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Abstract. We analyze a variety of integration schemes for the momentum space functional renormalization
group calculation with the goal of finding an optimized scheme. Using the square lattice t − t′ Hubbard
model as a testbed we define and benchmark the quality. Most notably we define an error estimate of
the solution for the ordinary differential equation circumventing the issues introduced by the divergences
at the end of the FRG flow. Using this measure to control for accuracy we find a threefold reduction
in number of required integration steps achievable by choice of integrator. We herewith publish a set of
recommended choices for the functional renormalization group, shown to decrease the computational cost
for FRG calculations and representing a valuable basis for further investigations.

1 Introduction

The functional renormalization group (FRG) has proven
itself to be a versatile theoretical framework to study
competing ordering tendencies and other many-body
phenomena both in itinerant fermionic [1–3] and quan-
tum spin systems [4–8]. The underlying flow equations
are a large system of coupled, non-linear ordinary dif-
ferential equations (ODEs), the solution of which stipu-
lated the development of highly sophisticated numerical
codebases [9–11]. So far, algorithmical improvements
mainly focussed on the efficient representation of vertex
functions and optimizing momentum integrations on
the right-hand-side (RHS) of the flow equations, with
the numerical solution of the ODE itself only treated
as a necessity rather than an opportunity for improve-
ments. Consequently, a simple Euler step was used
in the majority of FRG calculations to date, see e.g.
[3,4,10], with the inception of higher-order solvers from
the Runge–Kutta family being a fairly recent develop-
ment in the field [9,11–21].

The appropriate choice of integrator will lead to
improved accuracy at the same number of evaluations
of the RHS, which constitutes the main computational
bottleneck of any FRG calculation. Alternatively, one
can significantly reduce this number while maintain-
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ing good accuracy. In contrast to many other optimiza-
tions, this gain does not introduce any further physical
approximations, but solely rests in mathematics. As a
prototypical setup to study the influence of different
integrators, we choose the momentum space FRG in the
simplest truncation scheme, only considering the four-
particle vertex Γ(4) while neglecting self-energy effects.
Additionally, we limit ourselves to the well-understood
case of the square lattice Hubbard model with hopping
up to second-nearest neighbors [9,14,15,22–34].

We explicitly refrain from implementing more sophis-
ticated approximation schemes [9,14,15,30,35,36] or
multi-band extensions [3,37–41], not only for clarity of
analysis, but rather focus on benchmarking a large vari-
ety of different standard ODE solvers, most available
in existing libraries [42,43]. Nevertheless, we expect our
conclusions to provide a starting ground for the applica-
tion of better integrators to more sophisticated physical
approximations.

The paper is organized as follows: after an intro-
duction of our notation of momentum space FRG and
the approximations employed in our implementation in
Sect. 2.1, we provide an overview over various integra-
tion schemes in Section 2.2 and define tangible metrics
to judge the quality of the different schemes in Sect. 2.3.
In Sect. 3 we employ a two-stage elimination proce-
dure. In a first step we sort out all integrators inca-
pable of reproducing the physical ordering instability
for the nearest-neighbor only model. We subsequently
analyze the remaining set over a larger parameter space
including second-neighbor hopping to distinguish opti-
mal choices.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-022-00378-x&domain=pdf
http://orcid.org/0000-0003-1282-2768
http://orcid.org/0000-0003-2707-4790
http://orcid.org/0000-0002-0615-2211
mailto:beyer@physik.rwth-aachen.de
mailto:florian.goth@physik.uni-wuerzburg.de
mailto:tobias.mueller@physik.uni-wuerzburg.de


116 Page 2 of 11 Eur. Phys. J. B (2022) 95 :116

2 Methods

2.1 FRG in brevity

The following discussion of FRG will be reduced to an
absolute minimum and only serves as a means to intro-
duce the notation used. For detailed derivations we refer
the interested reader to standard literature [1–3].

