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Abstract. The functional renormalization group (FRG), an established computational method for quantum
many-body phenomena, has been subject to a diversification in topical applications, analytic approxima-
tions and numerical implementations. Despite significant efforts to accomplish a coherent standard through
benchmarks and the reproduction of previous results, no systematic and comprehensive comparison has
been provided until now. While this has not prevented the publication of relevant scientific results we
argue that established mutual agreement across realizations will strengthen confidence in the method. To
this end, we report explicit implementational details and numerical data reproduced thrice independently
up to machine accuracy. To substantiate the reproducibility of our calculations, we scrutinize pillar FRG
results reported in the literature, and discuss our calculations of these reference systems. We mean to
entice other groups to reproduce and establish this set of benchmark FRG results thus propagating the
joint effort of the FRG community to engage in a shared knowledge repository as a reference standard for
FRG implementations

1 Introduction

The functional renormalization group (FRG) is one
of the most promising methods for the analysis of
low-temperature instabilities of two-dimensional mate-
rials [1–16] as it offers an unbiased view, not presup-
posing the existence of certain phase transitions [17].
Because the numerics involved in prediction using the
FRG are expensive, the full breadth of possible depen-
dencies could only be captured by a few implemen-
tations of the two-dimensional single-band Hubbard
model on the square lattice [18,19], while a general-
ization to non-SU(2) symmetric or multi-orbital mod-
els is still absent. This inherent fragmentation has ren-
dered it difficult to directly compare distinct imple-
mentations. Traditionally only qualitative results have
been employed [20].Unfortunately various qualitative
features produced by the FRG, such as the critical
scale and leading instabilities, have (over the course of
converging our three distinct implementations) proven
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to be robust against a certain degree of program-
ming error, e.g., the exact ordering of indices in sub-
leading diagrams. When trying to predict many-body
instabilities of novel systems, certainty over reference
calculations is crucial to assure validity. Beyond the
qualitative level, the aspiration of the method is to
become a quantitative quantum many-body tool, fur-
ther emphasizing numerical correctness. The definition
of correctness here refers to a certain formal approx-
imation level, i.e., a specific truncation of the hierar-
chy of FRG equations, as detailed in Ref. [17]. When
gauging the physical potential of a certain approx-
imation or comparing various approximations, valid-
ity of numerical implementations is mandatory. It is,
therefore, desirable to introduce a shared knowledge of
the “proper” results of the tensor contractions intrin-
sic to most FRG calculation. A reproduction of the
exact numerics yields certainty over prefactors, signs
as well as contraction indices, not ensured when val-
idating using, e.g., the phase transitions predicted in
the square lattice Hubbard model. We try to lay the
groundwork for achieving consistency across different
codes by providing momentum-space data of the fre-
quency independent interaction vertex reproduced by
three different, independently developed FRG codes.
We choose this focus as a first step towards a shared

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-022-00323-y&domain=pdf
http://orcid.org/0000-0003-1282-2768
http://orcid.org/0000-0003-3399-1341
http://orcid.org/0000-0002-5453-9779
mailto:beyer@physik.rwth-aachen.de
mailto:profe@itp.uni-frankfurt.de
mailto:klebl@physik.rwth-aachen.de


65 Page 2 of 18 Eur. Phys. J. B (2022) 95 :65

knowledge repository, motivated by the application to
strongly correlated states in two-dimensional materials.

The paper is structured as follows: We first give a
short briefing on the theory and some technicalities
of the momentum-space FRG and its truncated unity
formfactor expansion. Then, we introduce the three
distinct implementations and elaborate their areas of
application. We proceed to provide results in the
three tests systems we have chosen, to establish agree-
ment with published references. The penultimate sec-
tion presents the exact procedure of our comparison,
enabling the reader to compare their own implementa-
tion using the provided parameter and data sets. Intri-
cacies and specifics regarding various challenges faced
during development are presented in the Appendix.

