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Abstract. We study competing orders of spinless fermions in the triangular-lattice Hubbard model with
nearest-neighbor interaction. We calculate the effective, momentum-resolved two-particle vertex in an
unbiased way in terms of the functional renormalization group method and compare two different schemes
for the momentum discretization, one based on dividing the Fermi surface into patches and one based
on a channel decomposition. We study attractive and repulsive nearest-neighbor interaction and find a
competition of pairing and charge instabilities. In the attractive case, a Pomeranchuk instability occurs at
Van Hove filling and f -wave and p-wave pairing emerge when the filling is reduced. In the repulsive case,
we obtain a charge density wave at Van Hove filling and extended p-wave pairing with reduced filling. The
p-wave pairing solution is doubly degenerate and can realize chiral p + ip superconductivity with different
Chern numbers in the ground state. We discuss implications for strongly correlated spin-orbit coupled
hexagonal electron systems such as moiré heterostructures.

1 Introduction

For decades the single-band Hubbard model has been
the Standard Model of Correlated Electron Physics.
Not only has it been thought of as capturing essen-
tial features of the phase diagram of high-temperature
superconductors and related materials, it has also
served as a reference model for the development of
quantum many-body methods [1].

In terms of Fermi surface instabilities, the square
lattice has been the dominating focus of theoretical
research as it has been hosting the majority of quasi-two
dimensional candidate materials for strongly correlated
electron systems. More recently, however, the discov-
ery of strongly-correlated states in moiré materials, i.e.
systems based on few-layer stacks of two-dimensional
materials such as graphene or transition metal dichalco-
genides (TMD) [2–6], has made a strong case for revis-
iting hexagonal lattice systems of correlated electrons
from the viewpoint of state-of-the-art quantum many-
body approaches [7–14].

Kagome, honeycomb, and triangular lattices all share
the same hexagonal point group symmetry but differ
in terms of Wyckoff positions taken by their respec-
tive lattice sites. The triangular lattice stands out as
the local site symmetry matches that of the hexago-
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nal point group symmetry. It has a high potential to
offer exotic many-body states due an intricate interplay
between frustration and correlations, see, e.g., [15–23]
for a recent series of studies on that matter.

In systems such as TMDs, a sizable spin-orbit cou-
pling breaks the spin-rotation invariance. As a conse-
quence, effective models for moiré TMDs often involve
several spin-split bands [24–26] which need to be
taken into account by adequate quantum many-body
approaches. In an attempt to boil down moiré TMDs
to its fermiological essence, this can thus lead to an
effective model of spin-polarized interacting electrons
(or spinless fermions). Note that in the absence of local
Hubbard repulsion due to the removed spin degree of
freedom, nearest-neighbor density-density interactions
are the most elementary terms to consider, which we
adopt for our paradigmatic toy model in the following.

A method that has been shown to be quite flex-
ible when it comes to the description of compet-
ing instabilities of correlated-electron systems on var-
ious lattice geometries and for a broad range of fill-
ings and interactions, is the functional renormaliza-
tion group (FRG) [27–29]. The FRG has been used in
numerous studies to identify the leading Fermi-surface
instabilities with all competing interaction channels
being treated on equal footing [30,31] Within the
correlated-electron FRG different schemes have been
employed for numerical implementations, most promi-
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nently the N -patch scheme, which divides the Bril-
louin zone into a number of N patches with the rep-
resentative momenta lying on the Fermi surface [32–
34]. The N -patch scheme allows for a relatively sim-
ple and straightforward numerical implementation, but
becomes numerically expensive for high momentum res-
olution and also does not faithfully incorporate momen-
tum conservation. A more efficient way of treating this
momentum dependence was introduced by Husemann
and Salmhofer [35]. This work advanced the idea, that
instabilities in FRG are mainly caused by one momen-
tum (namely the transfer momentum of the respective
channel) and the two weaker momentum dependencies
can, thus, be expanded into analytical form factors.
This effectively allows for higher resolution in the strong
momentum dependence. This was then incorporated in
the truncated unity scheme [36] (TUFRG) which deliv-
ers a concise machinery of implementing these ideas in
FRG applications. A similar scheme for treating the fre-
quency dependence has also been developed earlier for
application of the FRG to the single impurity Anderson
model [37], but we will restrain ourselves in this work
on the decomposition of the momenta.

In this work, we establish the correlated phase dia-
gram of of spinless electrons on the triangular lattice in
the presence of competing interaction channels around
Van Hove filling. To that end, we set up both, an N -
Patch- and a TUFRG approach for correlated fermions
without spin-SU(2) invariance. We carefully study the
convergence within both schemes and compare them to
each other. The motivation of our work is twofold:

1. The FRG represents a very promising scheme for
setting up sophisticated numerical implementations
that can capture accurate multi-orbital/-band mod-
els for moiré TMDs. Our results can then be used
for future reference of such implementations.

2. The systematic quantitative comparison between
the two FRG schemes provides guidance to the
choice of transfer-momentum resolution and form-
factor expansions in future TUFRG studies, which
are likely to be more appropriate for a faithful
description of more involved models due to numeri-
cal efficiency.

2 Model

We consider a tight-binding model for spinless fermions
on the triangular lattice where we add a nearest-
neighbor density-density interaction, reading

H = −t
∑

〈ij〉

(
c†
i cj + h.c.

)
− μ

∑

i

ni + V1

∑

〈ij〉
ninj .

(1)

Here the operator c
(†)
i annihilates (creates) a fermion

on lattice site i, such that we allow for nearest-neighbor
fermion hopping with rate t. The fermion density oper-

Fig. 1 Real-space lattice and dispersion in the BZ. The
solid line in the right panel shows the perfectly nested Fermi
surface for μ/t = 2 which corresponds to Van Hove filling.
The dashed line shows the Fermi surface for μ/t = 1.4

ator ni = c†
i ci couples to the chemical potential μ to

change the filling of the system and V1 > 0 (< 0) is the
strength of the repulsive (attractive) density interac-
tion of neighboring fermions (see Fig. 1). We will study
the effects of attractive and repulsive interactions for
an extended range of fillings corresponding to μ. The
energy band of this model is given via a Fourier trans-
form, yielding

ξ(k)=−2t[cos(kx)+2 cos(kx/2) cos(
√

3ky/2)] − μ ,
(2)

with wavevector k = (kx, ky). We note that at μ/t =
2 the band dispersion features saddle points at the
three inequivalent M points of the Brillouin zone
(BZ) (Fig. 1), giving rise to a Van Hove singularity
(VHS). The triangular lattice Hubbard model for spin-
less fermions has previously been studied in Ref. [38].
Choosing an attractive interaction V1 and decoupling
it in the pairing channel, the authors computed the
phase diagram as a function of the chemical potential
μ/t and they find two superconducting phases appear-
ing therein: a topological (px+ipy)-wave superconduct-
ing phase at low densities and an f -wave superconduc-
tor around VH filling. In the present manuscript, we
investigate possible many-body instabilities by employ-
ing functional renormalization group calculations in the
vicinity of the VHS, but also beyond. Since the FRG
incorporates the competition between different interac-
tion channels by default, this allows us to expand upon
the mean-field results by an unbiased study of the low-
temperature phase diagram.

