+
(

gPP gPQ

gQP gQQ

)(
ΣPP 0

0 0

)(
GPP GPQ

GQP GQQ

)
. (32)

The fact that interactions only take place between the
system’s degrees of freedom entails ΣPQ = ΣQP =
ΣQQ = 0. We are again only interested in the system’s
Green’s function and thus solve for GPP :

GPP = gPP + gPP ΣPP GPP . (33)

The individual components are given by Eq. (22):

Gret(ω) =
1

gret(ω)−1 − Σret(ω)

=
1

ω − h − Γret(ω) − Σret(ω)
,

GK(ω) = Gret(ω)
[
gret(ω)−1gK(ω)gadv(ω)−1

+ΣK(ω)
]
Gadv(ω)

= Gret(ω)
[
ΓK(ω) + ΣK(ω)

]
Gadv(ω),

(34)

where the notation is again to be understood such that
G, g, and Σ only carry the system’s single-particle
indices P . In the last step in Eq. (34), we have used
Eq. (27).

3.5 Multi-index notation

We make a comment about the notation that will follow
throughout this work. Frequently, the Keldysh indices
will be merged with the single particle indices in a
multi-index notation 1 = (α1, i1), so that a single multi-
index includes both the Keldysh index and the single
particle index. In general, i1 might include more than
one species of indices; for instance, i1 = (σ1, k1) with σ1

representing a spin degree of freedom, whereas k1 can
represent an index for spatial or momentum degrees of
freedom. In any case, those indices are absorbed in i1.

A Keldysh index α1 can either refer to the contour
basis where α1 ∈ {+,−} or the Keldysh basis where
α1 ∈ {1, 2}. If a change of basis from the contour to

the Keldysh basis takes place (and vice versa), it will
always be explicitly mentioned.

A single component of the full Green’s functions
matrix Eq. (7) is given in this notation by G1′1(ω).
Whenever the full structure of a quantity is needed
(rather than its individual components), we will omit
the multi-indices, i.e., the quantity G(ω) refers to the
full Green’s function, whereas G1′1(ω) will refer to the
specific component with multi-indices (1′, 1). The same
applies for higher-order structures that might depend
on more than a pair of multi-indices. We will some-
times refrain from writing the explicit ω dependence in
the different G(ω) components; however, this frequency
dependence should always be implicitly present in such
cases.

As an exception, and only in Sect. 4.1, we will con-
veniently join frequency indices within a multi-index
description. In that case, a single multi-index will be
defined by 1 = (α1, i1, ω1), including the frequency
dependence in ω1.

Finally, whenever a summation is performed over a
single multi-index, it is understood that a sum over all
indices forming the multi-index is implied.

3.6 Green’s functions in translationally invariant
systems

In this section, we discuss how to solve the Dyson equa-
tion in an infinite system possessing a discrete transla-
tional symmetry up to energy shifts ∼ E with a unit
cell of size L. It is assumed that the self-energy Σ asso-
ciated with the interactions is known (e.g., from a FRG
treatment). We follow Ref. [69] but note that a simi-
lar approach was previously proposed in the context of
cluster perturbation theory [77].

3.6.1 Systems with a discrete translational symmetry

We assume that the single-particle indices are spatial
indices i ∈ Z and that the following relations for h and
v hold (the generalization to the case of multiple single-
particle indices is straightforward):

h(i+L)(j+L) = hij + LEδij ,

v(i+L)(j+L)(k+L)(l+L) = vijkl ∀ i, j, k, l ∈ Z. (35)

Here E > 0 represents an external shift parameter, and
the integer L is referred to as the size of the unit cell. An
example of a concrete physical system with such prop-
erties is the Wannier–Stark ladder [28,77–79] Moreover,
we demand that the coupling to the reservoirs ν ∈ Z

fulfills:

Γν+L,ret
(i+L)(j+L)(ω) = Γν,ret

ij (ω − LE) ∀i, j ∈ Z

nν+L(ω) = nν(ω − LE) ⇔
μν+L = μν + LE, Tν = T. (36)
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Fig. 1 (Adapted from Ref. [69], math-mode malformatting
fixed.) Illustration of a system with a discrete translational
symmetry with N = 2 (the maximum assumed range of
hybridizations and self-energies, see Sect. 3.6.1) and a unit
cell of L = 1. In the figure, L, C, and R are regions delim-
ited by the dashed red lines, while L̃, R̃ represent the semi-
infinite left and right parts of the chain excluding the central
region C [see Eq. (39) and note that the difference between
the region L and the size of the unit cell L]

Note that the Keldysh components Γν,K
ij (ω) also feature

this symmetry by virtue of Eq. (26).
The non-interacting Green’s functions in Eq. (27)

directly inherit the translational symmetry. The same
holds true for the self-energy (which follows from an
infinite perturbation series) and thus also for the full
Green’s function. In a nutshell,

g(1′+L)(1+L)(ω) = g1′1(ω − LE),

Σ(1′+L)(1+L)(ω) = Σ1′1(ω − LE),

G(1′+L)(1+L)(ω) = G1′1(ω − LE),
(37)

where the unit cell shift (1+L) = (α1, i1 +L) implicitly
involves a shift of the single particle index i1 without
affecting the Keldysh index α1.

While the Dyson equation (27) or (34) cannot be
solved in an infinite system, the above symmetries allow
us to compute the different components of G(ω) in a
spatially restricted region by applying iterative tech-
niques. Most technical details about how to do this in
practice can be found in Ref. [69]; however, we also pro-
vide them here for ease of reference.

3.6.2 Further assumptions and notation

In the rest of this section, it is shown how to solve
Dyson’s equation (34) for an infinite system under the
assumption that the self-energy Σ(ω) is known. More-
over, we demand that

hij = Σret/K
ij (ω) = Γν,ret/K

ij (ω) = 0

∀|i − j| ≥ N > Rh, RΓ, (38)

which holds naturally true for hij and Γν,ret/K
ij (ω) due

to Eqs. (6) and (29), while it constitutes an approxima-
tion for the self-energy components Σret/K

ij (ω), which
are a priori not of finite range. If our infinite system is
characterized by a unit cell of length L, we must choose
N ≥ L, with L dividing N .

We want to obtain components of the full Green’s
functions in a region limited by N . This motivates us to
introduce the following notation for the single-particle
indices (see Fig. 1):

i ∈ L̃ ⇔ i ≤ −1,

i ∈ L ⇔ − N ≤ i ≤ −1,

i ∈ C ⇔ 0 ≤ i ≤ N − 1,

i ∈ R ⇔ N ≤ i ≤ 2N − 1,

i ∈ R̃ ⇔ N ≤ i.

(39)

Moreover, the notation Gret
CL(ω) refers to the retarded

Green’s function Gret
(i∈C)(j∈L)(ω), which is a matrix of

size N × N (and likewise for all other combinations
of indices). The indices L̃, R̃ are associated with the
semi-infinite systems to the left and right of the central
region, respectively, whereas L,R refer to the immediate
neighboring regions. This implies that any quantity car-
rying indices L̃, R̃ is of infinite dimension, whereas any
quantities carrying solely C,L, or R indices are finite
size matrices of dimension N ×N . A similar notation is
used for any other quantities that depend on two single-
particle indices. It is convenient to use a shorthand
notation for summation over repeated indices, e.g.,

Gret
CL(ω)ΣK

LL(ω) =
∑

j∈L

[
Gret

ij (ω)ΣK
jk(ω)

]
i∈C,k∈L

.

(40)

Using this notation, the translation symmetry in Eq. (37)
takes the form

G
ret/adv/K
LL (ω − NE) = G

ret/adv/K
CC (ω)

= G
ret/adv/K
RR (ω + NE),

(41)

and similarly for the self-energy terms.

3.6.3 Retarded Green’s function

We begin with solving for the retarded component of
Dyson’s equation (34) in the central region C:

Gret(ω)−1 = ω − h − Γret − Σret = T + D, (42)
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where the matrices T and D feature the following block
structure:

T + D =

⎛

⎜⎜⎜⎜⎝

0 0 0
DL̃L̃ TLC 0 0
0 TCL DCC TCR 0
0 0 TRC

0 0 0 DR̃R̃

⎞

⎟⎟⎟⎟⎠
. (43)

All matrices DCC, TCL, TLC, TCR, and TRC are of size
N × N , with the matrices forming the T block being
in general not related by Hermitian conjugation, e.g.,
TLC �= T †

CL due to the inclusion of the self-energy. The
frequency dependence will often be omitted to improve
readability.

To compute the block components in Eq. (43), the
general formula for the inverse of a block matrix is
employed

(
V W
X Y

)−1

=
(

V −1 + V −1WYIXV −1 −V −1WYI

−YIXV −1 YI

)
,

YI = (Y − XV −1W )−1, (44)

which also admits the form

(
V W
X Y

)−1

=
(

VI −VIWY −1

−Y −1XVI Y −1 + Y −1XVIWY −1

)
,

VI = (V − WY −1X)−1.

(45)

Successive application of Eqs. (44) and (45) leads to

⎡

⎢⎣

⎛

⎝
N U 0
V W X
0 Y Z

⎞

⎠
−1
⎤

⎥⎦

22

=

[(
W − V N−1U X

Y Z

)−1
]

11

=
(
W − V N−1U − XZ−1Y

)−1
,

(46)

where the decomposition following the first step identi-
fies the blocks as written in the LHS of the equation.

We only want to compute the retarded Green’s func-
tion Gret

ij in a region where |i − j| < N , implying that
it is sufficient to determine Gret

CC, that is, to deter-
mine the components of the central block region in
Eq. (43). Applying Eq. (46) to Eq. (42) and using that
TC(L̃\L) = 0, it is easy to show that

Gret
CC(ω) =

1

DCC − TCL[D−1]LLTLC − TCR[D−1]RRTRC
.

(47)

The above equation has two unknown blocks [D−1]LL

and [D−1]RR, which correspond to the first and last
block of the inverse of the two matrices DL̃L̃ and DR̃R̃.
Note that while [D−1]LL and [D−1]RR are matrices

of dimension N × N , they are associated with two
semi-infinite systems (represented by the DL̃L̃ and DR̃R̃
blocks) and need to be determined iteratively; such iter-
ative procedure will be discussed now.

3.6.4 Auxiliary retarded Green’s function

It is convenient to define the auxiliary Green’s function

Gret,�L�R = D−1 (48)

as the inverse of the matrix in Eq. (42) for TLC = TCL =
TRC = TCR = 0, which is now block-diagonal. More-
over, one defines auxiliary functions for the case when
only one of the semi-infinite systems is decoupled from
the central region. When TLC = TCL = 0, the left block
DL̃L̃ is decoupled, and the inverse of Eq. (42) is rep-
resented by Gret,�L. If only TRC = TCR = 0, then the
block DR̃R̃ is decoupled, and the inverse of Eq. (42)
is represented by Gret,�R. The advanced components are
defined as Gadv,�L�R = [Gret,�L�R]†, Gadv,�L = [Gret,�L]†, and
Gadv,�R = [Gret,�R]†. In the presence of finite interactions
Σret �= 0, these auxiliary Green functions are not phys-
ical Green functions of the Hamiltonian; however, they
still inherit all of its symmetries such as translation-
invariance:

Gret,�L
LL (ω − NE) = Gret,�L�R

LL (ω − NE) = Gret,�R
CC (ω),

Gret,�R
RR (ω + NE) = Gret,�L�R

RR (ω + NE) = Gret,�L
CC (ω).