2 Methods

2.1 Functional renormalization group

The derivation of FRG is given in utmost brevity here,
we refer the interested reader to Refs. [17,21] for an
in-depth discussion. We commence with the partition
function of the interacting system:

Z =
∫

DψDψ̄ e−S[ψ,ψ̄] , (1)

where ψ, ψ̄ are fermionic Grassmann fields and S is the
action of the system given by single-particle and inter-
acting components:

S[ψ, ψ̄] = −(ψ̄, Q0ψ) + SI [ψ, ψ̄] . (2)

Here, Q0 = ik0 − H0 + μ = G−1
0 denotes the inverse of

the bare one-particle Green’s function with H0 as the
non-interacting part of the Hamiltonian, k0 a Matsub-
ara frequency and μ the chemical potential.

By adding external sources η, η̄ and Legendre trans-
forming, we obtain the generating functional, the log-
arithm of which is the generating functional for con-
nected Green’s functions, W[η, η̄]. The effective action
Γ [ψ, ψ̄] is then obtained by another Legendre transform
of W[η, η̄]:

W[η, η̄] = −ln
∫

DψDψ̄ e−S[ψ,ψ̄]+(η̄,ψ)+(η,ψ̄) ,

Γ [ψ, ψ̄] = (ψ̄, η) + (η̄, ψ) + W(η̄, η) .

(3)

We introduce an artificial scale dependence to the bare
propagator by means of a cutoff function: GΛ

0 (k) =
G0(k)ΘΛ(k). The sole requirement on the regulator
ΘΛ(k) is that it vanishes for high scales (Λ → ∞)
and approaches 1 as Λ → 0. This allows a successive
integration of different energy scales. More details on
regulators can be found in Sect. 2.2.

We can now take a derivative of the effective action
with respect to the scale introduced by means of the
regulator and obtain the Wetterich equation [22,23]:

Fig. 1 Diagrammatic representation of the functional
renormalization group equations. The lower set of diagrams
represent the SU(2)-symmetric flow equations, where the
SU(2)-degree of freedom is kept constant along the lines of
the vertex. The line through the loop represents the scale
derivative d/dΛ. We have already indicated the three dis-
tinct channels of the FRG flow, differentiated by the bosonic
transfer momentum: P -, C-, and D-channel

d
dΛ

Γ [ψ, ψ̄] = −(ψ̄, Q̇Λ
0 ψ)

−1
2
tr

[
Q̇

Λ

0 (Γ (2)Λ[ψ, ψ̄])−1
]
, (4)

with

QΛ
0 =

(
QΛ

0 0
0 −QΛ

0
T

)
(5)

and

Γ (2)Λ =
(

δ2ΓΛ/δψ̄δψ δ2ΓΛ/δψ̄δψ̄
δ2ΓΛ/δψδψ δ2ΓΛ/δψδψ̄

)
. (6)

Expanding in the order of the fields ψ, ψ̄, we obtain an
infinite hierarchy of differential equations with ΓΛ,(n)

dependent on all even contributions from ΓΛ,(2) to
ΓΛ,(n+2). Next, let us clarify the truncation level
used for the benchmarks presented in this publica-
tion: We note that higher-order derivatives become
decreasingly relevant because they correspond to multi-
electron interactions [24]. Thus, we truncate at ΓΛ,(4),
neglecting all higher-order contributions of the Grass-
mann field expansion. Furthermore, we neglect the self-
energy contribution ΓΛ,(2) as—within the scope of this
work—Matsubara frequency dependencies of the ver-
tex functions are ignored [25]. Their inclusion is possi-
ble and has been covered extensively for the 2D Hub-
bard model in Refs. [18,19,26–29], considering the com-
parison sought here they are however inopportune. We
express these equations as diagrams with ΓΛ,(4) = V 1

as 4-particle nodes connected by the G0 propagators
and their derivative: SΛ

0 (k) = d
dΛGΛ

0 (k). The remaining
equation is then diagrammatically given in Fig. 1. It
is insightful to note that up to the truncation of Γ (2)

1 For the sake of simplicity, we do not explicitly distinguish
between the anti-symmetrized vertex function in the SU(2)
symmetric case, usually denoted with V and the non-SU(2)
vertex function which is usually denoted with V.
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and Γ (n≥6) in the Grassmann field expansion the FRG
introduces no approximations.