3 Fermionic functional renormalization
group

The fermionic functional renormalization group (FRG)
[27,28] has been established as a versatile approach to
treat strongly-correlated electrons without bias towards
a specific mean-field channel [30,31]. It is rooted in the
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functional integral description of quantum many-body
systems and it allows for the investigation of a broad
range of models without specific limitations for their
kinetic or interaction parameters. Generally, the FRG
acts as functional implementation of the Wilsonian
renormalization-group (RG) idea, namely, one starts at
an ultraviolet (UV) cutoff scale ΛUV and successively
takes effects of fermionic fluctuations into account by
approaching the infrared (IR) limit ΛIR = 0.

While the FRG description of a selected model is
at a formal level exact, one needs to decide for trun-
cations of the description to derive a feasible numerical
application from the general principles. In the situation
of competing interactions, this truncation will mostly
concentrate on the evolution of the two-particle vertex
as an indicator for emerging Fermi-surface instabilities.
In the past, this has led to many successful applica-
tions of the method to strongly-correlated electron sys-
tems, for example, for models of spin-rotational invari-
ant electrons on triangular and honeycomb lattices, see,
e.g., [8–13,39–43]. In addition more specific models of
these geometries have been investigated aiming at the
description moiré materials [23,44–48].

The FRG flow is realized by solving a system of cou-
pled differential equations interpolating between the
UV and the IR limit. In this work, we want to com-
pare two specific computational schemes to track this
FRG evolution of running couplings: (1) the N -patch
scheme, which was one of the first well-established
methods within the fermionic FRG framework, and
(2) the truncated-unit FRG, a more recent approach
which goes beyond the patching scheme and allows for
a finer grained momentum resolution.

3.1 Flow equations

Our starting point is the action for a many-electron
system

S[ψ̄, ψ] = −(ψ̄, G−1
0 ψ) + Sint[ψ̄, ψ] , (3)

where ψ̄, ψ are Grassmann-valued fields. Here, the
quadratic term includes the free propagator G0(ω,k) =
1/(iω − ξ(k)) with Matsubara frequency ω and single-
particle dispersion ξ(k), and the bracket (., .) denotes
integrations over continuous and summations over dis-
crete indices. The second term Sint[ψ̄, ψ] in Eq. (3)
is an interaction term, which can be read off directly
from the interaction part of the microscopic Hamil-
tonian in Eq. (1). With the help of the action S,
we can define the Schwinger functional G[η̄, η] =
− ln

∫
DψDψ̄ exp(−S[ψ̄, ψ]) exp[(η̄, ψ) + (ψ̄, η)] and its

Legendre transform - the effective action - Γ [ψ̄, ψ] =
(η̄, ψ) + (ψ̄, η) + G[η̄, η] with ψ = −∂G/∂η̄ and ψ̄ =
∂G/∂η, which generates the one-particle irreducible
(1PI) correlation functions [49].

The central step for setting up the renormalization
group scheme amounts to regularizing the free propa-
gator by an infrared cutoff Λ, such that G0(ω,k) →
GΛ

0 (ω,k). The cutoff implementation is, in some sense,

arbitrary, as long as the ultraviolet (Λ → ∞) and
infrared limit (Λ → 0) are smoothly connected. Here,
we opt for implementing the temperature flow scheme
introduced by Honerkamp and Salmhofer [50] which
is employed for both FRG implementations. For now,
however, we will keep the discussion general and refer
the reader to App. A for details on the T -flow.

Having regularized the bare propagator, the effective
action Γ [ψ̄, ψ] becomes scale dependent and its flow is
governed by an exact differential equation [30], which
reads

∂

∂Λ
ΓΛ =−(ψ̄, (ĠΛ

0 )−1ψ)− 1
2
Tr

(
(ĠΛ

0 )−1(Γ (2)Λ)−1
)

,

(4)

where Γ (2)Λ = (∂ψ̄, ∂ψ)T (∂ψ, ∂ψ̄)ΓΛ is the matrix of
second derivatives of ΓΛ. Here, the appearance of the
matrix of second functional derivatives of the effective
action Γ (2) necessitates some truncation to derive a
closed set of equations for the 1PI vertex functions.
We employ a standard approximation scheme, which
(1) neglects self-energy insertions, such that undiffer-
entiated fermion lines correspond to bare, unrenor-
malized propagators, (2) sets external Matsubara fre-
quency arguments to zero and, simultaneously, does
not account for the frequency dependence of the two-
particle vertex and (3) truncates the three-particle ver-
tex from the flow equations (an in-depth discussion of
these approximations is reviewed in [30]). As a result,
we obtain flow equations for the static two-particle ver-
tex V (k1,k2,k3) (the fourth momentum is fixed by
momentum conservation), which allow us to determine
Fermi liquid instabilities in an unbiased way.

For spinless fermions, the flow equations read [51,52]

d

dΛ
V Λ = τpp + τph,c + τph,d . (5)

where

τpp = −1
2

∫

p

d

dΛ
[GΛ

0 (iω,p + k1 + k2)GΛ
0 (−iω,−p)]

× V Λ(k1,k2,p + k1 + k2)

× V Λ(p + k1 + k2,−p,k3) , (6)

denotes the pairing or particle-particle channel

τph,c = −
∫

p

d

dΛ
[GΛ

0 (iω,p + k1 − k4)GΛ
0 (iω,p)]

× V Λ(k1,p,p+k1− k4)

× V Λ(p + k1 − k4,k2,k3) , (7)

the crossed particle-hole channel and

τph,d = +
∫

p

d

dΛ
[GΛ

0 (iω,p + k1 − k3)GΛ
0 (iω,p)]
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× V Λ(k1,p,k3)

× V Λ(p+k1−k3,k2,p) , (8)

the direct particle-hole channel, respectively. Here the
integral is defined as

∫
k

= A−1
BZT

∫
BZ

dk
∑

iω and k =
(k, ω) where ABZ is the area of the Brillouin zone.

Integrating these equations starting with the bare
coupling in the Λ → ∞ limit, Fermi liquid instabil-
ities are signified by singular contributions to V . We
note that V is a function of three momenta and it is
therefore costly to compute. For this reason, we rely on
further approximations for its momentum dependence,
two of which are presented in the following.

3.2 N -patch FRG

The first, well-established approximation of the mom
entum dependence assumes that the two-particle ver-
tex is constant along elongated patches in momentum
space [30].

To implement the patching scheme, we define a map-
ping π : 1.BZ → Z

N
FS, identifying momenta k in the first

Brillouin zone with their nearest-neighbor π(k) in an
angular discretization Z

N
FS of the Fermi surface, which

consists of N points, see Fig. 2. This way, irrelevant cou-
plings perpendicular to the Fermi surface are projected
out and the vertex is fully determined by its value on
the central patch points, which we place equidistantly.
Note, that this treatment of the momentum dependence
of the vertex spoils momentum conservation, since the
fourth momentum k4 = π(k1) + π(k2) − π(k3) of the
projected vertex V (π(k1), π(k2), π(k3)) will in general
not align with a patch point and therefore require an
additional transformation with π.