(49)

The first line can be understood as follows: By looking
at the block structure in Eq. (43), it is easy to see that
the lower right N × N block (L) of an isolated L̃ sys-
tem is, up to a shift in energy, identical to the N × N
block (C) of a system where R̃ is removed, due to the
properties in Eqs. (35), (36), and (37). The second line
in Eq. (49) follows similarly. This yields an iterative

equation for Gret,�L�R
LL :

Gret,�L�R
LL (ω − NE) = Gret,�R

CC (ω)

=
1

DCC(ω) − TCL(ω)Gret,�L�R
LL (ω)TLC(ω)

,

(50)

where Eq. (44) is applied to Eq. (42) with TCR = TRC =

0. The derivation for Gret,�L�R
RR (ω) is similar and results in

replacing indices L → R on the RHS, and Gret,�L�R
LL (ω −

NE) → Gret,�L�R
RR (ω + NE) on the LHS.

For E = 0, Eq. (50) is local in ω and can be solved
by a self-consistency loop. At finite E, however, the
equation couples Green’s functions at different frequen-
cies and thus becomes non-local; it can be solved itera-
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tively starting from a boundary condition (details can
be found in Ref. [69]).

3.6.5 Keldysh Green’s function

The Keldysh Green function GK
CC(ω) is calculated in

the central region in the same spirit as in the previous
section. The Dyson equation (34) for GK

CC(ω) reads

GK
CC(ω) =

∑

S,S′=L̃,C,R̃

Gret
CS(ω)

[∑

ν∈Z

Γν,K
SS′ + ΣK

SS′

]

×Gadv
S′C(ω). (51)

Using the lower-left component of Eq. (44),

Gret
CL̃

= −Gret
CCTCL[D−1]LL̃ = −Gret

CCTCLGret,�L�R
LL̃

,

Gret
CR̃

= −Gret
CCTCR[D−1]RR̃ = −Gret

CCTCRGret,�L�R
RR̃

,

(52)

the equation can be written in terms of the auxiliary
Green functions:

GK
CC = Gret

CC

[
Σ̃K

CC − TCLGret,�L�R
LL Σ̃K

LC − Σ̃K
CLGadv,�L�R

LL T †
LC

− TCRGret,�L�R
RR Σ̃K

RC − Σ̃K
CRGadv,�L�R

RR T †
RC

+ TCLGK,�L�R
LL T †

LC + TCRGK,�L�R
RR T †

RC

]
Gadv

CC ,

(53)

where we have defined

Σ̃K =
∑

ν∈Z

Γν,K + ΣK (54)

as well as the (Keldysh) auxiliary Green’s functions

GK,�L�R
LL (ω) = Gret,�L�R

LL̃
(ω)Σ̃K

L̃L̃
(ω)Gadv,�L�R

L̃L
(ω),

GK,�L�R
RR (ω) = Gret,�L�R

RR̃
(ω)Σ̃K

R̃R̃
(ω)Gadv,�L�R

R̃R
(ω). (55)

In Eq. (53), it was used that Σ̃K
L̃R̃

= Σ̃K
C(L̃\L)

=

Σ̃K
C(R̃\R)

= 0 holds per the assumption in Eq. (38).

Only GK,�L�R
LL (ω) and GK,�L�R

RR (ω) need to be determined,

since Gret
CC, Gret,�L�R

LL , and Gret,�L�R
RR have already been cal-

culated in the previous section. The Keldysh auxiliary
Green functions GK,�L�R

LL and GK,�L�R
RR can be computed iter-

atively, exploiting translation-invariance as in the case
of the auxiliary retarded Green functions.

3.6.6 Iterative solution for auxiliary Keldysh Green’s
function

To calculate the auxiliary Green functions GK,�L�R
LL and

GK,�L�R
RR , the following relation is exploited

Gret,�R
CL̃

= −Gret,�R
CC TCLGret,�L�R

LL̃
,

Gret,�L
CR̃

= −Gret,�L
CC TCRGret,�L�R

RR̃
, (56)

which is similar to Eq. (52) and which follows by using
Eq. (44) with Eq. (42) at TCR = TRC = 0. Moreover,
translation-invariance is exploited for Σ̃K [see Eq. (37)]
and for Gret/adv, leading to:

Gret,�L�R
LL̃

(ω − NE) = Gret,�R
C(C∪L̃)

(ω),

Gret,�L�R
RR̃

(ω + NE) = Gret,�L
C(C∪R̃)

(ω), (57)

by the same arguments employed to derive Eq. (49).

The final result for GK,�L�R
LL (ω − NE) reads

GK,�L�R
LL (ω − NE)

= Gret,�L�R
LL̃

(ω − NE)Σ̃K
L̃L̃

(ω − NE)Gadv,�L�R
L̃L

(ω − NE)
(57)
= Gret,�R

C(C∪L̃)
(ω)Σ̃K

(C∪L̃)(C∪L̃)
(ω)Gadv,�R

(C∪L̃)C
(ω)

(56)
= Gret,�R

CC

[
Σ̃K

CC − TCLGret,�L�R
LL Σ̃K

LC − Σ̃K
CLGadv,�L�R

LL T †
LC

+TCL Gret,�L�R
LL̃

Σ̃K
L̃L̃

Gadv,�L�R
L̃L︸ ︷︷ ︸

=GK,�L�RLL (ω)

T †
LC

]
Gadv,�R

CC . (58)

One should not forget that all quantities appearing on
the RHS carry a frequency argument ω, which has been
omitted to improve readability. A similar equation for
GK,�L�R

RR is obtained in the same way, with the appropriate
change of indices and frequency shifts. Eq. (58) is of the
same form as Eq. (50), which means that its solution
can be found by a self consistent loop if E = 0, or by
iterating from the boundary conditions GK,�L�R(ω) → 0
for ω → ±∞ when E �= 0.

4 Functional renormalization group

We recapitulate the functional renormalization group
(FRG) method [15,29] to obtain the self-energy of an
interacting system. In particular, we will focus on the
FRG on a Keldysh contour formulation [32–38,41,42,
44,64].

The key ingredient of the FRG approach is the arti-
ficial introduction of a cut-off parameter Λ in the non-
interacting Green’s functions of the theory gΛ(ω) which
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is commonly chosen such that

lim
Λ→∞

gΛ(ω) = 0, lim
Λ→0

gΛ(ω) = g(ω). (59)

In the Keldysh formalism, this is achieved by intro-
ducing an artificial cut-off within the non-interacting
Green’s functions gret,Λ(ω), gadv,Λ(ω), and gK,Λ(ω).
Through this dependence on the external cut-off Λ
(which is also termed flow parameter), the chosen func-
tional becomes scale dependent, too. By studying varia-
tions of a given generating functional with respect to Λ,
a set of coupled ordinary differential equations (ODEs)
system known as flow equations can be derived. The
solution of the flow equations gives direct access to the
renormalized components of the functional’s expansion
terms, which usually represent either the irreducible
correlations or the irreducible vertex functions of the
interacting system.

The actual derivation of the flow equations depends
on the specific form of the generating functional. Here,
we will focus on the set of flow equations that provide
direct access to the single-particle irreducible n-particle
vertex functions (a two-particle irreducible scheme can
be found in [80,81]; for multi-loop approaches see [82–
85]). In other words, the chosen generating functional
is not a generating functional for the (connected) cor-
relation functions, but rather of the renormalized inter-
action vertex terms. The flow equations are ODEs of
the form (for any n ∈ N):

dγΛ,(n)

dΛ
= Fn

(
Λ, γΛ,(1), ..., γΛ,(n+1)

)
, (60)

where γΛ,(n) represents the n-th particle irreducible ver-
tex, which contains a total of 2n single-particle and
Keldysh indices, along with 2n time or real frequency
arguments. For the time being, and following the nota-
tion conventions described in Sect. 3.5, multi-indices
also include the frequency arguments. The n-particle
irreducible vertex function is expressed in terms of 2n
multi-indices:

γΛ,(n) = γ
Λ,(n)
1′2′...n′,12...n ∀n ∈ N. (61)

The flow equations have a hierarchical structure, mean-
ing that the n-th component of the vertex is directly
coupled to the n + 1 component by:

dγΛ,(1)

dΛ
= F1

(
Λ, γΛ,(1), γΛ,(2)

)
,

...
dγΛ,(n)

dΛ
= Fn

(
Λ, γΛ,(1), ..., γΛ,(n), γΛ,(n+1)

)
,

dγΛ,(n+1)

dΛ
= Fn+1

(
Λ, γ(1), ..., γΛ,(n+1), γΛ,(n+2)

)
,

... (62)

The most important property of this ODEs system
is that it is exact, since the derivation of the flow
equations does not rely on any approximations; it is
just an exact relation followed by the infinite series
expansion in the functional derivatives. The one and
two-particle irreducible vertex functions γΛ,(1), γΛ,(2)

are related to the renormalization of the self-energy Σ
and the bare two-particle vertex v, respectively; they
describe the flow as one successively includes more low-
energy degrees of freedom. For practical applications,
the flow equations need to be simplified by some trun-
cation scheme.

In the study of the non-equilibrium steady state limit
of interacting quantum systems, the flow equations are
derived on the Keldysh contour [32,33]. The exact flow
equations for the one and two-particle irreducible vertex
functions are given by [15,42]:

∂Λγ
Λ,(1)
1′1 = −

∑

22′
SΛ
22′γ

Λ,(2)
1′2′12,

∂Λγ
Λ,(2)
1′2′12 = −

∑

33′
SΛ
33′γ

Λ,(3)
1′2′3′123

+
∑

33′44′
SΛ
33′GΛ

4′4

[
γ
Λ,(2)
1′2′4′3γ

Λ,(2)
3′412

]

+
∑

33′44′
SΛ
33′GΛ

44′
[
γ
Λ,(2)
1′3′14γ

Λ,(2)
2′4′23 + γ

Λ,(2)
2′3′24γ

Λ,(2)
1′4′13

]

−
∑

33′44′
SΛ
33′GΛ

44′
[
γ
Λ,(2)
2′3′14γ

Λ,(2)
1′4′23 + γ

Λ,(2)
1′3′24γ

Λ,(2)
2′4′13

]
,

(63)

which is again visualized in Fig. 2. The single-scale
propagator SΛ

22′ is defined in terms of the Green’s func-
tions as:

SΛ
22′ = −

∑

33′
GΛ

23

{
∂Λ

[
gΛ
]−1

}

33′
GΛ

3′2′ = ∂∗
ΛGΛ

22′ .