To obtain a prediction for the two-particle interac-
tion V independent of the artificial scale we integrate
the ordinary differential flow equation (Fig. 1) start-
ing at infinite (large compared to bandwidth) Λ and
iterating towards Λ = 0. When encountering a phase
transition, the equations will diverge [24,30], making
ΓΛ,(6) a meaningful contribution and invalidating the
above truncation. We terminate the integration at this
point and examine the final V Λc to determine the order-
ing associated with the phase transition. While this
approximation can be improved upon via the inclusion
of more diagrams, e.g., by applying the more elaborate
multiloop-FRG or Parquet-approximations [18,19,31–
33], for ease of comparison and reduction in computa-
tional cost it is advantageous to maintain ease of access.

2.2 Regulators

For the calculations in this work, two different types of
regulators are used. The sharp-frequency-cutoff ΘΛ(k)
= θ(|k0|−Λ) and the Ω-cutoff [34]: ΘΛ(k) = |k0|2/(|k0|2
+Λ2). Since we assume a static vertex and neglect self-
energy effects we can analytically calculate all Mat-
subara frequency summations needed during the inte-
grations depending on the type of regulator chosen.
Through this we obtain the following loop derivatives
for the sharp-cutoff:

L̇Λ,b1b2
± (l, l′) =

1
2π

[
1

(iΛ − ε)(±iΛ − ε′)

+
1

(−iΛ − ε)(∓iΛ − ε′)

]
,

(7)

where we used the abbreviated notation ε = εb1(l) and
ε′ = εb2(l

′) (b1 and b2 refer to band indices). In the
Ω-cutoff scheme, using the same notation the resulting
equations for the loop derivative are given by:

L̇Λ,b1b2
± (l, l′) =

⎧⎪⎪⎨
⎪⎪⎩

±1/4
ε ∓ ε′

(
ε(3|ε| + Λ)
(|ε| + Λ)3

∓ ε′(3|ε′| + Λ)
(|ε′| + Λ)3

)

∓3ε2 − 4|ε|Λ − Λ2

4(|ε| + Λ)4
if ε = ε′ .

(8)
In either case, the upper (+) sign corresponds to the

particle–hole loop in the C- and D-channel diagrams,
while the lower (−) sign corresponds to the particle–
particle loop in the P -channel diagram. In the case of
the Ω regulator, we neglect the evaluation of the addi-
tional poles of the Matsubara summation which might
occur when Λ = ε, Λ = ε′ or Λ = ε = ε′. This is justified
by calculation of the dispersion only on a discrete grid,
which delegates these cases to be extremely unlikely.

2.3 Band vs orbital calculation

The above-mentioned diagrams (cf. Fig. 1) can be eval-
uated in either band or orbital space. To illustrate the

discrepancies between the two we here revert to the
non-diagrammatic representation of the P -channel. In
this channel, we can specify l′ to be: l′ = k1 + k2 − l =
q − l.

We must calculate the loop derivative in band space
yielding L̇b1b2− (l, l′). If we desire to integrate the momen-
tum dependence l using objects represented in orbital
space we need to transform this according to

L̇o1o2o3o4− (l, l′) =
∑
b1b2

L̇b1b2− (l, l′)uo1b1(l)uo2b2(l′)

u∗o3b1(l)u∗o4b2(l′) (9)

in each flow iteration. Alternatively, we can transform
the initial vertex into band space and revert to orbital
space using