In the following, we will focus solely on the square-
lattice t − t′ Hubbard model defined by

H0 = −
∑

〈i,j〉,σ
t c†

i,σc†
j,σ −

∑

〈〈i,j〉〉,σ
t′ c†

i,σc†
j,σ

−
∑

i,σ

μ c†
i,σc†

i,σ , (1)

HI = U
∑

i,σ

ni,σni,σ̄ , (2)

where t (t′) denote (next-) nearest-neighbor hopping
amplitudes, μ is the chemical potential and U the
strength of the onsite Hubbard interaction. Due to the
spin-rotation invariance of Eqs. (1) and (2), we can
constrain our derivation to the SU(2)-symmetric set of
equations. To simplify the functional dependence of the
FRG equations, we invoke the static approximation of
the problem, i.e. consider only the zero Matsubara fre-
quency component of the vertex functions, and neglect
self-energy effects [3,25]. We furthermore calculate at
zero temperature to enable analytic evaluation of all
occurring Matsubara frequency summations.

The SU(2)-reduced FRG equation in the conven-
tional truncation scheme including contributions up to
the four-point vertex Γ(4) is diagrammatically shown
in Fig. 1 and can be expanded to (using V as SU(2)-
symmetrized four-point vertex):

d
dΛ

Vk0,k1,k2 = Vk0,k1,lL̇
−,Λ
l,−l+k0+k1

Vl,−l+k0+k1,k2

+ Vk0,l−k0+k2,k2L̇
+,Λ
l,l−k0+k2

Vl,k1,l−k0+k2

+ Vk0,l−k0+k2,k2L̇
+,Λ
l,l−k0+k2

Vk1,l,l−k0+k2

+ Vk0,l−k0+k2,lL̇
+,Λ
l,l−k0+k2

Vl,k1,l−k0+k2

+ Vk0,l−k1+k2,lL̇
+,Λ
l,l+k1−k2

Vl,k1,k2 , (3)

Fig. 1 Diagrammatic representation of the func-
tional renormalization group equations. We show the
SU(2)-symmetric flow equation, where the SU(2)-degree of
freedom is kept constant along the lines of the vertex. The
line through the loop represents the scale derivative d/dΛ.
We have indicated the three channels of the FRG flow, dif-
fering in the bosonic transfer momentum: P -, C-, and D-
channel

where we suppress the, in the SU(2) Hubbard model,
unnecessary spin indices. We also use a modified
Einstein sum convention to indicate the momentum-
integration in l over the Brillouin zone (BZ). To
treat the continuous momentum-dependence of the ver-
tex function, we employ the “grid-FRG” momentum
discretization scheme in the BZ with the additional
refinement-scheme described in Ref. [44]. Eq. (3) will
commonly be referred to as the right-hand side (RHS)
of the FRG equation, which we need to compute at each
flow step iteration.

The L̇Λ given in the RHS equation is the derivative
w.r.t. the scale Λ of the regulated loop

L±,Λ =
∑

n

GΛ(k, iωn)GΛ(k′,±iωn) . (4)

The FRG regulator Θ(Λ) here is introduced multiplica-
tively by defining GΛ = Θ(Λ)G where G is the bare
propagator. We have used both the particle-particle
loop L−,Λ and the particle-hole loop L+,Λ in our nota-
tion. As a regulator we choose the Ω-cutoff Θ(Λ) =

ω2

ω2−Λ2 [29] with high numerical stability. The analytic
Matsubara frequency summations then yield:

L̇±,Λ
l,l′ =

d
dΛ

L±,Λ
l,l′ (5)

=

⎧
⎪⎪⎨

⎪⎪⎩

±1/4
ε ∓ ε′

(
ε(3|ε| + Λ)
(|ε| + Λ)3

∓ ε′(3|ε′| + Λ)
(|ε′| + Λ)3

)

∓3ε2 − 4|ε|Λ − Λ2

4(|ε| + Λ)4
if ε = ε′ ,

(6)

with ε = ε(l) and ε′ = ε(l′) being the dispersion ε of the
non-interacting Hamiltonian H0 for specific momenta
l, l′. To obtain the effective low-energy vertex we inte-
grate the differential equation (RHS) starting at infi-
nite (i.e. large compared to bandwidth) Λ = Λ∞ and
approach Λ → 0. When encountering a phase transition
the loop derivatives will diverge in conjunction with the
associated susceptibilities and we terminate the flow.
This is the integration for which we attempt to find
an optimized solver. Due to the divergence we can not
finalize the calculations using the solvers but instead
hard-terminate them once the maximum element of the
vertex exceeds a threshold Vmax.