(64)

In Eq. (64), we have introduced the explicit cut-off
derivative operator ∂∗

Λ which acts exclusively over the
cut-off in the non-interacting Green’s functions gΛ(ω),
and not over the self-energies (which also become cut-
off dependent due to the flow equations). Note how
the irreducible three-particle vertex γ

Λ,(3)
1′2′3′123 couples

to γ
Λ,(2)
1′2′12 in the RHS of the flow equation for γ

Λ,(2)
1′2′12;

this can be seen from the hierarchical structure of the
flow equations in Eq. (62). Eq. (63) represents the set
of flow equations in its most generic form.

4.1 Vertex flow equations in Keldysh space

For didactic purposes, we would like to express the flow
equation for the two-particle vertex in a more common
form; the result can be found in Ref. [36]. For fermions,
any swap in the multi-indices must be associated with a
minus sign due to the anticommutativity of the Grass-
man variables. By changing the multi-index 4 → 4′ and

123



Eur. Phys. J. B (2022) 95 :195 Page 11 of 28 195

Fig. 2 Diagrammatic representation of the flow equations (63). Arrowed lines with a cut represent the single-scale propaga-
tor SΛ defined in Eq. (64). For the two-particle vertex flow equation, the bracketed terms represent the diagrams associated
with to the p, x, d channels in the channel decomposition (see Sect. 4.4)

using γ
Λ,(2)
1′2′43 = −γ

Λ,(2)
1′2′34, we obtain

∑

33′44′
SΛ

33′GΛ
4′4γ

Λ,(2)
1′2′4′3γ

Λ,(2)
3′412

= −
∑

33′44′
γ

Λ,(2)
1′2′34S

Λ
33′GΛ

44′γ
Λ,(2)
3′4′12. (65)

Likewise, γ
Λ,(2)
2′4′23 = γ

Λ,(2)
4′2′32, and together with substitut-

ing 3 → 4 and 3′ → 4′ in the second term, we obtain

∑

33′44′
SΛ

33′GΛ
44′

[
γ

Λ,(2)
1′3′14γ

Λ,(2)
2′4′23 + γ

Λ,(2)
2′3′24γ

Λ,(2)
1′4′13

]

=
∑

33′44′
γ

Λ,(2)
1′3′14

[
SΛ

33′GΛ
44′ + GΛ

33′SΛ
44′
]
γ

Λ,(2)
4′2′32, (66)

and similarly:

−
∑

33′44′
SΛ

33′GΛ
44′

[
γ

Λ,(2)
2′3′14γ

Λ,(2)
1′4′23 + γ

Λ,(2)
1′3′24γ

Λ,(2)
2′4′13

]

= −
∑

33′44′
γ

Λ,(2)
1′4′32

[
SΛ

33′GΛ
44′ + GΛ

33′SΛ
44′
]
γ

Λ,(2)
3′2′14. (67)

A final and important step is to realize that γΛ,(2) is
closely linked to the two-particle interaction, barring a
prefactor of an imaginary unit; this is due to the unitary
evolution carried along the Keldysh contour. In partic-
ular, the quantum Keldysh action is directly related to
the two-particle vertex γ

Λ→∞,(2)
1′2′12 in this limit, since at

Λ → ∞ the non-interacting propagators gΛ→∞(ω) → 0;
the only surviving term in the action in such limit is the
one proportional to the two-particle interaction terms
in Eq. (2). From the derivation of the flow equations,
the initial condition for the two-particle vertex reads
[32,33,36]:

γ
Λ→∞,(2)

1′2′12

= −i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Contour : v1′2′12 = δ(ω1′ + ω2′ − ω1 − ω2)

×vi1′ i2′ i1i2(−α1)δα1′ α2′ δα2′ α1δα1α2 ,

Keldysh : v̄1′2′12 = δ(ω1′ + ω2′ − ω1 − ω2)

×vi1′ i2′ i1i2
1−(−1)

(α1′+α2′+α1+α2)

4
.

(68)

To avoid problems carrying the imaginary unit, we mul-
tiply every term of the two-particle vertex by the imag-
inary unit making the replacement γ

Λ,(2)
1′2′12 → iγΛ,(2)

1′2′12, so
that the initial condition in Eq. (68) now reads:

lim
Λ→∞

γ
Λ,(2)
1′2′12 = v1′2′12 ∨ v̄1′2′12, (69)

depending on the chosen basis for the Keldysh indices;
in what follows, we will always work in the Keldysh
basis. The exact flow equations for the self-energy and
the two-particle vertex now read [36]:

∂Λγ
Λ,(1)
1′1 = i

∑

22′
SΛ

22′γ
Λ,(2)
1′2′12,

∂Λγ
Λ,(2)
1′2′12 = −i

∑

33′
SΛ

33′γ
Λ,(3)
1′2′3′123

+i
∑

33′44′
γ

Λ,(2)
1′2′34

[
SΛ

33′GΛ
44′
]
γ

Λ,(2)
3′4′12

+i
∑

33′44′
γ

Λ,(2)
1′4′32

[
SΛ

33′GΛ
44′ + GΛ

33′SΛ
44′
]
γ

Λ,(2)
3′2′14

−i
∑

33′44′
γ

Λ,(2)
1′3′14

[
SΛ

33′GΛ
44′ + GΛ

33′SΛ
44′
]
γ

Λ,(2)
4′2′32.

(70)

4.2 Truncation schemes

Since the system of coupled ODEs in Eq. (62) is infi-
nite, a truncation procedure needs to be devised. Here
we briefly describe the two most commonly employed
truncation schemes so far encountered in the literature.
We restore now the original notation by writing the
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explicit frequency dependence in all quantities; the ver-
tex functions components read:

γ
Λ,(1)
1′1 → γ

Λ,(1)
1′1 (ω1′ , ω1);

γ
Λ,(2)
1′2′12 → γ

Λ,(2)
1′2′12(ω1′ , ω2′ , ω1, ω2). (71)

In a truncation scheme of order mc, all vertex com-
ponents with n > mc are set equal to their initial value
at the beginning of the flow (for other approaches, see
[86]):

γΛ,(n>mc) = lim
Λ→∞

γΛ,(n>mc) ∀ Λ. (72)

In the limit Λ → ∞, the only non-zero vertex compo-
nents correspond to the two-particle vertex γΛ,(2) [see
Eq. (68)], while the other vertex components of arbi-
trary order vanish in this limit. In what follows, any
discussed truncation scheme is based on Eq. (72).

It is important to note that a truncation scheme of
order mc is not equivalent to a perturbative expansion
up to that order. The later is inherently contained in
the FRG flow equations, which are exact up to order
mc in the interaction vertex due to γΛ,(n) ∼ v̄n.

4.2.1 First order truncation

The simplest truncation scheme mc = 1 involves setting
γΛ,(n>2) = 0 and γΛ,(n=2) = v̄, that is, the two-particle
irreducible vertex is set equal to its initial bare value,
and therefore does not flow with Λ; similarly, higher
order vertex terms are set to zero at any scale of the
flow. In a frequency representation, the first order trun-
cation flow equations with mc = 1 read:

− ∂Λγ
Λ,(1)
1′1 = ∂ΛΣΛ

1′1 = − i
2π

∑

2,2′
v̄1′2′12

∫
dΩSΛ

22′(Ω),

(73)

where SΛ
22′(Ω) is the single-scale propagator as defined

in Eq. (64), and v̄1′2′12 is given by Eq. (68). We have fur-
ther identified the self-energy ΣΛ

1′1 = −γ
Λ,(1)
1′1 . The self-

energy ΣΛ
1′1 enters into its own flow equation through

the RHS of Eq. (73). Such a first order truncation
scheme allows for a straightforward implementation of
the flow equations [32–35,38,40,44,46,47,55]; however,
the self-energy remains frequency-independent in this
scheme, limiting its range of applicability. On the other
hand, a second order truncation scheme, while techni-
cally more involved, is important in out of equilibrium
problems to describe heating effects.

4.2.2 Second order truncation

We now set mc = 2 and study the flow of the self-energy
and the two-particle vertex. Frequency conservation is
inherited through the flow equations, which can be seen

by direct inspection of Eq. (70). We thus use the nota-
tion:

γ
Λ,(1)
1′1 (ω1′ , ω1) = −δ(ω1′ − ω1)ΣΛ

1′1(ω1),

γ
Λ,(2)
1′2′12(ω1′ , ω2′ , ω1, ω2)

= δ(ω1′ + ω2′ − ω1 − ω2)γΛ
1′2′12(Π,X,Δ), (74)

where we parametrized the frequency dependence of the
two-particle vertex γΛ

1′2′12 by a set of three independent
bosonic frequencies Π,X,Δ [36,56,57,59,60,63,69]:

Π = ω1 + ω2 = ω1′ + ω2′ ,

X = ω2′ − ω1 = ω2 − ω1′ ,

Δ = ω1′ − ω1 = ω2 − ω2′ . (75)

Under this parametrization, the self-energy flow equa-
tion in Eq. (70) takes the form:

∂ΛΣΛ
1′1(ω) = − i

2π

∫
dΩ

∑

22′
γΛ
1′2′12(ω + Ω,Ω − ω, 0)

×SΛ
22′(Ω). (76)

For the two-particle vertex, we focus on the first non-
vanishing term in Eq. (70) (note that in this trunca-
tion scheme γ

Λ,(3)
1′2′3′123 = 0), and frequency conservation

yields:

ω1′ + ω2′ = ω3 + ω4, ω3′ + ω4′ = ω1 + ω2. (77)

Since SΛ
33′ and GΛ

44′ only have weight if ω3 = ω3′ and
ω4 = ω4′ , it follows that

ω1′ + ω2′ = ω1 + ω2, (78)

which is one example for how frequency conservation is
preserved by the flow equations. We set now:

ω3 =
Π
2

− Ω, ⇒ ω4 = ω1′ + ω2′ − ω3 =
Π
2

+ Ω,

(79)

with Ω defining an internal frequency integration vari-
able. Following the above parametrization:

γΛ
1′2′34(ω1′ + ω2′ , ω2′ − ω3, ω1′ − ω3)

= γΛ
1′2′34

(
Π,Ω +

X − Δ
2

,Ω − X − Δ
2

)
,

γΛ
3′4′12(ω3′ + ω4′ , ω4′ − ω1, ω3′ − ω1)

= γΛ
3′4′12

(
Π,

X + Δ
2

+ Ω,
X + Δ

2
− Ω

)
. (80)

A similar analysis can be carried out for the other terms
appearing on the RHS of Eq. (70), which leads to [69]