V b1b2b3b4(k1, k2; k3) =
∑

o1o2o3o4

V o1o2o1o2(k1, k2; k3)

u∗o1b1(k1)u
∗o2b2(k2)u

o3b1(k3)u
o4b2

(k1 + k2 − k3) (10)

and its inverse after the FRG flow. The resulting
flow equations in band or orbital space, respectively,
are given as

d

dΛ
V o1o2o3o4

P (k1, k2;k3) =
∑

o′
1o′

2o′
3o′

4

∫

BZ
dl

V o1o2o′
1o′

2(k1, k2; l)L̇
o′
1o′

2o′
3o′

4
− (l, l′)

V o′
3o′

4o3o4(l, l′;k3) (11)
d

dΛ
V b1b2b3b4

P (k1, k2;k3) =
∑

b′
1b′

2

∫

BZ
dl

V b1b2b′
1b′

2(k1, k2; l)L̇
b′
1b′

2
− (l, l′)

V b′
1b′

2b3b4(l, l′;k3). (12)

For convenience, we have introduced

∫
BZ

dk =
∫
PZ

dk = 1 , (13)

the properly normalized integrals over Brillouin zone
(BZ) and primitive zone (PZ). The computational cost
can be reduced by using band space representations
of both vertex and loop, but because ΓΛ,(4) is not an
observable, this might introduce gauge phases into the
calculations. These can lead to difficulties when inter-
preting the results and are absent when calculating in
orbital space. The calculations within this work have,
therefore, been done in orbital representation, where
applicable.

Within the scope of FRG we treat all non-diagonal
quantum numbers on equal footing and use one shared,
linearized index oi to describe spin, orbitals, sites,
etc. Having dealt with the discrete quantum numbers
we now turn our attention to the more complicated,
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(a) (b)

Fig. 2 Meshing schemes for the functional renormaliza-
tion group calculations. a N -patch meshing scheme (fig-
ure adapted from Ref. [35]), the points are defined at the
intersections of the Fermi surface (red) with the patch-lines
(dashed gray). For a single patch, the yellow, filled area is
projected to the same momentum point. b Bravais momen-
tum mesh in primitive zone (PZ) instead of Brillouin zone
(BZ) with mesh refinement around one selected point shown
in orange

artificially discretized representation of the continuous
momentum dependencies of the vertex k.

2.4 Grid-FRG and refinement

Since the following section will deal with different meth-
ods for the evaluation of the momentum dependencies,
we start with an understanding of the fundamental
requirements posed and introduce the basic methods
of patching the BZ.

The momentum resolution of the functional renor-
malization group is limited by two distinct issues: The
lower bound is given by the ability to resolve sharp fea-
tures of the fermionic momenta in the loop derivative at
low scale. As these occur in the proximity of the Fermi-
surface (FS) this is equivalent to demanding an accurate
representation of said FS within the chosen momen-
tum scheme. The upper bound is determined by compu-
tational limitations. Because the memory requirement
for saving the vertices—the largest objects—scales pro-
portional to N3

k , raising the fidelity of momentum dis-
cretization is constrained by availability of RAM.

The traditional method of fulfilling these two aspects
is to allocate a number of points along the FS of the
system to be used as momentum points for the vertex
calculations (see Fig. 2a). While the vertex would only
be defined on the FS, using the assumption that it is
almost constant within the patch [35–37], the propa-
gators and their derivatives are evaluated for a set of
points spanning the entire area of the patch. The val-
ues would be averaged to obtain the value of L̇ at the
FS patch point, finely sampling the patches area. This
method is discussed in more detail in Ref. [35].

The immediate issue with this parameterization is
the evaluation of the fourth vertex momentum. Having
constrained k1,k2,k3 to points on the FS we have no
capacity to guarantee that k4 = k1 + k2 − k3 coin-
cides with one of the patch centers. The assumption is,

therefore, made that this can be projected to the closest
existing point, the center of the patch we land within.
This method, while historically successful in the predic-
tion of fundamental models [8,10] breaks momentum
conservation of the interaction. This is especially prob-
lematic when attempting to analyze spin–orbit-coupled
(SOC) or multi-site systems where conserving momen-
tum becomes important due to momentum-spin-locking
or momentum-orbit-locking.