Fig. 2 Illustration of the N -patch FRG scheme for
N = 24 points on the Fermi surface (thick black line). The
patches, indicated by thin black lines, range from the Γ
point to the boundary of the first Brillouin zone (thick grey
line). Our results are produced with N = 192. The reference
patch for the angular discretization is indicated by a thin
magenta line

N -patch FRG calculations were successfully employed
to track the flow of marginal couplings for prototyp-
ical model systems of high-Tc superconductivity such
as iron pnictides and cuprates, see, e.g., Refs. [29–31]
and references therein. This legitimates the method as
a valid starting point to determine the leading instabil-
ities around the Fermi surface fixed point.

In summary, the patching scheme describes the ver-
tex with three projected momenta, i.e. V (π(k1), π(k2),
π(k3)), such that for a selection of N patches, the
numerical cost will scale with N3. In this work, we
implemented a high resolution of the Fermi surface
using N = 192 patches, for which we find our results
(critical scales and phase boundaries) to be sufficiently
converged.

3.3 Truncated-unity FRG

The truncated-unity FRG (TUFRG) [36] allows for a
high resolution of the full Brillouin zone, i.e. in con-
trast to the N -patch scheme, it is not restricted to the
Fermi surface. Instead, one can chose arbitrary points of
momenta to evaluate the flow equations. The derivation
of the TUFRG approach is based on the fact that the
singular behaviour of instabilities are mainly depending
on the transfer momenta inside the loops in Eqs. (6)–
(8) connecting the two vertices [35]. Specifically, they
are k1 + k2 in τpp, k1 − k4 in τph,c and k1 − k3 in
τph,d. Consequently, the interaction is re-parametrized
into different channels such that each object is account-
ing for one of the transfer momenta. In practice, V Λ is
decomposed as

V Λ(k1,k2,k3,k4) = V Λ,0(k1,k2,k3,k4)

+ ΦΛ,P (k1 + k2;−k2,−k4)

+ ΦΛ,C(k1 − k4;k4,k2)

+ ΦΛ,D(k1 − k3;k3,k2) , (9)

where V Λ,0(k1,k2,k3,k4) accounts for the initial con-
ditions of the model. The channels carry the important
transfer momentum as first argument and each chan-
nel can be interpreted as representing a specific kind of
interaction. The choice of these three channels was ini-
tially motivated by models of spinful fermions, where
P will represent a pairing interaction, and depending
on spin combinations, C and D represent magnetic and
density-density interactions. Since our model Eq. (1)
is spinless, both channel C and D will eventually rep-
resent density-density interactions and this choice is
therefore redundant We keep this representation any-
way such that a transfer of this method to a spinful
model can be done in a transparent way.

To relate the channels to the diagrams with the same
important momentum, we define the flow equations

d

dΛ
ΦP (k1 + k2;−k2,−k4) = τpp(k1,k2,k3,k4) ,

(10)
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d

dΛ
ΦC(k1 − k4;k4,k2) = τph,c(k1,k2,k3,k4) ,

(11)
d

dΛ
ΦD(k1 − k3;k3,k2) = τph,d(k1,k2,k3,k4) ,

(12)

where Λ was dropped for brevity. Since the the last two
momenta of the channels are deemed as less important,
we will expand them in form-factors:

ΦX(q,k,k′) =
∑

l,l′
X l,l′(q)f∗

l (k)fl′(k′) (13)

with X ∈ {P,C,D}. This expansion can be imposed as
long as the form-factors are forming a unity:

∑

l

f∗
l (p)fl(k) = δ(p − k) , (14)

∫

k

fl(k)f∗
l′(k) = δl,l′ . (15)

with
∫

k
= A−1

BZ

∫
dk. The channel decomposition and

the unity of the form-factors can now be used to refor-
mulate the initial flow equations into a form which offers
a computational advantage.

In the TUFRG approach we derive flow equations
for P l,l′(q), Cl,l′(q),Dl,l′(q) by taking the derivative
d
dΛ and inserting form-factor resolved unities on the
right hand side of Eqs. (6)–(8) between the vertices
and the loops, eventually leading to separating the
three objects momentum-wise while connecting them
in terms of form-factors. The sum of the form factors
introduced with the unity Eq. (15) can then be trun-
cated safely to gain a numerical advantage. The final
form of the TUFRG flow equations reads

d

dΛ
P l,l′(q) = +

1
2

∑

l1,l2

V P (q)l,l1Ḃ(q)(−)
l1,l2

V P (q)l2,l′ ,

(16)
d

dΛ
Cl,l′(q) = +

∑

l1,l2

V C(q)l,l1Ḃ(q)(+)
l1,l2

V C(q)l2,l′ ,

(17)
d

dΛ
Dl,l′(q) = −

∑

l1,l2

V D(q)l,l1Ḃ(q)(+)
l1,l2

V D(q)l2,l′ ,

(18)

for details of the objects and the derivation see App. B.1
and B.2.

The flow equations now scale with Nq × N2
f , where

Nq is the number of momenta q which discretize the
Brillouin zone and Nf is the number of chosen form-
factors, see Fig. 3. In practice one has to choose much
less form-factors than patches in the patching scheme.
Therefore, we gain a numerical advantage over the scal-
ing of the N -patch scheme (∼ N3) and the freedom to

Fig. 3 Illustration of the TUFRG resolutions. Left: for the
comparison with the patching scheme, Nq = 180 momen-
tum points were chosen which are evenly spaced in the
Brillouin zone. Only the contributions of the red points
have to be calculated since the rest can be obtained by
symmetry operations. Right: The plane-wave form factors
are fl(k) = exp(ikRl), where Rl are the real space vec-
tors. Our results are produced with Nf = 19 (inside the
magenta circle) unless stated otherwise. For more details
see Appendix B.3

choose a larger number of momenta Nq in the Brillouin
zone. In this work, we use Nq = 180 and Nf = 19
for comparison with 192 patches in the other approach.
To discuss single points in the phase diagram we use
Nq = 540 and Nf = 19. In the convergence checks we
go up to Nq = 792 and Nf = 61. For details about
the choice of momenta and form factors, see App. B.3.
We want to highlight here, that this numerical advan-
tage of the TUFRG enables the treatment of models
in more refined manner than it was previously possi-
ble within the patching scheme. For example, models
with additional quantum numbers (like orbitals o stem-
ming from sublattices in graphene models) will lead to
an additional scaling factor of the vertices of N4

o . On
top to the cubic scaling in the patching scheme, the
proper treatment of these models is numerically chal-
lenging. The linear scaling of momenta in the TUFRG
represents therefore a numerical implementation which
is much more feasible. This approach has been suc-
cessfully implemented to resolve unconventional super-
conductivity in graphene [53]. Moreover, the patching
scheme fails in general for resolving incommensurable
phenomena, which will be defined by sharp features
away from the Fermi surface. It has been succesfully
demonstrated, that e.g. incommensurable charge den-
sity waves stemming from a competition of non-local
interactions in graphene can be captured by the means
of TUFRG by using a high resolution of momenta in
the whole Brillouin zone [54].