∂ΛγΛ
1′2′12(Π,X,Δ) =

i
2π

∫
dΩ

∑

33′44′
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×
{

γΛ
1′2′34

(
Π,Ω +

X − Δ
2

,Ω − X − Δ
2

)

×SΛ
33′

(
Π
2

− Ω
)

GΛ
44′

(
Π
2

+ Ω
)

×γΛ
3′4′12

(
Π,

X + Δ
2

+ Ω,
X + Δ

2
− Ω

)

+γΛ
1′4′32

(
Π + Δ

2
+ Ω,X,

Π + Δ
2

− Ω
)

×
[
SΛ

33′

(
Ω − X

2

)
GΛ

44′

(
Ω +

X

2

)

+GΛ
33′

(
Ω − X

2

)
SΛ

44′

(
Ω +

X

2

)]

×γΛ
3′2′14

(
Ω +

Π − Δ
2

,X,Ω − Π − Δ
2

)

−γΛ
1′3′14

(
Ω +

Π − X

2
,Ω − Π − X

2
,Δ
)

×
[
SΛ

33′

(
Ω − Δ

2

)
GΛ

44′

(
Ω +

Δ
2

)

+GΛ
33′

(
Ω − Δ

2

)
SΛ

44′

(
Ω +

Δ
2

)]

×γΛ
4′2′32

(
Π + X

2
+ Ω,

Π + X

2
− Ω,Δ

)}

+O(v̄3). (81)

Solving these equations in full generality is numerically
demanding. For a L-level quantum system, the two-
particle vertex carries a total of (2L)4 = 16L4 multi-
index components. If one discretizes the frequency
space in a numerical solution using NΩ grid points for
each of the bosonic frequencies, one ends up with a
total of 16L4N3

Ω coupled flow equations, which can in
practice only be tackled for impurity problems [36–38].

4.3 Choice of a cut-off and single-scale propagator

Up to now, we have not specified the form of the (arti-
ficially introduced) cut-off parameter Λ, which directly
enters in the non-interacting propagators gΛ(ω). Phys-
ical results should be unaffected by a specific choice of
the cut-off. A natural choice of a cut-off is to couple
each site of the system to an artificial wide-band reser-
voir and to use the coupling as the flow parameter Λ.
This is known in the FRG literature as the hybridiza-
tion cut-off scheme [36]. The cutoff can be added to the
full hybridization of the system given in Eq. (26), which
now becomes

Γret,Λ
ij (ω) = Γret

ij (ω) − iδijΛ,

ΓK,Λ
ij (ω) = ΓK

ij(ω) − 2i
[
1 − 2ncut

i (ω)
]
δijΛ, (82)

where we have used the wide-band limit result of
Eq. (30). The particle distribution of the artificial reser-
voirs is governed by Fermi functions ncut

i (ω), whose

temperature and chemical potential we leave unspec-
ified at this point. An advantage of this cut-off scheme
is that it automatically preserves causality at any scale
Λ, and the FDT is satisfied in equilibrium [87]. The
initial conditions read:

lim
Λ→∞

Σret,Λ
i1′ i1 =

1
2

∑

k

vi1′ki1k, lim
Λ→∞

ΣK,Λ
i1′ i1 = 0,

lim
Λ→∞

γΛ
1′2′12 = v̄1′2′12. (83)

The initial bare propagator v̄1′2′12 in Keldysh space
(after the Keldysh rotation) is given by Eq. (68).

To compute the single-scale propagator

(
Sret,Λ SK,Λ

0 Sadv,Λ

)

= −
(

Gret,Λ GK,Λ

0 Gadv,Λ

) (
∂Λ

[
gret,Λ

]−1
∂Λ

[−ΓK,Λ
]

0 ∂Λ

[
gadv,Λ

]−1

)

×
(

Gret,Λ GK,Λ

0 Gadv,Λ

)
, (84)

we first combine gret,Λ(ω) in Eq. (27) with Eq. (82):

Sret,Λ(ω) = −Gret,Λ(ω)∂Λ

[
gret,Λ(ω)

]−1
Gret,Λ(ω)

= −iGret,Λ(ω)Gret,Λ(ω). (85)

For the Keldysh component, we make use of the form
for GK,Λ(ω) given in Eq. (34):

SK,Λ = −Gret,Λ∂Λ

[
gret,Λ

]−1
GK,Λ

−GK,Λ∂Λ

[
gadv,Λ

]−1
Gadv,Λ

+Gret,Λ
[
∂ΛΓK,Λ

]
Gadv,Λ

= Sret,Λ
[
ΓK,Λ + ΣK,Λ

]
Gadv,Λ

+Gret,Λ
[
ΓK,Λ + ΣK,Λ

]
Sadv,Λ

+Gret,Λ
[
∂ΛΓK,Λ

]
Gadv,Λ

= Sret,Λ
[
ΓK,Λ + ΣK,Λ

]
Gadv,Λ

+Gret,Λ
[
ΓK,Λ + ΣK,Λ

]
Sadv,Λ

−2i
[
1 − 2ncut

]
Gret,ΛGadv,Λ, (86)

where the matrix ncut has entries given by:

ncut
ij (ω) = ncut

i (ω)δij . (87)

4.4 General approximations for the second order
flow equations: channel decomposition

We have argued that a full solution of the mc = 2
truncated flow equations given in Eqs. (76) and (81) is
impractical in most applications, and further approx-
imations need to be devised. A prototypical approach
is the so-called channel decomposition [36,56,57,59,60,
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63,69] which we will now recapitulate (for extensions of
this scheme, see, e.g., Refs. [84,88]):

γΛ
1′2′12(Π,X,Δ) ≈ v̄1′2′12

+γp,Λ
1′2′12(Π) + γx,Λ

1′2′12(X) + γd,Λ
1′2′12(Δ). (88)

Note that this is strictly fulfilled within perturbation
theory (which we will see later explicitly) and thus cor-
rect up to second order in the bare interaction. It will
prove advantageous to introduce the notation

γ̄
{p,x,d},Λ
1′2′12 = v̄1′2′12 + γ

{p,x,d},Λ
1′2′12 . (89)

The self-energy flow equation in Eq. (76) then takes the
form

∂ΛΣΛ
1′1(ω) = − i

2π

∫
dΩ

∑

22′
SΛ

22′(Ω)

×
[
v̄1′2′12 + γp,Λ

1′2′12(Ω + ω)

+ γx,Λ
1′2′12(Ω − ω) + γd,Λ

1′2′12(0)
]
,

(90)

which one can split into three independent contribu-
tions:

∂ΛΣp,Λ
1′1 (ω) = − i

2π

∑

22′

∫
dΩSΛ

22′(Ω)γp,Λ
1′2′12(Ω + ω),

∂ΛΣx,Λ
1′1 (ω) = − i

2π

∑

22′

∫
dΩSΛ

22′(Ω)γx,Λ
1′2′12(Ω − ω),

∂ΛΣd,Λ
1′1 (ω) = − i

2π

∑

22′
γ̄d,Λ
1′2′12(0)

∫
dΩSΛ

22′(Ω). (91)

Note that the last term in the d channel includes the
initial bare vertex v̄.

To set up flow equations for the different channels,
one assumes that the flow of p, x and d is governed by
the first, second and third terms on the RHS of Eq. (81)
and that there is no inter-channel coupling, i.e., each
channel only enters its own flow equation. This yields

∂Λγp,Λ
1′2′12(Π) =

i
2π

∫
dΩ

∑

33′44′
γ̄p,Λ
1′2′34 (Π)

×SΛ
33′

(
Π
2

− Ω
)

GΛ
44′

(
Π
2

+ Ω
)

γ̄p,Λ
3′4′12 (Π) ,

∂Λγx,Λ
1′2′12(X) =

i
2π

∫
dΩ

∑

33′44′
γ̄x,Λ
1′4′32 (X)

×
[
SΛ

33′

(
Ω − X

2

)
GΛ

44′

(
Ω +

X

2

)

+GΛ
33′

(
Ω − X

2

)
SΛ

44′

(
Ω +

X

2

)]
γ̄x,Λ
3′2′14 (X) ,

∂Λγd,Λ
1′2′12(Δ) =

−i
2π

∫
dΩ

∑

33′44′
γ̄d,Λ
1′3′14 (Δ)

×
[
SΛ

33′

(
Ω − Δ

2

)
GΛ

44′

(
Ω +

Δ
2

)

+GΛ
33′

(
Ω − Δ

2

)
SΛ

44′

(
Ω +

Δ
2

)]
γ̄d,Λ
4′2′32 (Δ) .

(92)

We again emphasize that this is correct up to second
order in the bare interaction. The initial condition given
by Eq. (83) now reads γ

{p,x,d},Λ→∞
1′2′12 = 0. Note that due

to Eq. (91), γd,Λ is only needed at zero frequency.
The channel decomposition simplifies the flow equa-

tions considerably: the two-particle vertex is now
defined over a single frequency grid, instead of the ini-
tial 3D grid space of the original flow equation. In addi-
tion, the multi-index structure simplifies:

γp,Λ
1′2′12(Π) = 0 ∀ v̄1′2′12 | v̄1′2′•• = 0 ∨ v̄••12 = 0,

γx,Λ
1′2′12(X) = 0 ∀ v̄1′2′12 | v̄1′••2 = 0 ∨ v̄•2′1• = 0,

γd,Λ
1′2′12(Δ) = 0 ∀ v̄1′2′12 | v̄1′•1• = 0 ∨ v̄•2′•2 = 0.

(93)

The bullets indicate all possible multi-indices within a
fixed pair of multi-indices, e.g., the term v̄1′2′•• keeps
the multi-indices 1′, 2′ fixed, but encodes all multi-
indices values in the third and fourth positions. Eq. (93)
is a direct consequence of Eq. (89), γ

{p,x,d},Λ→∞
1′2′12 = 0,

and the fact that the flow equations (92) preserve this
structure. For interactions satisfying Eq. (6), Eq. (93)
translates to:

γp,Λ
1′2′12(Π) = 0 ∀|i1′ − i2′ | ≥ Rv ∨ |i1 − i2| ≥ Rv,

γx,Λ
1′2′12(X) = 0 ∀|i1′ − i2| ≥ Rv ∨ |i2′ − i1| ≥ Rv,

γd,Λ
1′2′12(Δ) = 0 ∀|i1′ − i1| ≥ Rv ∨ |i2′ − i2| ≥ Rv.