2.2 Integrators

The possible choices of integrators are plentiful but
in the following we highlight some of the most preva-
lent algorithms as well as some which will prove to
excel during our testing. The measurement schemes
used to determine quality are provided at the end of
this section. To numerically solve the non-linear non-
autonomous differential equation

d
dΛ

V = RHS(V,Λ) (7)
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we utilize both single-step and multi-step methods [45]
to obtain an iteration procedure

Vn+1 = Vn + ΔΛ,nΦ(Λn, Vn,ΔΛ,n) (8)

that we terminate at the divergence of V .
We almost exclusively focus on integrators that are

implemented in the excellent DifferentialEquations.
jl package [42] written in the Julia programming lan-
guage. We emphasize integrators that are well-known
and commonly employed, such as the Runge–Kutta
class and also widely available in other programming
languages. A full list of the considered (including all dis-
regarded) integrators can be found in Appedix A. We
want to note here that non-adaptive integrators were
eliminated as finer step sizes at lower Λ are required for
efficient solution of the flow equations.

2.2.1 Single-step methods

A single-step method is characterized by utilizing at
each step a starting value Vn and additional evaluations
of the RHS to construct Vn+1. The most well-known
family of methods in this class are the Runge–Kutta
type integrators where the function Φ is constructed
as a weighted average of evaluations of RHS within
the interval [Λn,Λn+1] such that it coincides up to the
respective order with its Taylor polynomial:

Vn+1 = Vn + ΔΛ

s∑

i=1

biki (9)

ki = RHS

⎛

⎝Λn + ciΔΛ, Vn + ΔΛ

s∑

j=1

aijkj

⎞

⎠(10)

The method is explicit if aij = 0 for j ≥ i else it is an
implicit method. Adaptivity can be included by a time-
step dependent ΔΛ,n. The specifics of the methods are
covered in tremendous detail in the literature, e.g., [45].

2.2.2 Example: adaptive explicit Euler

The conceptually simplest integrator in FRG that
serves as the baseline for this work is the adaptive
explicit Euler described in Algorithm 1. Note that we
have included a function f(Λ, Vmax) = min(max(aΛ/
Vmax,Δmin),Δmax) which is an adaption scheme specifi-
cally designed to reduce the step-width in the proximity
of the expected flow divergence. Here a is a small num-
ber determining the relative speed of the integration
while Δmax,Δmin are chosen based on previous experi-
ence: Δmax � Λ × 10−2 and Δmin � Λ × 10−5.

2.2.3 A note on implicit Runge–Kutta methods

We have attempted to include implicit integration
schemes in our analysis but were inhibited by their high
memory cost. While for explicit methods the require-
ments are understood to be m × sizeof(V ) - m being

Algorithm 1 Explicit adaptive Euler
1: V = V0, Λ = Λ0

2: while max(V ) < Vmax and Λ > 0 do
3: dV = RHS(Vn, Λ)
4: Vn+1 = Vn + ΔΛdV
5: Λn+1 = Λn − ΔΛ

6: ΔΛ = f(Λ, Vmax)
7: end while

the number of stored evaluations of RHS - for the
implicit methods we must instead consider the size of
the Jacobian we are attempting to invert. This is pro-
portional to the square of the size of a single solu-
tion (as it is a linear map between two of them) and
is thus ∝ sizeof(V )2. Even for the relatively small
scale systems we employ here the number of elements
is N6

k ≈ 1013. All implicit integrators will therefore not
be a viable option for FRG calculations.