3.4 Linearized gap equation

To obtain the gap function Δ(k) for the superconduct-
ing instabilities encountered during the FRG flow, we
utilize standard BCS theory [55], that is, we perform
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a mean-field decoupling in the superconducting chan-
nel and derive a self consistent gap equation for Δ(k).
Close to the critical temperature, where the gap is pre-
sumably small, the gap equation can be linearized and
resembles an eigenvalue equation, which reads

Δ(k) = − 1
N

∑

k′
VBCS(k,k′)

Δ(k′)
2ξk′

tanh
(

ξk′

2Tc

)
.

(19)

The only input required to solve Eq. (19) and deter-
mine the leading contributions to the gap function as
the eigenvectors with the largest negative eigenvalues,
is then given by the pairing potential VBCS(k,k′) =
V (k,−k,k′,−k′).

For the patching approach, we rewrite the right hand
side of Eq. (19) as an integral over a small energy shell
−εc ≤ ξk ≤ εc � εFS around the Fermi surface, where
the most dominant contribution to the momentum sum
stems from. The gap equation thus becomes

Δ(k) ≈ −
[∫ εc

−εc

dξ
1
2ξ

tanh
(

ξ

2Tc

)]

× 〈VBCS(k,k′)Δ(k′)〉k′∈FS , (20)

where the integral evaluates to

∫ εc

−εc

dξ
1
2ξ

tanh
(

ξ

2Tc

)
≈ ln

(
1.13

εc

Tc

)
. (21)

Finally, substituting VBCS(k,k′) = τTc
pp (k,−k,k′,−k′)

in Eq. (21) allows to straightforwardly obtain Δ(k) on
the Fermi surface within the patching approach.

If we work with the TUFRG approach instead, we
can restore the pairing interaction straightforwardly by
calculating the pairing interaction from the P chan-
nel, which is just given by the form-factor expansion in
Eq. (13):

ΦP (q,k,k′) =
∑

l,l′
P l,l′(q)fl(k)f∗

l′(k
′). (22)

Since the divergence has a sharp peak at q = 0, we set
the superconducting pairing interaction as:

ΦP (q = 0,k,k′) := ΦP (k,k′) , (23)

and identify VBCS(k,k′) = ΦP (k,k′). Thereafter, the
gap function is obtained by diagonalization of the Nq ×
Nq matrix ΦP (k,k′).

Note, that while we have focused on pairing insta-
bilities for the sake of brevity, one can generalize the
discussion above directly to instabilities in the particle-
hole channels by performing the respective mean-field
decoupling and deriving a gap equation with an appro-
priate density instead of a pairing potential.

4 Attractive case V1 < 0

We first investigate the case of attractive interactions
V1 < 0 at and away from Van Hove filling μ/t = 2. To
that end, we apply both, the N -patch and the TUFRG
scheme, and work out the qualitative and quantitative
differences between these approaches. To generate a
common starting point we initialize both methods as
follows: the RG flow starts at

TUV = W , (24)

where W = 9t is the bandwidth of the model. The
respective flow equations are integrated down to the
infrared, which we numerically define by TIR/t = 10−5.
If one of the channels diverges, signified by its max-
imum exceeding 3W , the integration is terminated
preemptively. As initial value for the vertex, we set
V W (π(k1), π(k2), π(k3)) = V1 in the patching scheme,
and V W (k1,k2,k3,k4) = V1, ΦW,X = 0 in the TUFRG.

4.1 Pomeranchuk instability at Van Hove filling

Tracking the evolution of the attractive case under the
RG flow both employed approaches eventually detect a
divergence of the particle-hole channels between T/t =
1 and T/t = 0.1, see Figs. 4 and 5. Due to crossing
symmetry, which relates the direct and crossed particle-
hole contributions, the flows of the respective maxima
align and we, thus, reduce our discussion to τph,d for
brevity.

In the patching scheme, we find the most singular
eigenvalue to emerge from the linearized gap equation
with transfer momentum q = k1 − k3 = 0, corre-
sponding to a Pomeranchuk instability [56]. The respec-
tive order parameter 〈ψ̄kψk〉 (see Fig. 4c) is found to
live in the A1 irreducible representation (irrep.) of C6v

with an extended s-wave form factor including nearest
and second-nearest neighbors. The momentum modu-
lation, induced by the second neighbor harmonic, is,
however, quite weak to the constant offset presented by
the nearest-neighbor A1 basis function.

In the TUFRG scheme, the instability almost exclu-
sively affects the onsite-component D1,1(q) of the direct
particle-hole channel, with a pronounced peak at the Γ
point (see Fig. 5b) and in agreement with the patch-
ing results. The reconstructed order parameter ΔD (see
Fig. 5c) likewise transforms in the A1 irrep., including
a momentum modulation on the Fermi line. Note that,
due to this modulation being weak compared to the
nearest-neighbor A1 contribution, this is rather difficult
to see from the colormap in Fig. 5.

4.2 Superconductivity below Van Hove filling

For fillings μ/t < 2, the Fermi surface is deformed and
at some point the Pomeranchuck instability is over-
ruled by a superconducting instability. We observe that,
depending on the combination of chemical potential and
interaction strength, both employed FRG schemes con-
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(a)

(b) (c)

Fig. 4 Patching results for V1/t = −1 and μ/t = 2. The
flow of the largest couplings in each channel is plotted in
a and indicates an instability in the particle-hole channels.
Solving the respective gap equation using the renormalized
vertex in b, yields the largest eigenvalue for transfer momen-
tum q = 0. The so-determined order parameter, indicated
by light blue dots in c, has an extended s-wave symmetry
and transforms in the A1 irrep. with both first and second
neighbor harmonics (a fit to the numerical data is plotted
as a dark blue line)

(a)

(b)
(c)

Fig. 5 TUFRG results for V1/t = −1 and μ/t = 2. Track-
ing the evolution of the P, C, D channels, we can compare
the maximal value of the respective vertices and detect a
divergence in the C/D channel, see a. Moreover we notice
the expected alignment of the D and C channel due to
symmetry. The momentum resolved on-site vertex D1,1(q)
in b peaks at the Γ point, indicating the possibility of a
Pomeranchuck instability. The reconstructed order param-
eter ΔD(k) of the D channel is in the A1 irrep., see c. We
use Nq = 540, Nf = 19

(a)

(b) (c)

Fig. 6 Patching results for V1/t = −0.6 and μ/t = 1.8.
Here, the flows of the channel maxima (see a) signifies a
pairing instability. The superconducting gap, extracted from
the renormalized vertex in b, has f -wave symmetry (light
blue dots) and can be fitted by the nearest-neighbor har-
monic of the B1 irrep. (dark blue line)

sistently predict two different kinds of superconductiv-
ity with q = 0 for an extended range of fillings.