(94)

Eq. (94) simplifies the structure of the two-particle ver-
tex tensor, which becomes sparse in this case; it also
restricts two of the multi-index sums on the RHS of
Eq. (92). It should be emphasized that Eq. (93) and
(94) do not constitute any additional approximation;
they are a consequence of the finite-ranged nature of
the bare interaction vertex v̄1′2′12 in the single particle
indices and the channel decomposition in Eq. (88). The
numerical cost of evaluating the flow equations for γΛ

at a given value of Λ is then given by

O(L2NΩ)︸ ︷︷ ︸
# components

O(L2NΩ)︸ ︷︷ ︸
sum/int on RHS

, (95)

where NΩ denotes the number of points of the frequency
grid, and L parametrizes the number of single-particle
degrees of freedom. The effort to determine GΛ is not
included, it scales as O(L3NΩ).
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4.5 Expressing the flow equations in terms
of convolutions

If we rewrite the RHS of the flow equations in terms of
convolutions, we can make use of efficient convolution
algorithms like the Fast Fourier Transform (FFT). The
specific choice on how to perform the convolutions will
depend on the problem at hand, and it will be affected
by several factors like the frequency discretization and
general performance requirements; here we will present
the general description [69].

The convolution between two functions is defined as:

(f ∗ g)(y) =
∫

dxf(x)g(y − x). (96)

The self-energy flow equations expressed in terms of
convolutions read:

∂ΛΣp,Λ
1′1 (ω) = − i

2π

∑

22′
S̃Λ

22′ ∗ γp,Λ
1′2′12,

∂ΛΣx,Λ
1′1 (−ω) = − i

2π

∑

22′
S̃Λ

22′ ∗ γx,Λ
1′2′12,

∂ΛΣd,Λ
1′1 (ω) = − i

2π

∑

22′
γ̄d,Λ
1′2′12(0)

∫
dΩSΛ

22′(Ω),

(97)

and the vertex flow equation are given by

∂Λγp,Λ
1′2′12(Π) =

i

2π

∑
33′44′

γ̄p,Λ
1′2′34 (Π)

[
GΛ

44′ ∗ SΛ
33′

]
(Π)

× γ̄p,Λ
3′4′12 (Π) ,

∂Λγx,Λ
1′2′12(X) =

i

2π

∑
33′44′

γ̄x,Λ
1′4′32 (X)

×
[
GΛ

44′ ∗ S̃Λ
33′ + SΛ

44′ ∗ G̃Λ
33′

]
(X) γ̄x,Λ

3′2′14 (X) ,

∂Λγd,Λ
1′2′12(Δ) =

−i

2π

∑
33′44′

γ̄d,Λ
1′3′14 (Δ)

×
[
GΛ

44′ ∗ S̃Λ
33′ + SΛ

44′ ∗ G̃Λ
33′

]
(Δ) γ̄d,Λ

4′2′32 (Δ) ,

(98)

where we have defined S̃Λ
33′(ω) = SΛ

33′(−ω) and sim-
ilarly for G̃Λ

33′ . These equations are local in the fre-
quencies Π,X,Δ, ω; this implies that for the d chan-
nel, only components at the Δ = 0 point need to
be obtained, since these are the only ones coupling to
the self-energy flow equation. The above representation
of the flow equations shows that the self-energy and
the two-particle vertex functions are continuous func-
tions of their corresponding frequencies. Since SΛ(ω →
±∞) → 0 and GΛ(ω → ±∞) → 0 quickly, any convo-
lution term occurring on the RHS yields a continuous
function.

5 Infinite, translation-invariant systems:
FRG approach

We now apply the general second-order FRG scheme
to an infinite system with a unit cell of size L featur-
ing translation invariance as specified in Sect. 3.6.1. We
follow Ref. [69] where additional details can be found.
The single-particle Hamiltonian, two-particle interac-
tions, and hybridization functions are assumed to be of
finite range, with corresponding range parameters Rh,
Rv and RΓ as described in Eqs. (6) and (29). The start-
ing point are the flow equations (90) and (92).

It is reasonable to choose the FRG cut-off scheme
such that the translational symmetry is respected. For
this reason, the Fermi distribution functions ncut

i (ω)
corresponding to the set of artificial reservoirs must sat-
isfy:

ncut
(i+L)(ω) = ncut

i (ω − LE). (99)

Due to the infinite system size, one needs to devise fur-
ther approximations, which we will discuss in Sect. 5.2.

5.1 Exploiting the system’s translational symmetry

The translational symmetries of the system are given by
Eqs. (35), (36), and (37), respectively. They are inher-
ited by the single-scale propagator:

SΛ
(1′+L)(1+L)(ω) = SΛ

1′1(ω − LE). (100)

For the two-particle vertex, one obtains

γp,Λ
(1′+L)(2′+L)(1+L)(2+L)(Π) = γp,Λ

1′2′12(Π − 2LE),

γx,Λ
(1′+L)(2′+L)(1+L)(2+L)(X) = γx,Λ

1′2′12(X),

γd,Λ
(1′+L)(2′+L)(1+L)(2+L)(Δ) = γd,Λ

1′2′12(Δ).

(101)

These relations trivially hold for Λ → ∞, and they are
preserved by the flow equation. For the p channel, this
can be seen as follows:

∂Λγp,Λ
(1′+L)(2′+L)(1+L)(2+L)(Π)

=
i

2π

∑

33′44′

∫
dΩγ̄p,Λ

(1′+L)(2′+L)34(Π)

×
[
SΛ

33′

(
Π
2

− Ω
)

GΛ
44′

(
Π
2

+ Ω
)]

γ̄p,Λ
3′4′(1+L)(2+L)(Π)

=
i

2π

∑

33′44′

∫
dΩγ̄p,Λ

1′2′34(Π−)

×
[
SΛ

(3+L)(3′+L)

(
Π
2

− Ω
)

GΛ
(4+L)(4′+L)

(
Π
2

+ Ω
)]

×γ̄p,Λ
3′4′12(Π−)

=
i

2π

∑

33′44′

∫
dΩγ̄p,Λ

1′2′34(Π−)
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×
[
SΛ

33′

(
Π−
2

− Ω
)

GΛ
44′

(
Π−
2

+ Ω
)]

γ̄p,Λ
3′4′12(Π−)

= ∂Λγp,Λ
1′2′12(Π − 2LE), (102)

where Π− = Π − 2LE. The argument for the x and
d channels is similar, but the frequency shift in the
last step can be absorbed in the integration variable.
The relations (101) can now be inserted into the self-
energy flow equation (90) to show that the symmetries
in Eq. (37) also hold within the FRG approximation:

∂ΛΣΛ
(1′+L)(1+L)(ω) = − i

2π

∫
dΩ

∑
22′

SΛ
(2+L)(2′+L)(Ω)

×
[
v̄1′2′12 + γp,Λ

1′2′12(Ω + ω − 2LE) + γx,Λ
1′2′12(Ω − ω)

+γd,Λ
1′2′12(0)

]

= − i

2π

∫
dΩ

∑
22′

SΛ
22′(Ω)

×
[
v̄1′2′12 + γp,Λ

1′2′12(Ω + ω − LE) + γx,Λ
1′2′12(Ω + LE − ω)

+γd,Λ
1′2′12(0)

]

= ∂ΛΣΛ
1′1(ω − LE). (103)

When solving the flow equations, one of the spatial
indices can thus be restricted to be within the unit cell:

Σ{p,x,d},Λ
1′1 : i1′ ∈ {0, ..., L − 1},

γ
{p,x,d},Λ
1′2′12 : i1′ ∈ {0, ..., L − 1}. (104)

The elements of this set are the ones that are explicitly
calculated when solving the flow equations.

5.2 Further approximation: finite support of the
vertex functions

As mentioned above, further approximations to the flow
equations need to be devised for an infinite system.
The key idea is to limit the spatial support of the ver-
tex functions, which is physically motivated by the fact
that inelastic scattering will in general be limited by
the system’s correlation length. To this end, we choose
a number M ∈ N, M ≥ Rv and set [69]:

ΣΛ
1′1 = 0 ∀ |i1′ − i1| ≥ M,

γΛ
1′2′12 = 0 ∀ dist(i1′ , i2′ , i1, i2) ≥ M. (105)

This limits the number of non-zero components of both
ΣΛ and ΓΛ and restricts the single-particle sums on
the RHS of the flow equations (90) and (92). In the
M → ∞ limit, the original flow equations (90) and (92)
are recovered. M becomes a numerical control parame-
ter of the ODEs system, and observables should always
reach convergence with respect to M . In combination,
Eqs. (104) and (105) entail that the numerical cost of

evaluating the flow equations for γΛ at a given value of
Λ now reads

O(LMNΩ)︸ ︷︷ ︸
#components

O(M2NΩ)︸ ︷︷ ︸
sum/int on RHS

, (106)

which does not include the computation of GΛ. To
allow for a numerical solution of the flow equations in
Eqs. (97) and (98), the frequency dependence of the
vertex functions is discretized on a grid of NΩ points.
Details on this can be found in Ref. [69].

In general, the Green’s function GΛ and the single-
scale propagator SΛ that enter the RHS of the flow
equations cannot be computed for an infinite system. In
our case, however, Eq. (105) implies that only a limited
number of components contribute to the RHS. Within
the self-energy flow equation (90), the distance of the
single-particle indices is limited to |i2 − i2′ | < M . Like-
wise, the inner sum of spatial indices within the two-
particle vertex flow equations (92) will be restricted to
dist(i3′ , i4′ , i3, i4) < 3M . Thus, GΛ and SΛ are only
needed within a limited region, and we can employ the
techniques of Sect. 3.6 by setting N = 3M .

5.3 Iterative techniques for the single-scale
propagators

In Sect. 3.6 we showed how the Green’s functions GΛ

of an infinite system can be computed iteratively. Since
the RHS of the flow equations also depends on the
single-scale propagators SΛ(ω), here we show how to
calculate these quantities by means of the same itera-
tive methods [69]. Note that for SΛ(ω), the choice of
the cut-off affects the terms appearing in the expres-
sions due to the definition in Eq. (64). We frequently
omit writing out the Λ-dependence.

We begin with the retarded part of the single-scale
propagator; the advanced part follows from [Sret]† =
Sadv. In the reservoir cut-off scheme, the flow param-
eter Λ only enters in the diagonal terms of [Gret]−1 in
Eq. (43) and thus

∂∗
ΛD = i,

∂∗
ΛTCL = ∂∗

ΛTLC = ∂∗
ΛTCR = ∂∗

ΛTRC = 0.
(107)

The following treatment allows a straightforward gen-
eralization for more general cut-off schemes.

Taking the derivative of Eq. (47), the retarded part
of the single-scale propagator reads:

Sret
CC = ∂∗

ΛGret
CC

= −Gret
CC

[
i − TCLSret,�L�R

LL TLC − TCRSret,�L�R
RR TRC

]

× Gret
CC.

(108)

The auxiliary terms appearing in this equation are
Sret,�L�R = ∂∗

ΛGret,�L�R; they can be obtained by taking
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the derivative in Eq. (50):

Sret,�L�R
LL (ω − NE)

= −Gret,�R
CC (ω)

[
i − TCLSret,�L�R

LL (ω)TLC

]
Gret,�R

CC (ω),

(109)

and similarly for Sret,�L�R
RR . This equation can be solved

locally in a self-consistent way when E = 0, or succes-
sively using the boundary conditions Sret,�L�R(±∞) = 0
for the case E �= 0.