2.2.4 Methods based on the non-linear Magnus series

Another class of one-step methods specifically suited
for homogeneous, non-linear, non-autonomous ODEs is
based on the Magnus form of the exact solution of (7),

V (Λ) = exp (Ω(Λ, V∞)) V∞ (11)

where V∞ = V (Λ = ∞) and we now instead require
a suitable approximation for Ω. Ω fulfills a non-linear
differential equation

dΩ
dΛ

= dexp−1
Ω

(
A(Λ, eΩV∞)

)
, Ω(∞) = 0 (12)

where the inverse of the dexpΩ operator is defined by
the series

dexp−1
Ω (C) =

∞∑

k=0

Bk

k!
adk

ΩC, (13)

with the iterated right-nested commutator adk+1
X (Y ) =

[X, adk
X(Y )], Bk are the well-known Bernoulli num-

bers, and the matrix A is defined by the relation
RHS(Λ, V ) = A(Λ, V )V . The first-order approximation
can be obtained by truncating Eq. (13) as

Ω[1](Λ,Λ∞) =
∫ Λ

Λ∞
A(s, V∞)ds. (14)

Of course the presence of iterated commutators makes
higher order expressions unwieldy and hence we restrict
ourselves to the first, Eq. (14), and second order approx-
imations

Ω[2](Λ,Λ∞) =
∫ Λ

Λ∞
A(s, eΩ[1]

V∞)ds. (15)
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The general higher order approximation can be found in
the literature [46]. An iterative time-stepping procedure
is obtained by applying the approximate time evolution
operator exp(Ω[m]) for small steps ΔΛ such that

yn+1 = exp
(
Ω[m] (Λn + ΔΛ,Λn)

)
yn. (16)

The integrals in Eqs. (14) and (15) are approximated by
order-consistent low-order expressions, such that e.g.,
at first order

Ω[1](Λ + ΔΛ,Λ) =
∫ Λ+ΔΛ

Λ

A(s, V (Λ))ds (17)

≈ ΔΛA(Λ, V (Λ)). (18)

Adaptivity is easily included using time slices of differ-
ing times ΔΛ,n determined by the same strategy as for
the adaptive Euler.

2.2.5 Multistep/Adams methods

In contrast to one-step methods, multistep methods uti-
lize previous evaluations of the right-hand side, fn+k =
RHS(Vn+k,Λn+k) to approximate it with a Lagrange
polynomial. The general form of these linear multistep
methods can be stated as

k∑

j=0

αjVn+j = h
k∑

j=0

βjRHS(Λn+j , Vn+j). (19)

If βk = 0 the method is explicit and does not require the
evaluation of RHS at unknown points. Commonly this
class is termed Adams-Bashforth (AB) technique. Oth-
erwise the method is implicit. If the interpolation poly-
nomial is only augmented with the single yet unknown
point RHS(Λn+k, Vn+k) the method is termed Adams-
Bashforth-Moulton method(ABM). In this case the
implicit nature can be treated by employing a predictor-
corrector scheme where the prediction V̂ is obtained by
an explicit Adams method of one order lower than the
implicit method, RHS is evaluated and the new value
Vn+k is obtained. Multistep methods need startup val-
ues, but these are obtained with explicit Runge–Kutta
or similar methods. Adaptive step size integrators can
be obtained by utilizing more sophisticated interpola-
tion techniques.

2.3 Measures of quality

Differentiation of the quality of integrators will be based
on the following aspects:

1. Error compared to a converged high-fidelity Euler
calculation

2. Minimal number of RHS-evaluations
3. RAM requirements

2.3.1 Error compared to high-fidelity Euler

All integrators must converge to the same result at infi-
nite numbers of steps performed, or equally at negligi-
ble integration error for adaptive procedures. To obtain
this result in the most controlled fashion we converge
an adaptive Euler integrator by successively shrinking
the maximum allowed step-width. We find for all sim-
ulated parameter points, that a maximum step width
of Δmax = 0.001Λ (cf. Sect. 2.2.2) leads to converged
results, implying NRHS = 5700−8000 for a single simu-
lation, depending on the precise divergence scale. Note
that this number is an order of magnitude higher than
for all other discussed methods. The measure of error
employed in the comparison is the normed sum of dif-
ferences in the resulting vertex tensor:

∑
i|V (i) − VEuler(i)|∑

i|VEuler(i)| . (20)

To avoid numerical discrepancies in the vicinity of
the flow divergence, we instead compare the vertices
slightly above the critical scale Λcrit at Λ = 0.17. This
scale is sufficiently low for the integrator to have per-
formed a significant number of integration steps but suf-
ficiently high to avoid the critical scale. Note that this
number is arbitrarily chosen to lie within this region.