More specifically, moving away from μ/t = 2 towards
smaller values, the Pomeranchuck instability will at first
be replaced by a region of f -wave superconductivity.
Using the FRG data, we can reconstruct a gap func-
tion as detailed in Sect. 3.4. Indeed, we find that the
gap function belongs to the one-dimensional B1 irrep.
of C6v (see Figs. 6 and 7). The size of the filling range
where the f -wave superconductivity instability occurs
grows for decreasing interaction strength |V1|. In the
case of V1 = −0.4 this type of superconductivity is
even the only one which persists. Notably, in the case
of V1 = −1.0, where the region is the smallest, the N -
patch FRG scheme does not detect f -wave at all while
TUFRG still resolves a small domain of this instability.

Lowering μ further, p-wave superconductivity beco
mes the leading instability, which is described by the
two-dimensional E1 irrep. of the same point group (see
Figs. 8 and 9). On a mean-field level, it is energetically
beneficial for the superconducting order to open a full
gap in the quasi-particle spectrum, which can be accom-
plished, for example, by constructing the superconduct-
ing gap Δ(k) as a complex superposition of the E1 lat-
tice harmonics. This leads to a p + ip superconducting
state featuring a finite Chern number C = −1 which is
thus topologically non-trivial (see Appendix D).

Qualitatively, the two superconducting instabilities
we find here are also consistent with the mean-field
study presented in Ref. [38]. We note, however, that
our FRG study includes additional fluctuations, which
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(a) (b)

Fig. 7 TUFRG results for V1/t = −0.6 and μ/t = 1.8.
Tracking similar to Fig. 5 we can now find a divergence
of the P channel away from Van Hove filling, indicating
the emergence of superconductive instability (see a). The
reconstructed leading gap Δ(k) of this instability (see b)
depicts a function in the B1 irrep. of C6v. The black line
represents the Fermi surface, featuring 6 zero crossings. We
use Nq = 540, Nf = 19

(a)

(b) (c)

Fig. 8 Patching results for V1/t = −1 and μ/t = 1.2. Sim-
ilar to Fig. 6, the vertex flows, plotted in a, hint towards
a superconducting instability. The respective gap equation,
which requires the renormalized vertex from b as input,
has a two-fold degenerate leading eigenvalue. The respec-
tive eigenvectors (superconducting gaps), displayed as light
blue (light red) dots in c, have p-wave symmetry and are
well described by the nearest-neighbor lattice harmonics of
the E1 representation of C6v, which we indicate by a dark
blue (dark red) line

induce the Pomeranchuk instability when approaching
Van Hove filling.

4.3 Phase diagram of the attractive case

In Fig. 10, we have mapped out the phase diagram for
various V1/t < 0 using both, the N -patch FRG and the
TUFRG. Generally, the phase boundaries, the respec-
tive ground state instabilities, and the critical scales
are in reasonable agreement. Some deviations in the

(a)

(b) (c)

Fig. 9 TUFRG results for V1/t = −1 and μ/t = 1.2 with
Nq = 540, Nf = 19 For even lower fillings we still find
a divergence of the P channel a. But the reconstructed
(degenerate) leading gaps Δ(k) of the emerging supercon-
ductivity instability (see b) depict now functions in the E1

irrep. of C6v. The black line represents the Fermi surface,
featuring 2 zero crossings

critical temperatures are visible, in particular, in the
regions where the superconducting instabilities occur
at very low scales. Notably, the transition from Pomer-
anchuk to the f -wave superconductivity is in good
alignment in both methods while the second transition
point towards p-wave superconductivity has a larger
difference although deep into this particular phase the
methods apparently converge.

To establish the reliability of our results, we have fur-
ther studied the convergence of the TUFRG approach
with respect to the momentum- and form-factor reso-
lution (Nq , Nf ) in more detail, see App. B.3.

5 Repulsive case V1 > 0

We now consider the repulsive case V1/t > 0. Here,
we can expect that the occurring instabilities result
from an interplay of the perfect nesting at the Van
Hove point, whose effect can be mitigated by changing
the filling, and a divergent susceptibility in the pairing
channel, which eventually induces a superconducting
instability.

5.1 CDW at Van Hove filling

Similar to the attractive case, both methods detect a
divergence of the particle-hole channels for μ/t = 2.
An analysis of the possible order parameters 〈ψ̄k+qψk〉
(see Figs. 11 and 12), however, reveals that the leading
instability occurs for transfer momenta q, which coin-
cide with the nesting vector M . The FRG results thus
indicates the instability towards a charge density wave.
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Fig. 10 Phase diagram for attractive interactions from
patching and TUFRG. At Van Hove filling and for suffi-
ciently strong interactions, both methods consistently pre-
dict a Pomeranchuk instability (see Figs. 4 and 5 for more
details). Below μ/t = 2.0, two kinds of pairing instabili-
ties can be found: an f -wave superconductor in vicinity of
Van Hove filling (see Figs. 6 and 7) and a p-wave instabil-
ity (see Figs. 8 and 9) at even smaller values of μ/t. The
boundaries are indicated by colored crosses (for the f -wave
superconductor) or dots (for the Pomeranchuk instability),
respectively

(a) (b)

Fig. 11 Patching results for V1/t = 1 at Van Hove filling.
a Flow of the channel maxima, indicating a simultaneous
divergence in both particle-hole channels, consistent with
the TUFRG result in Fig. 12. b Plot of the direct particle-
hole channel right at the critical scale Tc. The corresponding
plot for τph,c can be obtained via crossing symmetry, i.e. a
permutation φ1 and φ2 and a flip of the overall sign

5.2 p̃-wave superconductivity below Van Hove filling

As we have discussed for the attractive case, the Fermi
surface loses its nesting property below Van Hove fill-
ing, and, thus, fluctuations in the particle-hole channels
are weaker (but still finite). In contrast to our previ-
ous considerations, however, putative superconducting
instabilities would now arise from a different mecha-
nism. Since V1/t > 0, pairing is not directly encapsu-
lated by the bare vertex and an attractive interaction in
τpp henceforth needs to be generated by inter-channel
feedback during the RG flow.

Indeed, both methods find an instability of the
particle-particle channel for various fillings μ/t < 0
and, remarkably, the flows of the maxima in the differ-
ent channels plotted in Figs. 13a and 14a underline the

(a) (b)

Fig. 12 TUFRG results for V1/t = 1 and μ/t = 2 with
Nq = 540, Nf = 19. Tracking the evolution of the chan-
nels P, C, D, we will find a CDW instability as the maximal
absolute value of the C and D diverge while the P channel
remains small, see a. The alignment of the C and D chan-
nel is still expected because of the symmetric connection
of the diagrams. The on-site, momentum resolved D chan-
nel D1,1(q) inhabits peaks at the M points, indicating the
emergence of the CDW with modulation exp (iMR)

importance of particle-hole fluctuations for the emer-
gence of superconductivity. While the pairing chan-
nel is negligible (in TUFRG) or at least smaller than
the other contributions (in the patching scheme), the
particle-hole channels first sharply increase and then
converge to a constant value, which dominates the ver-
tex. In the low temperature regime, however, an abrupt
upturn in the τpp flow can be observed, which ulti-
mately results in a divergence of the RG flow. The
respective gap function again transforms in the E1

representation of C6v, but requires both nearest- and
second-nearest neighbor lattice harmonics, as indicated
by an increased number of nodes on the Fermi surface
(see Fig. 13c or Fig. 14b). We dub this instability p̃-
wave to set it apart from its counterpart in the attrac-
tive case.