The Keldysh components of the single-scale propaga-
tor SK,Λ follow in a similar way. The cutoff only enters
into the diagonal of Σ̃K, which leads to [see Eqs. (26),
(54), and (82)]

∂∗
ΛΣ̃K

ij(ω) = ∂ΛΓK,Λ
ij (ω) = −2i[1 − 2ncut

i (ω)]δij .

(110)

Taking the derivative of Eq. (53) yields (each of the
terms carries a frequency argument ω, which has been
omitted for notation purposes)

SK
CC(ω) = Sret

CC(ω)
[
· · ·

]
Gadv

CC (ω) + Gret
CC(ω)

[
· · ·

]

× Sadv
CC (ω) + Gret

CC

[
∂∗
ΛΣ̃K

CC − TCLSret,�L�R
LL Σ̃K

LC

− Σ̃K
CLSadv,�L�R

LL T †
LC

− TCRSret,�L�R
RR Σ̃K

RC − Σ̃K
CRSadv,�L�R

RR T †
RC

+ TCLSK,�L�R
LL T †

LC + TCRSK,�L�R
RR T †

RC

]
Gadv

CC ,

(111)

where the brackets [. . .] are identical to the bracket in
Eq. (53). To solve this equation, it remains to obtain

the unknown quantities SK,�L�R
LL = ∂∗

ΛGK,�L�R
LL ; they are

obtained by taking the derivative of Eq. (58):

SK,�L�R
LL (ω − NE)

= Sret,�R
CC (ω)

[
· · ·

]
Gadv,�R

CC (ω) + Gret,�R
CC (ω)

[
· · ·

]
Sadv,�R

CC (ω)

+ Gret,�R
CC

[
∂∗
ΛΣ̃K

CC − TCLSret,�L�R
LL Σ̃K

LC

− Σ̃K
CLSadv,�L�R

LL T †
LC + TCLSK,�L�R

LL T †
LC

]
Gadv,�R

CC ,

(112)

where the brackets [. . .] are identical to the bracket in
Eq. (58), and the frequency argument ω for all quanti-
ties has been omitted in the last two lines. Note that
Eq. (49) implies Sret,�R

CC (ω) = Sret,�L�R
LL (ω − NE); this

quantity was obtained in a previous step via Eq. (109).
Eq. (112) is an auxiliary equation for the Keldysh
single-scale propagators, which becomes local when
E = 0 and can be solved self-consistently. For the more

general case E �= 0, the equation can be solved itera-
tively [69].

6 Infinite, translation-invariant systems:
results

The methodology developed in the last section is now
applied to study the non-equilibrium phase diagram of
an interacting Wannier–Stark ladder coupled to reser-
voirs. We follow Refs. [68,69], where additional details
can be found.

6.1 Model

The Wannier–Stark Hamiltonian is given by (see Fig. 3)

Hsys = t
∑

j∈Z

(
c†
jcj+1 + H.c.

)

+U
∑

j∈Z

(
c†
jcj − 1

2

)(
c†
j+1cj+1 − 1

2

)

+
∑

j∈Z

[
s(−1)j + jE

]
c†
jcj , (113)

where t is the hopping strength, U is the interaction
parameter associated with the antisymmetric vertex
v0101 = −v0110 = U , s plays the role of a staggered
potential, and E represents the electric field. Each site
j of the chain is coupled to a single wide-band zero-
temperature reservoir with a distribution function

nν(ω) = θ(μν − ω), μ0 = 0, μν+L = μν + LE.

(114)

We choose the distribution function of the auxiliary cut-
off reservoirs to be identical to the one of the physi-
cal reservoirs, and the hybridizations are thus given by
[compare Eqs. (30) and (82)]:

Γret,Λ
ij (ω) = −iδij(Γ + Λ),

ΓK,Λ
ij (ω) = −2i

[
1 − 2nν=i(ω)

]
(Γ + Λ)δij , (115)

where Γ is the strength of the reservoir coupling. All
terms of the Hamiltonian follow the discrete transla-
tional symmetries presented in Sect. 3.6.1. For s = 0,
the size of the unit-cell is L = 1, and E in Eq. (113)
corresponds to the parameter E of Sect. 3.6.1; for s �= 0,
we have L = 2 and E ↔ E/2.

6.2 Fundamental questions to address

We briefly recapitulate known results about the phase
diagram. The equilibrium point with E = Γ = 0 but
finite U is exactly solvable by Bethe ansatz [89]. For
U ≤ 2t, the model is a gapless Luttinger liquid, whereas
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Fig. 3 (From Ref. [69].) Sketch of the model used in
Sect. 6.1. A tight-binding chain with hoppings t and inter-
actions U is subject to an electrical field E and is coupled
to wide-band reservoirs with a hybridization Γ

for U > 2t, translational symmetry is spontaneously
broken, and the system is in a Mott-insulating phase
with a degenerate ground state and charge-density wave
(CDW) order. In the limit U = Γ = 0, one recovers
the non-interacting Wannier–Stark ladder where any
finite E localizes all the electron wavefunctions and the
system becomes a Wannier–Stark insulator [28,77–79].
A finite coupling to the environment Γ > 0 induces
finite currents, and the spectral function features peaks
which are broadened on a scale Γ [90].

Along the equilibrium line E = 0 but for U,Γ > 0,
one expects that U and Γ have competing effects: While
large U favour CDW order, finite reservoir couplings Γ
tend to delocalize charge and favour metallic behaviour.
At Γ = 0 but for finite U,E, the system is in non-
equilibrium, isolated, and interacting; this represents
a scenario where Stark many-body localization effects
might come into play [91]. However, in this case the
formation of a non-equilibrium steady state is under
question, because a continuous application of E will
generically drive the system to an infinite temperature
state. One expects that such heating is suppressed by
a finite reservoir coupling Γ.

The generic non-equilibrium phase diagram (E,Γ >
0) in the presence of interactions U > 0 is not known
and will now be computed using the novel FRG scheme;
details can be found in Refs. [68,69].

6.3 Benchmark of iterative Green’s functions
techniques

The second-order FRG scheme presented in Sect. 5
strongly relies on the computation of the Green func-
tions GΛ(ω) and the single scale propagators SΛ(ω) in
an infinite system. This can be done using the iterative
method discussed in Sect. 3.6, and it is instructive to

Fig. 4 (From Ref. [69].) Benchmarking of the iterative,
infinite-system Green’s function algorithm introduced in
Sect. 3.6.3 in the non-interacting limit U = 0. The local
density of states at Γ/t = 0.05 and E = 0 is computed
with 1, 4, 16 iterations of the self-consistency equation (50)
(blue, yellow and green; the curves are shifted vertically for
readability). The dashed red line shows the analytical result
in Eq. (116)

benchmark this technique in the exactly solvable case
U = 0.

For U = E = s = 0, the local density of states is
given by

ρ(ω) = − 1

π
Im

(
gret

ii (ω)
)

= − 1

π
Im

⎛
⎝ 1√

(ω + iΓ)2 − 4t2

⎞
⎠ ,

(116)

which is independent of the site i. The algorithm of
Sect. 3.6.3 can be applied with N = L = 1, and the
analytical result can be reproduced easily by solving
Eq. (50) via a self-consistency loop (see Fig. 4).

6.4 FRG results for the non-equilibrium phase
diagram

We now use the FRG to compute the phase diagram
for generic values of E, Γ, and U . Details can be found
in Refs. [68,69]. The CDW and metallic phases can be
discerned via the charge susceptibility:

χ = lim
s→0

Δn

s
, Δn = 〈c†

2jc2j − c†
2j+1c2j+1〉, (117)

which diverges in the CDW phase.
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Fig. 5 (From Ref. [69].) Functional RG data for t = 0
and comparison with mean-field results. (a) CDW order
parameter Δn as a function of Γ/U for various values of
s. The transition into the CDW phase becomes sharper as
s is decreased. The data was obtained for fixed M = 10,
which is the numerical control parameter in the solution of
the flow equations. (b) M -dependence of Ucrit/Γcrit, which is
defined as the point in (a) where lines at different s intersect.
The dashed line shows the mean-field result of Eq. (119).
(c) CDW order parameter as a function of Γ for constant
s/U = 0.01 but various M ; convergence in M can be reached
easily. (d) In agreement with mean-field data, χ exhibits a
power-law divergence with an exponent γ ≈ 1.2 close to the
critical point (dashed line)

6.4.1 Comparison with mean-field theory

We first study the limit U/t � 1 which can be treated
accurately using mean-field theory (our model is spin-
less and simply maps to an Ising chain). Since the FRG
is strictly controlled only to second order in U , this rep-
resents a highly-non-trivial test. At t = 0, the effects of
the external electric field can be eliminated by means of
a gauge transformation, and the mean-field equations
take the form [69]:

Δn =
2
π

arctan (s/Γ + UΔn/Γ) . (118)

For s → 0, this equation only has CDW solutions with
Δn �= 0 beyond some critical interaction strength:

UMF
crit =

π

2
ΓMF

crit ≈ 1.571ΓMF
crit. (119)

For U/Γ < π/2, the system is metallic, and the suscep-
tibility scales as:

χMF = lim
s→0

Δn

s
∼ 1/Γ

π/2 − U/Γ
, U/Γ < π/2.(120)

In Fig. 5, we compare these mean-field results with
FRG data for t = 0. Panel (a) shows the order parame-
ter Δn as a function of Γ/U ; the FRG correctly captures
the phase transition. The critical interaction Ucrit/Γcrit

can be identified as the point where the curves for dif-
ferent s intersect. The FRG prediction is in good agree-
ment with the mean-field result; moreover, convergence
in the control parameter M (which governs the spatial
extent of the vertex functions, see Sect. 5.2) can eas-
ily be reached, see Fig. 5b,c. The FRG also predicts a
power-law divergence of the susceptibility χ around the
critical region, see Fig. 5d.

By construction, the FRG is exact in the non-
interacting limit. We have just shown that it also accu-
rately reproduces the mean-field results for t/U = 0.
This is a highly non-trivial result. Note that in con-
trast to mean field, the FRG also correctly captures
the metal-CDW transition at E = Γ = 0 (see below
and Ref. [68]).

6.4.2 Generic phase diagram

We now discuss FRG data for the phase diagram for
arbitrary values of the Γ, E and U ; results are shown in
Fig. 6, more details can be found in Ref. [68]. At large
(but finite) U/t = 10, the FRG again reproduces mean-
field results accurately. Another benchmark (which is
not shown in Fig. 6; see Ref. [68]) corresponds to the
case with E = Γ = 0, where FRG yields a critical value
of Ucrit/t ≈ 1.4 for the transition between the metal-
lic and CDW phases in stark contrast with mean field,
which gives UMF

crit = 0. The CDW phase for E = Γ = 0
manifests in the lower-left corner of the phase diagram
for U/t = 5. Application of a finite electric field E
restores translational symmetry through induced cur-
rents and drives the system into a metallic phase. How-
ever, sufficiently strong values of E eventually drive the
system back to a CDW phase. At small U/t = 1, it is
solely the electric field that drives the transition into
the CDW phase.