The easiest method to restore momentum conserva-
tion is the introduction of an equispaced (“Bravais”)
mesh within the first PZ. For this case, shown in Fig. 2b,
the addition/subtraction of any number of momentum
points is assured to be a valid momentum point. The
obvious issue though is that the majority of points is
now far from the FS, making the resolution of the afore-
mentioned features doubtful.

If we were able to use arbitrarily high momentum
resolutions, this method would yield the exact momen-
tum integrations. It, therefore, is the base-case for the
simulations performed in this paper and offers the eas-
iest implementation of all two dimensional momentum
space FRG alternatives. The main challenges to over-
come are the memory constrains imposed by the scaling
with momentum resolution and orbital degrees of free-
dom. To circumvent this issue, we introduce an aver-
aging similar to the one performed in the evaluation of
N -patch as

L̇ijmn
± (l, l′) =

∑
lf

L̇ijmn
± (l + lf , l′ ± lf ), (14)

where l is taken from the normal (coarse) fermionic
mesh and lf is a small (refined) offset relative to this
point. We choose the sign to conserve total momentum
in each channel. The resulting refined grid is shown in
Fig. 2b. Crucially, we employ the refinement only for
an averaging within the calculations of the loop deriva-
tive and require no information of the vertex on the
full set of refined momentum points. As in N -patch, we
assume the interactions to be sufficiently slowly vary-
ing such that V (k1 + lf ,k2,k3) ≈ V (k1,k2,k3) holds.
This approximation is even more reasonable here as the
maximum distance from the center is greatly decreased.
Some intricacies on the exact implementation of choos-
ing i, j,m, n from orbital or band space are discussed
in Appendix E and are omitted here.

2.5 Truncated unities

Building upon the presented basic implementation
of grid-FRG, we now expand to further approxima-
tions. The truncated unity extension to the functional
renormalization group (TUFRG) is an approach to
reduce the computational complexity introduced using
grid-FRG while maintaining momentum conservation.
Noticing the divergences introduced in the FRG flow
will stem from the loop derivative, we isolate the
bosonic momentum q of L̇±(l,±(q−l)). For each chan-
nel (P , C, D) in Fig. 1 we, thus, obtain a distinct trans-
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fer momentum:

qP = k1 + k2 , (15a)
qC/D = k1 − k4/3 . (15b)

The remaining weaker fermionic dependencies of ver-
tex and loop are expanded in a (symmetrized) basis
of linearly independent functions fm(k)—called form-
factors. The choice of these functions is based on the
construction of basis functions for irreducible repre-
sentations described in Ref. [38] with a few improve-
ments and generalizations detailed in Appendix G. We
project/unproject the flow equations given in Fig. 1
into/from the formfactor basis using the following oper-
ators for each channel X ∈ P , C, D:

X̂[ΦX ]m,n(q) =
∫
BZ

dk

∫
BZ

dk′

fm(k)f∗
n(k′)ΦX(q,k,k′) ,

ΦX(q,k,k′) ≈
∑
m,n

fm(k)f∗
n(k′)X̂[ΦX ]m,n(q) .

(16)

It is instructive to note that with a complete basis of
formfactors this is an exact unitary transformation, but
in our case we truncate the basis by neglecting long-
range formfactors. This is reasonable because the inter-
action strength declines at long ranges [39]. The trun-
cation makes the truncated unity expansion an approx-
imation to the grid-FRG implementation, but signifi-
cantly reduces the memory requirements for the vertices
which shrink by a factor of (Nf/Nk)2. This method has
been developed in Ref. [39] based on the earlier work
in Ref. [9] and has proven successful for Hubbard and
graphene type models [1,3,4,39].

When considering the vertex in band space, the gauge
phases carried by the orbital-to-band matrices can not
be disregarded. Thus, the band space vertex cannot be
captured accurately in the truncated unity projections,
this approximation, thus, necessitates orbital space cal-
culations. TUFRG also has slight symmetry breaking at
long coupling ranges for multi-site models, the details
and workaround of this are described in Appendix F.