Notably, a complex order parameter constructed
solely from the second neighbor E1 basis functions like-
wise yields C = −1, whereas superpositions of both the
first and second neighbor harmonics can generate an
enhanced quantum Hall response due to Chern num-
bers |C| > 1 (see Fig. 19 for more details).

5.3 Phase diagram of the repulsive case

In Fig. 15 we finally show results for the phase dia-
gram obtained from the patching scheme and TUFRG
for various fillings and repulsive interactions. Interest-
ingly, the temperature scales for the p̃-wave supercon-
ductor measured in the patching scheme are almost one
order of magnitude higher than in TUFRG, though the
nature of the instability remains the same. Moreover,
the sharp drop in Tc between the CDW and supercon-
ducting regime is absent in the patching results, where
only a soft shoulder is indicative of the transition. Close
to Van Hove filling on the other hand, the agreement is
more reasonable. Since the central patch points coincide
with the saddle points in the latter case, this generates
the suspicion that the projection to the Fermi surface
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(c)
(b)

(a)

Fig. 13 Patching results for V1/t = 1 and μ/t = 1.7. A
superconducting instability, driven by strong particle-hole
fluctuations, becomes visible as a divergence of the particle-
particle channel (see a and b). The pairing potential, con-
structed from τpp at the critical scale Tc, has two degenerate
gaps (light red and light blue dots in c), which can be fit
by a linear combination of first and second neighbor lattice
harmonics of the two-dimensional E1 representation of C6v

(dark red/blue line)

(a)

(b) (c)

Fig. 14 TUFRG results for V1/t = 1 and μ/t = 1.7 with
Nq = 540, Nf = 19 The RG flow for repulsive interactions
away from Van Hove filling features the divergence of the
P channel and hence a superconductive instability a. The
reconstructed degenerate leading gaps Δ(k) of this insta-
bility (see b) depict a higher harmonic function of the E1

irrep. of C6v. The black line represents the Fermi surface,
featuring 10 zero crossings each

Fig. 15 Phase diagram for repulsive interactions from
patching and TUFRG. Both approaches predict one transi-
tion from a metallic state, where no instability of the RG
flow is observed down to T/t = 10−5, to an extended p̃-wave
superconductor (see Figs. 13 and 14), followed by another
transition (indicated by a colored dot) to a charge density
wave with transfer momentum q = M close to Van Hove
filling (see Figs. 11 and 12)

might be responsible for the observed discrepancy away
from perfect nesting.

6 Discussion

We analyzed competing orders in a model of spinless
electrons on the triangular lattice with nearest-neighbor
interaction. Our study was motivated by the obser-
vation of correlated states in moiré bilayers of tran-
sition metal dichalcogenides. These systems are effec-
tively described by interacting electrons on a triangu-
lar lattice, although equipped with (pseudo)spin and/or
orbital degrees of freedom. To distill out the mini-
mal degrees of freedom, we considered the paradig-
matic toy model of spinless electrons and showed that
it still possesses a rich interplay of ordering tendencies
in the vicinity of a Van Hove singularity. To resolve
this interplay, we calculated the effective two-particle
interaction vertex in an unbiased way with the func-
tional renormalization group. It is crucial to accurately
resolve the momentum dependence of the vertex and
we used two different parameterizations - a patching
scheme for the Fermi surface and a channel decompo-
sition for the momentum transfers. Both of them give
qualitatively consistent results. We note that alterna-
tive patching schemes with very high computational
costs could potentially remedy quantitative discrepan-
cies between N -patch and TUFRG, e.g., by employing
a regular discretization of the full Brillouin zone, cf.[57].
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With an attractive bare interaction, we find a Pomer-
anchuk instability in the s-wave channel directly around
Van Hove filling and f - and p-wave pairing instabil-
ities in its vicinity for smaller fillings. Within single-
channel resummation schemes, such as, e.g., the RPA
in the particle-hole channel or the BCS resumma-
tion in the particle-particle channel, both channels can
develop an instability, although at weak coupling the
particle-particle or pairing channel has a stronger diver-
gence (logarithmic vs double logarithmic). Interest-
ingly, in our calculations, the Pomeranchuk instability
in the charge channel develops first due to non-universal
effects (beyond the logarithmic scaling). The s-wave
Pomeranchuk instability corresponds to a singular com-
pressibility but is not associated with any symmetry-
breaking order. This can signal the tendency to phase
separation with domains of different density. Another
possibility is that the divergence is cured by terms out-
side of our truncation, e.g., by self-energy terms, and
makes room for a subleading instability. The p-wave
pairing solution is two-fold degenerate and can form
chiral p+ip superconductivity in the ground state. This
topological triplet superconducting state breaks time-
reversal symmetry and can host Majorana modes on its
boundaries.

In the case of a repulsive bare interaction, we obtain
a CDW instability closest to Van Hove filling, whose
fluctuations mediate unconventional p-wave pairing at
smaller fillings. The wave vectors of the CDW are the
three non-equivalent M points of the Brillouin zone
and the exact charge pattern of the associated order
depends on their combination in the ground state.
Due to the bare nearest-neighbor repulsion, we find
the unconventional p-wave pairing to be of extended
size described by nearest- and next-nearest-neighbor
harmonics. This can yield topological p + ip states
with higher Chern numbers, which increases, e.g., the
number of chiral edge modes and the quantum Hall
response.
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A Temperature regulator

Both codes applied in this manuscript make use of the
temperature flow scheme developed by Honerkamp and
Salmhofer [50]. As such, the bare propagator is regularized
as

G0(iω, k) → GT
0 (iω, k) =

T 1/2

iω − ξ(k)
, (25)

while the fermionic fields ψ̄, ψ are simultaneously rescaled
by a factor T −3/4. This way, the temperature only appears
in the Gaussian part of the action and the flow equations
(5) apply up to a substitution Λ → T . Another prominent
advantage of this regularization, apart from being able to
directly identify Λ with a physical quantity (temperature),
is that contributions from particle-hole loops are fully taken
into account even for small total momenta. In contrast to,
for example, momentum shell schemes (see Ref. [30]), insta-
bilities with transfer momenta at the Γ point are therefore
not artificially suppressed, allowing to treat all channels in
an unbiased way [50].