7 Finite systems: FRG approach

We turn our attention to the case of finite systems of
size L. In this case, it is reasonable to choose a distri-
bution function of the auxiliary reservoirs that is inde-
pendent of the site i:

ncut(ω) = ncut
i (ω). (121)

As before, the flow equations need to be simplified to
tackle systems of more than a few sites. We summarize
the approach of Ref. [70].

7.1 Simplification of the flow equations

The flow equations in the channel decomposition
[Eqs. (90) and (92)] can in practice not be solved for
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Fig. 6 (Adapted from Ref. [68].) Phase diagram as a function of Γ and E for different values of U . At large U/t = 10,
FRG data agrees well with mean-field results (red line). At intermediate U/t = 5, FRG correctly captures the CDW phase
for Γ = E = 0. Application of an electric field first induces currents and drives the system into a metallic, but eventually
many-body Wannier–Stark localization sets at large E in and the system reenters a CDW phase. For small U/t = 1, the
transition into an CDW phase is driven solely by E. Grey and red hatching indicates regions where no unique and no stable
mean-field solution exists, respectively (see Ref. [68] for details)

a large system. A straightforward simplification is to
set γΛ = v̄ on the RHS, which is equivalent to setting
γΛ = v̄ directly on the RHS of Eq. (81). For didactic
purposes, we again state the resulting flow equations:

∂ΛΣΛ
1′1(ω)

= − i

2π

∫
dΩ

∑
22′

SΛ
22′(Ω)

×
[
v̄1′2′12+γp,Λ

1′2′12(Ω + ω)+γx,Λ
1′2′12(Ω − ω)+γd,Λ

1′2′12(0)
]
,

(122)

as well as

∂Λγp,Λ
1′2′12(Π)

=
i

2π

∫
dΩ

∑

33′44′
v̄1′2′34

×
[
SΛ

33′

(
Π
2

− Ω
)

GΛ
44′

(
Π
2

+ Ω
)]

v̄3′4′12,

∂Λγx,Λ
1′2′12(X)

=
i

2π

∫
dΩ

∑

33′44′
v̄1′4′32

×
[
SΛ

33′

(
Ω − X

2

)
GΛ

44′

(
Ω +

X

2

)

+ GΛ
33′

(
Ω − X

2

)
SΛ

44′

(
Ω +

X

2

)]
v̄3′2′14,

∂Λγd,Λ
1′2′12(Δ) =

−i
2π

∫
dΩ

∑

33′44′
v̄1′3′14

×
[
SΛ

33′

(
Ω − Δ

2

)
GΛ

44′

(
Ω +

Δ
2

)

+ GΛ
33′

(
Ω − Δ

2

)
SΛ

44′

(
Ω +

Δ
2

)]
v̄4′2′32.

(123)

A numerical implementation of Eq. (123) is still too
demanding due to the number of single-particle com-
ponents. An additional approximation proposed in
Ref. [70] is to neglect the self-energy feedback in the
two-particle vertex flow equations by replacing GΛ →
gΛ and SΛ → sΛ. The vertex flow equations can then be
integrated; this is clear for the x and d channels whose
RHS contains only ∂ΛgΛ

33′gΛ
44′ , and for the p channel, it

follows from

∂Λγp,Λ
1′2′12(Π) =

i

4π

∫
dΩ

∑

33′44′

(
v̄1′2′34

[
sΛ
33′ (Ω−) gΛ

44′ (Ω+)
]

×v̄3′4′12 + v̄1′2′43
[
sΛ
44′ (Ω+) gΛ

33′ (Ω−)
]

v̄4′3′12
)

=
i

4π

∫
dΩ

∑

33′44′
v̄1′2′34

[
sΛ
33′ (Ω−)gΛ

44′ (Ω+)

+gΛ
33′ (Ω−)sΛ

44′ (Ω+)
]

v̄3′4′12

= ∂Λ
i

4π

∫
dΩ

∑

33′44′
v̄1′2′34gΛ

33′gΛ
44′ v̄3′4′12,

Ω± =
Π

2
± Ω. (124)

Restoring the frequency dependence on the RHS, the
two-particle vertex flow equations in Eq. (123) integrate
to:

γp,Λ
1′2′12(Π) =

i

4π

∫
dΩ

∑
33′44′

gΛ
33′

(
Π

2
− Ω

)
gΛ
44′

(
Π

2
+ Ω

)

×v̄1′2′34v̄3′4′12,

γx,Λ
1′2′12(X) =

i

2π

∫
dΩ

∑
33′44′

gΛ
33′

(
Ω − X

2

)
gΛ
44′

(
Ω +

X

2

)

×v̄1′4′32v̄3′2′14,

γd,Λ
1′2′12(Δ) =

−i

2π

∫
dΩ

∑
33′44′

gΛ
33′

(
Ω − Δ

2

)
gΛ
44′

(
Ω +

Δ

2

)

×v̄1′3′14v̄4′2′32. (125)

Eq. (125) is nothing but the perturbation theory result
for the two-particle vertex in presence of a reservoir
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coupling Λ. The absence of inelastic scattering con-
tributions (i.e., neglecting the self-energy feedback) is
numerically challenging when performing integrals, and
in the next section we will show how the frequency inte-
gration on the RHS can be computed analytically. One
should note that the self-energy flow equation (122) is
unaltered; the self-energy feeds back into its own flow
equation through the dressed propagators SΛ appear-
ing on the RHS.

The solution in Eq. (125) naturally satisfies Eqs. (93)
and (94), and the components of γ

{p,x,d},Λ
1′2′12 become

sparse. If the interaction range Rv is finite, the numer-
ical cost of computing γΛ at a given Λ scales as

O(L2NΩ)︸ ︷︷ ︸
#components

O(NΩ)︸ ︷︷ ︸
int on RHS

. (126)

The effort to compute gΛ is given by O(L3NΩ) and is
not included.

7.2 Analytic expressions for the two-particle vertex
components

We recap a semi-analytic approach to compute the
two-particle vertex components that circumvents the
numerical integration on the RHS [70]. We define the
modified single-particle Hamiltonian by:

h̄ = h + Γret,Λ, (127)

where Γret,Λ is given in Eq. (82). For the case of wide-
band reservoirs, this quantity is frequency independent
by virtue of Eq. (30). Note that h̄ is not hermitian, so
it has separate left and right eigensystems:

h̄ |q〉 = λq |q〉 , 〈q̄| h̄ = 〈q̄| λq. (128)

The positivity of Γret,Λ ensures that Im(λq) < 0 ∀q.
The retarded and advanced components of the non-
interacting Green functions then read:

gret,Λ(ω) =
1

ω − h̄
=

∑
q

1

ω − λq
|q〉 〈q̄| =

∑
q

1

ω − λq
Qq,

gadv,Λ(ω) =
1

ω − h̄† =
∑

q

1

ω − λ∗
q

|q̄〉 〈q| =
∑

q

1

ω − λ∗
q

Q†
q,

(129)

where we have introduced the matrix Qq = |q〉 〈q̄|. We
now use Eq. (19) as well as the Dyson equation (27)
to express gK,Λ(ω) in terms of an effective distribution
function neff(ω):

gK,Λ = gret,ΛΓK,Λgadv,Λ = gret,Λ(1 − 2neff)

− (1 − 2neff)gadv,Λ

⇔ ΓK,Λ = h̄(1 − 2neff) − (1 − 2neff)h̄†.
(130)

All reservoirs contribute additively to neff, and the
only frequency dependence stems from nν(ω) and
ncut(ω), which correspond to the distribution functions
in the physical and auxiliary reservoirs, respectively
[see Eq. (82)]. As a result, the effective distribution
function can be expressed in terms of some frequency-
independent operators ην and ηcut. In the special case
that all reservoirs are at either zero or infinite temper-
ature, one obtains:

1 − 2neff(ω) =
∑

α=ν,cut

ηα [1 − 2nα(ω)]

=
∑

α=ν,cut
Tα=0

ηαsgn(ω − μα). (131)

By comparing Eqs. (31), (130), and (131), matrix equa-
tions can be derived for ην , ηcut; they are given by

−2iΓν = h̄ην − ην h̄†, − 2iΛ = h̄ηcut − ηcuth̄
†.

(132)

These equations are of a Sylvester form, and they can be
solved by the Bartels-Stewart algorithm [92] to obtain
the matrices ην and ηcut, which in turn determine
the effective distribution matrix 1 − 2neff. Note that
a unique solution for neff exists if and only if h̄ has no
real eigenvalues, which is fulfilled when all degrees of
freedom have a decay channel into one of the reservoirs.

Using Eqs. (129) and (130), all terms appearing on
the RHS of Eq. (125) can be expressed in terms of
complex-valued integrals. As an specific example, let
us consider the combination of gret,Λ

i3i3′ gK,Λ
i4i4′ on the RHS:

∫
dΩ gret,Λ

i3i3′ (±Ω)gK,Λ
i4i4′ (Ω + ω)

=

∫
dΩ

∑
q1

1

±Ω − λq1

(Qq1)i3i3′

∑
q2

∑
α

sgn(Ω + ω − μα)

×
[

1

Ω + ω − λq2

(Qq2ηα)i4i4′ − 1

Ω + ω − λ∗
q2

(
ηαQ†

q2

)
i4i4′

]

= ±
∑
q1q2

∑
α

(Qq1 ⊗ Qq2ηα)i3i3′ i4i4′ f1(±λq1 , λq2 − ω, μα)

−
(
Qq1 ⊗ ηαQ†

q2

)
i3i3′ i4i4′

f1(±λq1 , λ
∗
q2 − ω, μα),

(133)

where ω ∈ {Π,X,Δ}. The integration variable Ω was
shifted, and we introduced a frequency integral f1

f1(a, b, μ) =
∫

dΩ
1

Ω − a

1
Ω − b

sgn(Ω − μ). (134)

This integral does not depend on the single-particle
indices and can be computed analytically. All other
terms can be treated similarly; the results can be found
in Ref. [70]. The numerical effort to evaluate the vertex
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flow equation is now given by

O(L2NΩ)︸ ︷︷ ︸
#components

O(L2)︸ ︷︷ ︸
sum on RHS

. (135)

At each Λ, it is essential to first compute and store
all quantities Qq, ηα, Qqηα, ηαQq. More details about
the numerical implementation of the flow equations (in
particular the issue of parallelization) can be found in
Ref. [70].