2.6 Real space truncated unities

In models with broken translational symmetry, momen-
tum is not good quantum number and we, thus, require
a different approach to treat these systems. The pro-
posal here is to use the real-space equivalents of form-
factors, which we will refer to as bonds for the sake
of clarity. In real space the bosonic momentum depen-
dence of each channel is translated to a dependence on
two orbitals (or sites). The fermionic momenta are then
equivalent to the remaining orbital dependencies. We
define the real space bonds gbi

(rj) as Kronecker deltas
spanning the lattice

gbi
(rj) = δ(ri + bi, rj) , (17)

where ri is the position of the site i and bi is a connec-
tion to another site starting at site i. In the case of large
unit cells, where momentum is still conserved, it may
also be beneficial to introduce real space truncated uni-
ties. The projections in this mixed space representation
then follow Eqs. (18a) to (18c):

P̂ [V ]o1o3
b1b3

(qP ) = gb1(o2,k1)g∗
b3

(o4,k3)

V o1o2o3o4(k1, qP − k1;k3), (18a)

Ĉ[V ]o1o3
b1b3

(qC) = gb1(o4,k1)g∗
b3

(o2,k3)

V o1o2o3o4(k1,k1 − qC ;k3), (18b)

D̂[V ]o1o4
b1b4

(qD) = gb1(o3,k1)g∗
b4

(o2,k4)

V o1o2o3o4(k1,k4 − qD;k1 − qD).
(18c)

The generation of the sets of real space bonds and
momentum space formfactors can now be performed
following one of two different rules: For the first, sim-
pler one, we assume that the two sets have no con-
nection, allowing for a two step projection with sepa-
rate real- and momentum space unities. This decouples
the implementations but comes with a severe drawback:
For models with more than a single site per unit cell,
it is impossible to include the same interaction orders
for each site, thus breaking the rotational and inver-
sion symmetries as detailed in Appendix F. The second
approach remedies these concerns by first creating all
real space bonds on the full lattice with nl1 ·nk1×nl2 ·nk2

elements, where nli is the number of real space unit cells
and nki

is the number of momentum points in the direc-
tion of basis vector i. Afterwards, we perform a Fourier
transform of all bonds and obtain formfactor bonds of
the following general form

gbi
(oj ,k) = e−ikB b i δ(ri + bi, rj) , (19)

where Bbi
is the beyond unit cell part of the bond bi.

The real space TU was first developed for one dimen-
sional systems starting from an analysis of the pertur-
bative orders [40–42] and was thereafter re-derived for
arbitrary dimension in the context of truncated unities
as we present it here [43].

3 Implementations

Having explained the theoretical backdrop for the
implementations we now want to discuss the three
distinct FRG codes independently developed by the
authors, sharing minor details of the code-base (input
routines, output routines). Each of the programs will
be given a short introduction to establish the function-
alities it covers, its merits and the contrast to the other
implementations.
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3.1 Code #1: grid-FRG

As the generation of band structures from ab initio sim-
ulations is common practice, it is advantageous to be
able to use these as starting point for FRG calculations.
Thus, this code implements the static four-point FRG
equations in either band or orbital space and on a regu-
lar momentum grid and allows the study of correlation
effects of arbitrary periodic systems if the following can
be provided:

– A few isolated low-energy bands of the material
in momentum space on a regular, fine momentum
mesh.

– Addition and subtraction rules for the momentum
mesh.

– The 4-point vertex in any basis that can be con-
nected to the band basis by unitary transformation
(and thus is of the same dimension). As V may be
an object of large size, it is possible to supply it on
a coarse momentum mesh.

– The orbital to band transform [Bloch functions
uob(k)] for all momentum points. In case the 4-point
vertex is given in band space, the matrices fulfill
û(k) ≡ 1.