B Flow equations and numerical
implementation of TUFRG

B.1 Derivation of TUFRG flow equation

We will show the derivation of the TUFRG flow equation
on the example of the P channel. To that purpose we invert
the relation Eq. (13) for the P channel and take the scale
derivative:

d

dΛ
P l,l′(q) =

∫
k

∫
k ′

d

dΛ
ΦP (q; k, k′)fl(k)f∗

l′(k
′). (26)
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From the channel decomposition Eq. (10) we use:

d

dΛ
ΦP (q; k, k′) = τpp(q + k, −k, q + k′, −k′)

= −1

2

∫
p

d

dΛ
[GΛ

0 (iω, p + q)GΛ
0 (−iω, −p)]

× V Λ(q + k, −k, p + q)

× V Λ(p + q, −p, q + k′) (27)

We will now treat the particle-particle diagram by inserting
two δ-functions in momentum space:

τpp(q + k, −k, q + k′, −k′)

= −1

2

∫
p

d

dΛ
[GΛ

0 (iω, p + q)GΛ
0 (−iω, −p)]

×
∫

u

V Λ(q + k, −k, u + q) · δ(u − p)

×
∫

v

V Λ(v + q, −v, q + k′) · δ(v − p) . (28)

Now these δ-functions are expressed using the definition
of the form factors Eq. (14). Rearranging the emergent form
factors and the respective sums yield:

τpp(q + k, −k, q + k′, −k′)

= −1

2

∑
L1,L2

∫
u

∫
v

∫
p

d

dΛ

× [GΛ
0 (iω, p + q)GΛ

0 (−iω, −p)]fL1(p)f∗
L2(p)

× V Λ(q + k, −k, u + q) · f∗
L1(u)

× V Λ(v + q, −v, q + k′) · fL2(v) . (29)

Plugging Eq. (29) back into Eq. (27) finally results into:

d

dΛ
ΦP (q; k, k′)

= −1

2

∑
L1,L2

∫
p

d

dΛ

× [GΛ
0 (iω, p + q)GΛ

0 (−iω, −p)]fL1(p)f∗
L2(p)

×
∫

k

∫
u

V Λ(q + k, −k, u + q)fl(k)f∗
L1(u)

×
∫

v

∫
k ′

V Λ(v + q, −v, q + k′)fL2(v)f∗
l′(k

′)

= +
1

2

∑
l1,l2

V P (q)l,l1Ḃ(q)
(−)
l1,l2

V P (q)l2,l′ . (30)

Where in the last line we wrote the result in the concise
form using the definitions for the bubble Eq.(33) and the
cross-channel projections Eq. (34). The derivation of the C
and D channel is performed analogously.

B.2 Elements of flow equations

Each flow equation Eqs. (16)–(18) consists of a product
of a particle-particle (−) or particle-hole (+) bubble inte-

gral Ḃ(q)±
l,l′ connecting two cross-channel projections V X ,

with X = P, C, D. For completeness, both objects will be
described here explicitly. The bubble integrals emerge by
insertion of the form-factor resolved unities in Eqs. (6)–
(8) to separate the loops of the diagrams from the vertices.

Their explicit form is given by

Ḃ(q)
(±)

l,l′ = −
∫

p

d

dΛ
[GΛ

0 (iω, p + q)

× GΛ
0 (±iω, ±p)]fl(p)f∗

l′(p) . (31)

By implementing the temperature flow as shown in App. A
and performing the Matsubara summations explicitly the
bubbles are cast into:

Ḃ(q)
(+)

l,l′ =+

∫
p

n′
F (ξ(p+q))−n′

F (ξ(p))

ξ(p+q)−ξ(p)
fl(p)f∗

l′(p), (32)

Ḃ(q)
(−)

l,l′ =−
∫

p

n′
F (ξ(p+q))+n′

F (ξ(−p))

ξ(p+q)+ξ(−p)
fl(p)f∗

l′(p),

(33)

where n′
F (x) is the Fermi function after performing the

temperature-derivative i.e. n′
F (x) = d

dT
nF (x). After insert-

ing the form-factor resolved unities into the initial flow equa-
tions, the vertices will also gain a dependency on the form-
factors. The emergent objects will be the cross-channel pro-
jections:

V P
l,l′(q)=

∫
k ,k ′

fl(k)f∗
l′(k

′)V Λ(k+q,−k, k′+q,−k′),

(34)

V C
l,l′(q)=

∫
k ,k ′

fl(k)f∗
l′(k

′)V Λ(k + q, k′, k′ + q, k) ,

(35)

V D
l,l′(q)=

∫
k ,k ′

fl(k)f∗
l′(k

′)V Λ(k + q, k′, k, k′ + q) ,

(36)

where the integral includes the Brillouin zone area:
∫

k
=

A−1
BZ

∫
dk. These expressions can also be simplified by

plugging in the plane wave form-factors exp(ikRl) (see
App. B.3) and expressing V Λ by the decomposition Eq. (9).
Therefore the double integral over the Brillouin zone is
exchanged by a simple sum over the selected form-factors∑

L:

V P
l,l′(q) = V P,0

l,l′ (q)+V P �C
l,l′ (q)+V P �D

l,l′ (q)+Pl,l′(q) , (37)

V P �C
l,l′ (q) =

∑
L

C̃RL,−RL+R l+R l′ (−RL+Rl′)e
−i(RL−R l′ )q ,

V P �D
l,l′ (q) =

∑
L

D̃RL,−RL+R l−R l′ (−RL−Rl′)e
−iRLq .

V C
l,l′(q) = V C,0

l,l′ (q)+V C�P
l,l′ (q)+V C�D

l,l′ (q)+Cl,l′(q) , (38)

V C�P
l,l′ (q) =

∑
L

P̃RL,−RL+R l+R l′ (−RL+Rl′)e
−i(RL−R l′ )q ,

V C�D
l,l′ (q) =

∑
L

D̃RL,RL−R l+R l′ (−Rl)e
−iRLq ,

V D
l,l′(q) = V D,0

l,l′ (q)+V D�P
l,l′ (q)+V D�C

l,l′ (q)+Dl,l′(q) , (39)

V D�P
l,l′ (q) =

∑
L

P̃RL,RL−R l−R l′ (−Rl)e
−i(RL−R l′ )q ,

V D�C
l,l′ (q) =

∑
L

C̃RL,RL−R l+R l′ (−Rl)e
−iRLq .

The objects V X,0
l,l′ (q) encode the initial interaction of the

model Eq. (1) by projecting it into the respective channels,
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see App. C. X̃l,l′ represents the Fourier-transformed chan-
nels, for example for the pairing channel P :

P̃l,l′(Ri) = A−1
BZ

∫
dp Pl,l′(p)e−ipR i . (40)

B.3 Choice of momenta and form-factors and
convergence

One has the freedom to select different sets of form-factors as
long as the unity condition Eqs. (14)-(15) are fulfilled. The
simplest choice of form-factors have the form of plane waves:
fl(k) = exp (ikRl) where Rl is a real space vector of the lat-
tice of the investigated model, i.e. in our case the triangular
lattice. This choice has the advantage, that the truncation
of form-factors can be done within an interpretable reason-
ing: the inclusion of a form-factor fl(k) will correspond to
taking effects of fermionic bilinears with distance Rl into
account [58]. Since we assume that the emerging physics in
the RG flow will be predominately influenced by short-range
effects, we will truncate all form-factors which exceed a cho-
sen distance. In our calculations we mostly select Nf = 19
form-factors, corresponding to on-site (i.e. R1 = 0), first-,
second- and third-nearest neighbors effects. For the conver-
gence checks in Figs. 17, 18 we will also use Nf = 37 (i.e. up
to 5th nearest-neighbors effects) and Nf = 61 (i.e. up to 8th
nearest-neighbors effects), see Fig.16. This specific choice of
amount of form-factors is based on keeping a hexagonal-
shell Ns into account. This means, that we will include all
plane waves with Rl which are on or inside the Ns − th
hexagon of the real space lattice, cf. Fig.16. Therefore the
numbers Nf = 19, 37, 61 correspond to the hexagon-shells
Ns = 2, 3, 4.