Because this measure does not include an analysis of
the error size which is tolerable for qualitatively cor-
rect FRG results (for the given approximation level),
we have additionally in stage 2 Sect. 3.2 included a
full phase scan to ensure the results are consistent with
expected behavior. We eliminate all integrators that are
inconsistent.

2.3.2 Minimal number of RHS-evaluation

As we are aiming to optimize the calculation time
requirements, the most important measure of quality
for any integration routine must be the number of RHS-
evaluations it requires until divergence. This is the only
expensive part of the calculation and is thus a triv-
ial, but platform independent estimator for the run-
time. While this is no longer true for implicit integra-
tors where the inversion of the Jacobian would be most
expensive, these are disallowed by their RAM require-
ments and thus can be neglected here.

2.3.3 Memory requirement

For most FRG calculations the bottleneck is not only
the calculation time but also the memory consumption
[44,47]. As higher-order methods may require the sav-
ing of intermediate results we want to track the num-
ber of concurrently allocated vertex-sized objects as a
measure of RAM usage. Once again for implicit meth-
ods this may not be the most accurate measure due
to the creation of high-dimensional Jacobian matrices,
but we disregard them entirely. The impact on memory
usage by other objects is of second order when com-

123



Eur. Phys. J. B (2022) 95 :116 Page 5 of 11 116

pared to the vertices in scaling: the vertices scale as
N3

k while the loop-derivatives scale as N2
k and the dis-

persion cache scales as NkNkf
. The measure chosen is

the peak memory usage during the calculations. This
will be highly proportional to the total number of ver-
tex objects though slight lower-order effects are to be
expected.

3 Results

We have ensured that our implementation falls within
the FRG equivalence class of the Hubbard model
reported on in Ref. [44]. This is a grouping of three dis-
tinct FRG implementations which all reproduce numer-
ically equivalent results for a narrow range of tests.
Reproduction of all the published tests, most notably
equality of all elements of the resulting vertex, confirms
that this code is correct for the chosen approximations.
Note that while one of the codes in that publication is
written by one of us, we utilize for this benchmark an
independent implementation written in the Julia pro-
gramming language.

All simulations were performed using the following
parameters: t = 1, U = 3t, t′ ∈ [0.0, ...,−0.5]t, μ = 4t′.
We use a momentum meshing of nk = 16 × 16 with a
refined meshing of nfine = 9×9. The FRG flow is started
at Λ∞ = 50 and tracked until the maximum element
of the vertex exceeds Vmax = 50t, where we terminate
the integration and analyze the last vertex VΛcrit with
respect to its ordering tendencies. While this resolu-
tion is insufficient for physical simulations at low scales,
and we acknowledge that the stability of all integrators
increases for higher resolutions, the fact that most inte-
grators yield correct phase predictions at the end of flow
is testament to a sufficient resolution for this analysis.
These predictions are shown in Fig. 3 where the sim-
ilarities are easily apparent. We also already want to
note that the limits of the chosen resolution are visible
here in the difference to the established literature result.
This gap could be lessened by increasing the resolution.

For error controlled adaptive step-size integrators, we
allow for an absolute local error of 10−6, a relative local
error of 10−3 and set a lower bound of 10−5 on the
absolute step size to prevent excessive runtimes close
to divergences of the flow.

We have split the investigation into a two staged
elimination process where we iterate over consecutively
more involved tests to find the best set of integrators
and neglect the remainder.

3.1 Stage 1

The first approach to determine the feasibility of the
integrators is to analyze the square lattice Hubbard
model at t′ = 0, μ = 0 where we expect antiferromag-
netic ordering.

The results of stage 1 are displayed in Fig. 2. We now
select the subset of integrators which yield a speedup
(or are similar) in number of evaluations when com-

Fig. 2 Integrator Comparisons Quick analysis of the
quality of integrators. For this measurement we chose the
single point at t′ = 0, μ = 0 in the t − t′ square-lattice
Hubbard model. At this point we expect an antiferromag-
netic divergence, every method incapable of producing this
is omitted. We show the number of steps required by the
integrators for the prediction of the divergence as well as
the error when compared to high-fidelity Euler calculations.
The best integrators lie near the origin of the coordinate
system, low number of steps and negligible error. We in the
following will consider only integrators marked with circles,
the set of which we will refer to as stage 2 integrators. The
crossed ones were eliminated from further consideration as
they were far from optimal. A full list of considered integra-
tors as well as the reasons some are not shown can be found
in Appendix A

pared to the adaptive Euler integration scheme while
maintaining higher or similar accuracy. Other reasons
for discarding, are that we run out of memory, lack of
features, or plainly wrong results. A detailed listing of
all considered integrators can be found in Appendix A,
where we also give references to their details in litera-
ture. This reduces our list of integrators to consider for
the continuation to be:

• Adaptive Euler
• Bogacki-Shampine 3/2 (BS3)
• Dormand-Prince’s 5/4 Runge–Kutta (DP5)
• Second order Heun’s
• Second order Midpoint
• canonical Runge–Kutta 4 (RK4)
• Strong-stability preserving Runge–Kutta (SSPRK43)
• Tanaka-Yamashita 7 Runge–Kutta (TanYam7)
• Tsitouras 5/4 Runge–Kutta (Tsit5)
• Third order Adams-Moulton, BS3 for starting val-

ues (VCABM3)
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Fig. 3 Hubbard Model Calculations of the reference
Hubbard model at van Hove filling with t′ ∈ [0.0, −0.4t]. The
comparative data is taken from [48], on which we have super-
imposed the subset of stage 2 integrators. We have removed
all integrators who were unable to produce the correct phase
at points. Note that we in this analysis ignore the region
around the SC-FM phase transition as it is notoriously
unstable under low scales [32,44]. Dots represent antifer-
romagnetism, crosses superconductivity and diamonds fer-
romagnetism. Note that the scale difference to literature
results is due only to the chosen resolution

We have thus significantly reduced the number of
integrators to consider in the next section. While
we acknowledge that some of these might have been
tweaked into compliance by optimizing parameters we
insist on the out-of-the-box setup of the integrators
being at least sufficient (if maybe not optimal). Par-
ticularly noteworthy is here the behavior of AB meth-
ods in contrast to the ABM methods. The AB meth-
ods sampled their startup values of V very close to the
initial Λ∞ where V is very smooth and structureless.
From this structurelessness huge steps for the rest of
the integration domain were inferred that led to wrong
results. In the ABM methods this use of excessively
huge step sizes was intrinsically prevented by the cor-
rector step and hence did not require any tweaking of
method parameters.

3.2 Stage 2

To check the reduced set of integrators for physical con-
sistency we now evaluate the t − t′ square lattice Hub-
bard model at van Hove filling by scanning the second
neighbor hopping t′ (adapting the chemical potential
μ = 4t′ accordingly to remain at v.H. filling) as previ-
ously calculated in Refs. [1,32]. We perform these cal-
culations with each of the second stage integrators to
obtain a more qualified understanding of their accuracy
and cost. The choice to evaluate along the van Hove sin-

gularity was made to ease the costs of the simulations.
At the singularity the high density of states raises the
critical scale of the transition, lowering the minimum
required resolution to find a phase other than metal.
We retain however quantitative differences in the criti-
cal scale compared to literature results as can be seen
in Fig. 3.

To determine accuracy we in a first step check that
the phase transitions occur in a controlled manner in all
integrators and all points are properly found to diverge.
In this we however make an exception near the SC-
FM phase transitions, where the low integration reso-
lutions used here will lead to uncontrolled behavior. By
this process we eliminate the Midpoint and TanYam7
integration methods, which did not properly reproduce
the leading instability for some points in the phase dia-
gram. The remaining results and integrators are shown
in Fig. 3. We can here also see the good agreement
of qualitative results from the different integrators, an
expected but satisfying result.