7.3 Perturbation theory limit

The expression for the two-particle vertex in Eq. (125)
corresponds to second-order perturbation theory. We
will now illustrate how the self-energy can be computed
strictly up to second order in U [70]. This allows us to
compute perturbation theory data using the existing
numerics and to directly compare those with the FRG
results.

The first-order contribution to the self-energy can
be obtained by replacing the single-scale propagator as
well as the two-body vertex on the RHS of Eq. (90) by
their lowest-order expansion (sΛ and v̄, respectively)
and by integrating the resulting equation [42]:

Σ1PT,Λ
1′1 (ω) = − i

2π

∫
dΩ

∑

22′
gΛ
22′(Ω)v̄1′2′12. (136)

To compute the second-order term, we expand the
single-scale propagator SΛ:

SΛ = ∂∗
ΛGΛ = ∂∗

Λ

[
gΛ + gΛΣ1PT,ΛgΛ + O(U2)

]

= sΛ + gΛΣ1PT,ΛsΛ + sΛΣ1PT,ΛgΛ + O(U2)

= sΛ + O(U), (137)

where sΛ represents the single-scale propagator without
self-energy feedback. Since γ{p,x,d},Λ ∼ U2, the second-
order contribution to the RHS of Eq. (122) that is asso-
ciated with the x- and p-channels is given by

− i

2π

∫
dΩ

∑
22′

sΛ
22′(Ω)

[
γp,Λ
1′2′12(Ω + ω) + γx,Λ

1′2′12(Ω − ω)
]

= −∂Λ
i

2π

∫
dΩ

∑
22′

gΛ
22′(Ω)

[
γp,Λ
1′2′12(Ω + ω)

]
.

(138)

The derivative in the last line acts on gΛ as well as
on γp,Λ, which yields the first and second term in the
first line, respectively. This follows from Eq. (125) by
renaming indices as well as the integration variables.
The second-order contributions to the RHS of Eq. (122)
that are associated with the d-channel and with the

single-scale propagator read:

− i
2π

∫
dΩ

∑

22′
sΛ
22′(Ω)γd,Λ

1′2′12(0)

+
{
sΛ + gΛΣ1PT,ΛsΛ + sΛΣ1PT,ΛgΛ

}
22′ (Ω)v̄1′2′12

= −∂Λ
i

2π

∫
dΩ

∑

22′
gΛ
22′(Ω)

[
v̄1′2′12 + γd,Λ

1′2′12(0)
]
,

(139)

where we have employed Eq. (136); the terms gΛΣ1PT,Λ

sΛv̄ can be identified with gΛ∂Λγd,Λ via Eq. (125).
Eqs. (138) and (139) constitute the RHS of the self-

energy flow equation (122) in second-order perturbation
theory. Integrating w.r.t. Λ gives:

Σ2PT,Λ
1′1 (ω) = − i

2π

∫
dΩ

∑

22′
gΛ
22′(Ω)

×
[
v̄1′2′12 + γp,Λ

1′2′12(Ω + ω) + γd,Λ
1′2′12(0)

]
.

(140)

Note that the RHS of the equation depends on the com-
ponents γp,Λ and γd,Λ, which are given in Eq. (125),
and which can be computed analytically (see the last
section); γx,Λ does not appear separately due to the
combination of Eq. (138) with Eq. (125). Eq. (140) is
completely general and is fulfilled even if there is a finite
first-order contribution Σ1PT,Λ to the self-energy [42].

8 Finite systems: results

We now apply the second-order FRG scheme to study
a finite chain out of equilibrium. We follow Ref. [70],
which contains additional details.

8.1 Model: Finite tight-binding chain coupled to
reservoirs at the edges

We study a tight-binding chain with nearest neighbor
hoppings t and nearest neighbor interactions governed
by (see Fig. 7):

Hsys = t

L−1∑

j=1

c†
jcj+1 + H.c. + U

L−1∑

j=1

(
c†
jcj − 1

2

)

×
(

c†
j+1cj+1 − 1

2

)
.

(141)

In what follows, we always set t = 1. We couple the
system to physical left and right wide-band reservoirs
labeled by ν = 1, 2, respectively [see Eq. (30)]:

Γ1,ret
ij = −iΓδi1δj1, Γ2,ret

ij = −iΓδiLδjL. (142)
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. . .

t t t t t t

U U U U U U

Γ Γ

Fig. 7 (From Ref. [70].) Pictorial representation of the system discussed in Sect. 8: A tight-binding chain of L sites with
hoppings t = 1 and interactions U is driven out of equilibrium by zero-temperature reservoirs Γ with different chemical
potentials μ1,2 = ±1

These reservoirs are assumed to be at zero temperature
Tν=1,2 = 0 and governed by different chemical poten-
tials μ1 = −μ2 = 1.

All auxiliary reservoirs are identical and are charac-
terized by a single temperature Tcut and a single chemi-
cal potential μcut. Different situations will be explored:
i) Tcut = μcut = 0, ii) Tcut = 0, μcut = μ2 = −1, and
iii) Tcut = ∞, where in the last case, the choice of μcut

is irrelevant.

8.2 Fundamental questions to address

The one-dimensional chain in Fig. 7 is governed by Lut-
tinger liquid physics at low energies, and the Matsubara
FRG was used to address the corresponding power-law
behavior [52,60,93]. The fate of the Luttinger liquid
phenomenology in non-equilibrium is being debated;
e.g., a first-order FRG approach yields unconventional
power-law exponents [33]. It is unclear whether or
not this scenario survives when inelastic scattering is
accounted for by a second-order scheme. The frame-
work of Sect. 7 can be employed to address this ques-
tion; more details can be found in Ref. [70].

FRG results can be obtained for chains of up to
L = 48 sites using massive parallelization on hundreds
of compute nodes [70]. In equilibrium, the physical
temperature and chemical potential provide a natural
choice for the auxiliary reservoirs. In non-equilibrium,
it is essential to check that the values of Tcut and μcut

do not influence the results. We will now demonstrate
that this is not the case and that physical quantities
qualitatively depend on the cutoff scheme. The FRG
approach of Sect. 7 is hence inadequate to tackle the
fate of non-equilibrium Luttinger liquid power laws [33]
in the presence of inelastic scattering.

8.3 Application to the steady state of finite
quantum chains out of equilibrium

Figure 8 shows FRG results for different temperatures
Tcut and chemical potentials μcut of the auxiliary reser-
voirs. We again stress that in contrast to equilibrium,
there is no natural choice for these parameters. We
compute the effective distribution function of Eq. (19),
where one expects a piece-wise constant function with
two steps in the limit of small U and Γ. Moreover, we
show the local occupation number ni =

〈
c†
i ci

〉
, the par-

ticle currents Ii, and the local density of states at the

edge

ρi(ω) = − 1
π

Im

{
1

[Gret(ω)]−1 + iΓsmear

}

ii

,

Γsmear = 0.2. (143)

All of these quantities qualitatively depend on the FRG
cutoff. This can be traced back to the behaviour of self-
energy; the right panels of Fig. 8 illustrates the strong
cutoff-dependence and the emergence of secular terms

Im
(
Σadv

11 (ω)
)
/U2 ∝ pert. theory in U2 + UN,

(144)

which are only partly included in our approach. This
illustrates that the current FRG scheme cannot ade-
quately treat the system in Fig. 7. More details can be
found in Ref. [70].

9 Summary

In this work, we reviewed and gave a detailed account
of recently-developed, second-order FRG approaches
to the steady-state of out-of-equilibrium problems in
one dimension. The original works can be found in
Refs. [68–71]. In particular, we discussed second-order
truncation schemes which account for the flow of the
two-particle vertex and which thus incorporate inelas-
tic scattering (this is particularly important in non-
equilibrium). The only fundamental approximation is
the channel decomposition within the vertex flow equa-
tion. After introducing this general, common frame-
work, we presented details on two different specific
setups.

First, we recapitulated the application of the second-
order FRG to the steady state of infinite systems
which are translation invariant up to a shift in energy
(Refs. [68,69]). As an additional approximation, one
assumes that the spatial range of the vertex functions
is limited by a parameter M ; the original flow equa-
tions are recovered in the limit M → ∞, and con-
vergence w.r.t. M can be reached in practice due to
the translation invariance. The algorithm was used to
study the non-equilibrium phase diagram of a general-
ized Wannier–Stark ladder coupled to reservoirs. One
observes re-entrance behavior and multiple transitions
between metallic and CDW phases. The FRG correctly
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Fig. 8 (Adapted from Ref. [70].) A chain of length L = N with t = 1 and Γ = 0.2 is driven out of equilibrium by a
bias voltage μ1,2 = ±1. We compare FRG results obtained using various parameters of the auxiliary cutoff; the second-
order perturbation-theory results are shown for comparison (PT). Left panels: Fixed interaction U = 1 and system size
L = N = 24. The plot shows the effective distribution function of Eq. (19) at the boundary (top left), the occupation of
the individual sites as well as the local current (solid and dashed; bottom left), and the local density of states ρ1(ω) at the
boundary (top right). Right panels: Imaginary part of the self-energy at the boundary for various values of U and N = L
at μcut = 0

captures the phase transition in equilibrium as well as in
the mean-field limit of large U , which provides a highly
non-trivial benchmark. Such a setup cannot be tackled
straightforwardly using more accurate methods such as
tensor networks and is a prototypical candidate for a
FRG analysis.

Secondly, we reviewed the application of the second-
order FRG to the steady-state of finite chains coupled
to left and right reservoirs (Ref. [70]). This setup is more
involved due to the absence of translation invariance,
and several additional approximations are needed to
solve the FRG flow equations for the two-particle vertex
in practice. In particular, we neglected the feedback of
both the self-energy and the two-particle vertex in the
flow equation of the two-particle vertex (the self-energy
flow equation was not modified). This can be viewed
as Λ-dependent perturbation theory and allows for an
semi-analytic solution. Using large-scale parallelization,
one can access systems of up to ∼ 50 sites. As a pro-
totypical setup, we investigated an interacting tight-
binding chain that is coupled to left and right reser-
voirs with different chemical potentials. It turned out,
however, that this system cannot be treated reliably
using the FRG scheme at hand since physical quan-
tities depend qualitatively on the choice of the cutoff
scheme.

While the second-order Keldysh FRG scheme pro-
vides a powerful tool to study the non-equilibrium
phases of the generalized Wannier–Stark ladder, the
method fails for finite systems. In this case, one needs
to develop more involved truncation schemes that go

beyond a purely perturbative treatment of the two-
particle vertex. One potential way forward would be
to shift the focus away from Luttinger liquid physics
and to study small systems where the flow of the
two-particle can be accounted for without having to
resort to the drastic approximations used here. This was
already done for impurity problems, which can serve as
a natural starting point [36–38,56–58]. Another inter-
esting avenue is a possible extension of the merger of
dynamical mean field theory and FRG (DMF2RG) [94],
which is currently used only in the equilibrium case, to
non-equilibrium.
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