For the momentum resolution, we choose evenly placed
points in the Brillouin zone. Most of our calculations are
done with Nq = 180 momenta to compare it with the 192
patching points of the other approach, while for the con-
vergence checks in Figs. 17, 18 we also choose Nq = 336,
Nq = 540 and Nq = 792.

Actually, one does not have to calculate the RG flow for
all momenta Nq , but only for a fraction 1/12 × Nq . The
rest of the contributions can then be restored by symmetry
relations since the symmetries of the initial model Eq. (1)
are inherited by the flow equations, see [53] for details.

C Initial conditions

The initial condition for the FRG flow is given by the bare
two-particle vertex V0, which can be directly read off the
microscopic model in Eq. (1). For this purpose, one needs
to identify the action Sint with the vertex at the UV scale,
i.e Sint = V ΛUV = V0, and additionally account for crossing
symmetries, such as V (k1, k2, k3, k4) = −V (k2, k1, k3, k4).
The initial condition needs to be properly (anti-) sym-
metrized henceforth. On the level of the Hamiltonian, cross-
ing symmetry can already be made explicit by reordering
the Fock space operators as

V1

∑

〈ij〉
ninj = V1

∑

〈ij〉
c

†
i c

†
jcjci

=
1

4
V1

∑

〈ij〉

(
c

†
i c

†
jcjci − c

†
i c

†
jcicj − c

†
jc

†
i cjci + c

†
jc

†
i cicj

)
.

(41)

Transforming to momentum space, the initial condition for
the FRG flow is thus

V0(k1, k2, k3, k4)

=
V1

2

∑
δ

(
e−i(k2−k4)δ − e−i(k2−k3)δ

− e−i(k1−k4)δ + e−i(k1−k3)δ

)
, (42)

where we sum over the nearest-neighbor displacement vec-
tors δ. Projecting all momenta to the Fermi surface via
π : 1.BZ → Z

N
FS, Eq. (42) directly serves as the initial con-

dition for the patching scheme.
For the TUFRG approach, we additionally insert Eq. (42)

into Eqs. (34)–(36) to derive explicit expressions for V X,0
l,l′ ,

with X ∈ {P, C, D}. This procedure finally yields

V C,0
R1,R1

(q) = −V D,0
R1,R1

(q) = −V1

∑
δ

eiqδ (43)

V P,0
Rl,Rl

(q) = V C,0
Rl,Rl

(q) = −V D,0
Rl,Rl

(q) = V1 (44)

V P,0
R−l,Rl

(q) = −V1e
−iqRl , (45)

with l ∈ {2, 3, 4, 5, 6, 7} as the initial condition for the
TUFRG flow.

D Chern numbers

To access possible topological properties of pairing instabili-
ties, we consult a Skyrmion winding number formula [59,60]

C =
1

4π

∫
1.BZ

d2k

〈
m(k)

∣∣∣∣∂m(k)

∂kx
× ∂m(k)

∂ky

〉
, (46)

where 〈. | .〉 is the Euclidean scalar product. Here, m(k)
denotes the pseudospin vector or Skyrmion magnetiza-
tion, which follows the winding of the superconducting gap
around the Fermi surface. In algebraic form, m(k) is given
by

m(k) =
1

E(k)

⎛
⎝Re(Δ(k))

Im(Δ(k))
ξ(k)

⎞
⎠ , (47)

where E(k) =
√|Δ(k)|2 + ξ(k)2 is the Bogoliubov quasi-

particle spectrum.
It is immediately clear, that any real or purely imagi-

nary gap function will result in a topologically trivial state
with C = 0. In contrast, for a gap function correspond-
ing to a two-dimensional irreducible representation, such
as the p-wave instabilities we found in the main text, the
possibility of non-trivial topology arises. In principle, one
would need to minimize the mean-field free energy for a
linear superposition of the respective lattice harmonics and
determine whether or not a complex gap function prevails.
Here, we resign from employing this variational approach
and instead use a heuristic argument. Consider the ground
state energy E0 = −〈|Δ(k)|〉FS for a gap function Δ(k)
which we suppose to live in the complex two-dimensional
space corresponding to a doubly degenerate eigenvalue of
the linearized gap equation. If this linear combination is
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Fig. 16 Momentum resolutions and form-factors choice. Left: different resolutions of the Brillouin zone. Only 1/12 of the
momenta (red) actually have to be calculated in the RG flow while the rest can be derived by symmetry relations. Right:
real space vectors Rl for the plane wave form-factors

(b)(a)

Fig. 17 Convergence of critical RG scales from TUFRG for the attractive case V1/t < 0. a Study for convergence for
increasing momentum resolution. All calculations align qualitatively and quantitatively for the checked region. b Study for
convergence in form factors. While the results match qualitatively, minor deviations in the critical temperature regarding
the superconductive instabilities occur

either real or purely imaginary, there will be momenta on
the Fermi surface where |Δ(k)| is gapless and no contribu-
tion to the ground state energy is obtained henceforth. If
one assumes a complex linear combination instead, |Δ(k)|
will be fully gapped at the Fermi level and thus, a lower
ground state energy is obtained. It is therefore natural to
assume, that the energetically more beneficial superposition
of lattice harmonics is a complex one. Computing C from the
ansatz Δ(k) = δE1

1 (k)+ iδE1
2 (k) for the nearest-neighbor or

second neighbor lattice harmonics δE1 of the E1 irrep., for
example, we find C = −1 over the entire range of fillings
where the p-wave instability occurs. An admixture of both,
the first and second neighbor functions may, however, yield a
strongly enhanced Chern number, as exemplified in Fig. 19.
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(b)(a)

Fig. 18 Convergence of critical RG scales from TUFRG for the repulsive case V1/t > 0. a For the investigation of conver-
gence in increasing momentum resolution Nq we find qualitatively the same phase diagram which quantitative deviations
diminish for higher resolution. b The the investigation of including more form factors Nf we still find qualitative alignment,
while the critical temperature slightly grows for including more shells. Since we are primarily interested in the qualitative
behaviour and the deviations are not too strong, we use Ns = 2 for the calculations in the Sects. 4 and 5

Fig. 19 Example calculations for Chern numbers in the
E1 representation for μ/t = 1.7. Motivated by our finding
of a higher-harmonic p̃-wave instability for repulsive interac-
tions V1/t > 0 (see Figs. 13 and 14), we perform exemplary
computations of C for superconducting gaps of the form
Δ(k) = [cos(α)δE1

1 (k)+sin(α)δ̃E1
1 (k)]+ i× [cos(α)δE1

2 (k)+

sin(α)δ̃E1
2 (k)], where δE1

1(2) denotes the nearest-neighbor lat-

tice harmonics of the E1 irrep. and δ̃E1
1(2) the respective sec-

ond neighbor functions. The model is chosen such that we
recover the pure first (second) neighbor limit for α = 0 (π)
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