To evaluate the performance we sum the number of
RHS evaluation for each of the 20 runs in the interval
t′ ∈ [0, ...,−0.5] into a total number NRHS. This is a
more accurate measure of performance than before as
the phase diagram contains parameter regions, where
early divergences are expected as well as points, at
which low RG scales have to be reached. This is sup-
plemented by an improved error estimate: as before
we calculate the effective vertex at the low scale of
Λ = 0.17 and compare it to the results obtained
by a converged high-fidelity Euler, but we now con-
sider 3 additional points, one in each phase at t′ =
0.0,−0.05,−0.2,−0.45. As an accuracy measure we
consider the mean of the relative error for these four
parameter combinations. The results of this analysis
are presented in Fig. 4. We find, that depending on
the exact requirements on the integrator, different algo-
rithms should be employed. For purely optimizing the
runtime, i.e. the number of RHS evaluations, the multi-
step method VCABM3 clearly is the method of choice,
with a mean error comparable to the adaptive Euler,
but only needing less than a quarter of RHS evalua-
tions. On the other extreme, we find DP5 to be the
most accurate, but requiring 40% more runtime. A com-
petitive alternative is RK4 with a slightly larger rela-
tive deviation from the reference data, but at a com-
putational cost comparable to the Adaptive Euler. As
a good compromise between numerical complexity and
accuracy, we find a cluster of three methods: BS3, Tsit5
and, most notably, SSPRK43 all have an order of mag-
nitude lower relative error, but at roughly two third of
the computational cost of the Adaptive Euler.

In Fig. 5 we additionally show the measured peak
memory requirement of our implementation relative to
the Adaptive Euler. This figure is highly implemen-
tation dependent, but should nevertheless serve as a
rough guide to the overhead incurred by the differ-
ent solvers. Most clearly, this figure shows, that the
extreme numerical efficiency of VCABM3 is achieved
trading runtime for memory consumption, with a five-
fold requirement compared to a simple Euler implemen-
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Fig. 4 Stage 2 Integrator Comparisons We compare
the integrators which passed the primary analysis in a
second iteration using an extended testing scheme. This
extended scheme consists of a full t − t′ Hubbard model
phase scan. The NRHS here represents the total number of
steps for the evaluation of the 20 points in the phase dia-
gram. Similarly, the error represents the mean of the errors
at the four evaluation points t′ = 0, −0.05, −0.2, −0.4. Once
again proximity to the origin is the quality measure in the
graphic

tation. The remaining integrators considered all fall in
the range of 1.5 to 2.5 the memory requirement. Out
of the three general algorithms, SSPRK43 clearly has
the lowest memory requirements, which combined with
its good accuracy and numerical efficiency makes it the
best suited ODE integrator in our benchmark, followed
closely by BS3.

4 Conclusions

We have benchmarked a multitude of ODE integration
algorithms both from the DifferentialEquations.jl
library and own implementations against a reference
Adaptive Euler using the square-lattice Hubbard model
as a test case. We have identified, that the right choice
of integrator can significantly reduce the numerical cost
for integrating the runtime while at the same time pro-
ducing more accurate results. We identify the multi-
step algorithm VCABM3 to be the most efficient one
with acceptable numerical errors, while highest accu-
racy can be achieved by the numerically expensive DP5
algorithm, or alternatively the slightly less accurate
RK4, which however has about the same numerical cost
as the Adaptive Euler.

As the best compromise between accuracy and numer-
ical speedup, we identify Tsit5, BS3 and SSPRK43,
with the latter slightly outclassing its rivals. This fact

Fig. 5 Stage 2 Memory Comparison Supplementing
the analysis presented in Fig. 4 we here provide the mea-
surements of the memory usage during the integration pro-
cedure. We have denoted the memory usage in terms of the
most efficient schemes, the adaptive Euler. Note that we
have just measured the total memory usage, partial might
thus correspond to objects of smaller size. Nonetheless, the
measurement will reflect the ram needed for the integrations
very well

at first glance is surprising, as this specific integra-
tor is designed to handle dissipative differential equa-
tions stemming from a discretization of hyperbolic par-
tial differential equations. However, as the FRG equa-
tions are believed to flow towards a fixed point for any
given phase [49], we speculate them to exhibit dissipa-
tion in the mathematical sense, which is the property
SSPRK43 is design to utilize. This means that solu-
tions of the RG flow corresponding to different initial
conditions in the same phase become more similar as
they approach Λ = 0, as the dominant physics will be
the same for all of these. A mathematically thorough
analysis of the FRG equations regarding this property,
however, is beyond the scope of this paper.

As we only have analyzed a subset of the plethora
of available ODE integrators in this paper, we cannot
claim to have found the “best” integrator for FRG sys-
tem, but we ensured to represent a spectrum of the
common choices.