Since the code is designed to operate on very general
models defined only by the points given above, it is
capable of running FRG simulations from, e.g., Den-
sity Functional Theory (DFT) or tight-binding (TB)
datasets. The latter can be generated from within the
code, with appropriate skeletons given to make usage
simple and efficient. Furthermore, the users are enabled
to employ their own, custom momentum space mesh-
ings and thus can in principle use the code for conven-
tional N -patch FRG simulations—even in the multi-
orbital scenario. We facilitate this by inclusion of an
appropriate code skeleton.

The main computational challenge faced by this FRG
implementation is memory size and bandwidth. The
message passing interface (MPI) allows the vertex to be
distributed on a large number of cluster nodes (with
the restriction that splitting constrained to the bosonic
momentum index qD). This code is memory-bound;
simulating, e.g., a six-band model on a 24 × 24 coarse
momentum mesh would take 288 compute nodes requir-
ing ∼ 140GiB memory on each node to store the vertex
objects. For fewer band models these requirements are
drastically lowered and allow for quick and robust oper-
ation.

3.2 Code #2: TUFRG

The aim of the TUFRG implementation is to allow fast
creation and testing of new material representations.
This is enabled by removing unnecessary constraints
imposed in the creation of previous frameworks, gener-
alizing the implementation as much as possible, while
extending to include SOC and multi-orbital systems.
The cost introduced by this inclusion has necessitated

a focus on performance, while the decision to generalize
for all systems has necessitated some performance hits.

Due to the generalized nature of this implementa-
tion it will be worse in large unit cells compared to
Code #3 and will be slower than Code #1 for grid-
FRG. It is, however, an extremely accessible version of
FRG and should be both easily usable and adaptable
to uncharted problems. Furthermore, it struggles much
less under the memory constraining the calculations in
Code #1, a similar calculation as described above would
need a single compute node, MPI is required only for
calculation speed.

The framework needs as input a tight-binding model
with dispersion and interaction defined in momentum
space as well as a momentum basis. From this the
entirety of the formfactor expansion and TUFRG cal-
culation will be performed. As the truncated unities are
based heavily on grid-FRG the framework also provides
a basic implementation of grid-FRG. While this frame-
work is capable of doing the here published grid-FRG
simulations, its primary aspiration is the TUFRG.

3.3 Code #3: RS-TUFRG

The objective of this implementation is to provide
a flexible and easy to use real- and mixed space
TUFRG algorithm. It is optimized for large unit cells,
i.e., between 10 and a few 1000 sites per unit cell which
allows for the study of many interesting phenomena,
such as edge properties, disorder effects, behavior in
quasicrystalline models and effects of different bound-
ary conditions. The models also do not have to be
defined on a lattice so that structures such as Barabasi–
Albért networks can be analyzed. This broad applica-
tion range of course leads to slight performance dete-
rioration, thus it is advisable to resort to Code #1 or
Code #2, for small unit cells or few band problems. By
including all formfactor bonds, this code can effectively
perform the grid-RG calculations presented here.

The code itself is designed to be easily extendable
with user defined models. For this it requires at least
a definition of the underlying lattice or graph, a tight
binding Hamiltonian, and a distance measure. It also
allows for the inclusion of a single Matsubara frequency
per channel during the flow. This enables the scaling
test, where we check for the correct error scaling behav-
ior of the interaction when compared to exact diagonal-
ization, as shown in Appendix H

4 Results—connecting to previous
publications

4.1 Reproducibility: the Hubbard model

To bolster confidence in the correctness of our results
we first reproduce some established results of functional
renormalization group calculations. The most basic
model—thoroughly analyzed in Refs. [18,19,25,28–30,
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(a) (b)