We also have focused on the simplest physically inter-
esting model, the square-lattice Hubbard model. While
we believe, that the scaling of computational cost can
be extrapolated to other problems, more complicated
problems posed with more intricate Fermi surfaces may
require denser integration steps, the best algorithms
may therefore differ.

Furthermore, when using other approximations of
momentum space FRG, for example self energy inclu-
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sions [50] or multiloop [9,16,51,52], the RHS equations
are subject to structural changes. The inclusion of self
energies might benefit from the use of operator splitting
methods, such as the generalized Strang or Leapfrog
splitting [53], where self energy and vertex are evalu-
ated at alternating half-step intervals. The combina-
tion of operator splittings together with the Magnus
series could also enhance its competitiveness when cer-
tain parts of the equations can be treated analytically
exact.

The merit of our results is still valid, the best inte-
grators as found here will be good candidates for the
other applications.

Another path of algorithmic progress can be made
by taking into account the intricacies of the FRG equa-
tions. Since their integration starts at infinity we pro-
pose to investigate transformations of this semi-infinite
domain as in Refs. [20,54,55].

Furthermore, the integration of the FRG equations
contains an inherent singularity corresponding to the
physical ordering tendency. Implicit methods [56] are
well suited for such problems, but were out of the scope
of our investigation due to memory requirements. It
could be a worthwhile direction of future investiga-
tion. More specialized multistep integrators that uti-
lize rational interpolants [56,57] instead of Newton and
Lagrange polynomials for the definition of their inte-
gration rule could be beneficial in dealing with the sin-
gular behavior. But of course their effectiveness rests
on methods of obtaining the action of the Jacobian of
RHS or suitable approximations to it.
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Appendix A Full list of considered integra-
tors

The full list of single-step and multi-step integrators for dif-
ferential equations considered in this work can be found in
Tables 1 and 2, respectively, together with the correspond-
ing literature reference and the reason we have discarded
them, if applicable.

Table 1 Full set of considered single-step integra-
tors. The disregarded integrators have the reason given for
disregarding them

Name Reference Reason if discarded

Adaptive Euler [45]
Adaptive Mag-
nus1

[46]

Adaptive Mag-
nus2

[46] (Error Stage 1)

BS3 [58]
ARKODE [59] (Complex arithmetic)
DP5 [60]
DP8 [45] (Runtime Stage 1)
EPIRK4s3A [42] (Not adaptive)
exp4 [42] (Not adaptive)
exprb32 [42]
Feagin10 [61] (Wrong Stage 1)
FRK65 [42] (Very excessive run-

time)
Heun [45]
HochOst4 [42] (Not adaptive)
implicit Euler [56] (Memory)
implicit Midpoint [56] (Memory)
KenCarp4 [42] (Memory)
Kvaerno5 [42] (Memory)
LawsonEuler [42] (Memory)
Midpoint [45] (Wrong Hubbard)
NorsettEuler [42] (Not adaptive)
RadauIIa3,
RadauIIa5

[42] (Complex arithmetic)

RK4 [45]
RKO65 [42] (Not adaptive)
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Table 1 continued

Name Reference Reason if discarded

ROCK2, ROCK4 [42] (Excessive runtime)
Rodas4p2 [42] (Memory)
Ros3p [42] (Memory)
Rosenbrock23 [42] (Memory)
SDIRK2 [42] (Memory)
SSPRK22,
SSPRK33,
SSPRK83

[42] (Not adaptive)

SSPRK43 [62]
SSPRK932 [42] (Type errors, excessive

runtime)
TanYam7 [63] (Wrong Hubbard)
Trapezoid [56] (Memory)
Tsit5 [64]
veldd4, velds4 [42] (Memory)

Table 2 Full set of considered multi-step integra-
tors. The disregarded integrators have the reason given for
disregarding them

Name Reference Reason if discarded

AB3, AB5, ABM32,
ABM54

[45] (Not adaptive)

QBD, QNDF, QBDF1,
QNDF1

[42] (Memory)

TRBDF2 [42] (Memory)
VCAB3 [45] (Error Stage 1)
VCAB5 [45] (Error Stage 1)
VCABM3 [45]
VCABM5 [45] (Error Stage 1)
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