Fig. 3 Square lattice Hubbard model reference results.
The plots show the critical scale as a function of next-
nearest-neighbor hopping t′ with the chemical potential
fixed at μ = −4t′ to pin the Fermi level to the van Hove
singularity. Additionally, the type of instability is encoded
as markers; circles: antiferromagnetism, plus signs: d-wave
superconductivity, triangles: ferromagnetism. The interac-
tion strength is set to U = 3. a Match of the non-TU
results of Codes #1 and #2 to Ref. [30]. b TUFRG results
from Codes #2 and #3 matched to the results presented in
Ref. [39]. It should be noted that due to differing details of
approximations and simulations we do not expect the results
to exactly coincide. The discrepancies are pronounced in
the proximity of the transition from superconducting to
ferromagnetic phase at t′ ≈ −0.35. This region is both
very dependent on implementational details as well as hard
to properly resolve due to the low scales required (see
Appendix B for the minimal scale allowed by our momentum
resolution). This was already noted in the referred publica-
tions but is compounded by the different grid discretization
chosen in a (grid-FRG vs N-Patch) leading to the behavior
shown

34–36,39,44–49]—is the Hubbard model for cuprates
on a two-dimensional square lattice. We reproduce the
results from Refs. [30,39], the next-nearest-neighbor
hopping phase scan of the repulsive Hubbard model at
the van Hove singularity. Note that the critical scale
Λc, which is derived from the artificial scale parame-
ter Λ, is associated with the temperature of the phase
transition and thus corresponds to a physical observ-
able. Throughout this section, we, therefore, effectively
compare both the critical temperature and the type of
ordering to previous literature results.

The non-interacting part of the t−t′ Hubbard Hamil-
tonian is given by:

H0 = −
∑
ij,σ

tij c†
i,σcj,σ, (20)

where the hopping amplitudes are t〈i,j〉 = 1 if i, j are
nearest neighbors and t〈〈i,j〉〉 = t′ where i, j are next-
nearest neighbors. We fix the chemical potential to
μ = −4t′ pinning the system to van Hove filling. The
interacting part of the Hamiltonian is governed by

HI = U
∑
i,σ

ni,σni,σ̄ , (21)

where ni,σ = c†
i,σci,σ. Figure 3 demonstrates how all

three codes presented in this work reproduce litera-
ture in terms of both the critical scales and the type of
instability (details on the analysis of the effective ver-
tex at the critical scale are presented in Appendix c).
Note that our numerical implementations differ from
each other and the reference in terms of the specifics
and methods chosen within the scope of grid-FRG and
TUFRG. To name examples, the type of integrator,
cutoff scheme, stopping scale and termination criterion
were not explicitly coordinated. We observe that the
value of Λc and the type of instability close to a phase
transition are sensitive to these minor details, but over-
all the data shows agreement. The unattainable equiva-
lence in Fig. 3 is a motivation for the exact comparison
given in Sect. 5.

4.2 Non-SU(2) systems: the Rashba model

To confirm all three codes’ capabilities extend beyond
the SU(2) symmetric one-band Hubbard model, we
introduce a Rashba-z spin-orbit coupling (SOC) term
to the kinetic part of the Hamiltonian breaking the
SU(2) symmetry. It then reads

H0 = −
∑
ij,σ

tij c†
i,σcj,σ − iα

∑
〈ij〉,σσ′

(
σ̂ × bij

)σσ′

z
c†
i,σcj,σ′ ,

(22)
where α is the SOC strength, σ̂ is the vector of Pauli
matrices, 〈ij〉 denote nearest neighbors and bij are the
corresponding directed bonds. Extensive coverage of
Rashba-z SOC in the square lattice Hubbard model will
be provided by a publication in preparation [50] where
we employ FRG and the weak coupling renormaliza-
tion group [51,52]. Here, we indicate only the results
of a filling phase scan at fixed α = 0.1, t′ = −0.15 and
U = 3 in Fig. 4a to demonstrate internal consistency.

4.3 Multi-band systems: graphene

The third class of models we can check consistent
results for are multi-site unit cell models. Reference [9]
provides singular mode FRG results for a tight-binding
Hamiltonian of graphene to which we compare the three
codes. The non-interacting part defined on the honey-
comb lattice reads

H0 =
∑

ij,oo′,σ

tij,oo′ c†
i,o,σcj,o′,σ , (23)

where o, o′ are the sites within a unit cell, i, j are unit
cell indices and tij,oo′ the hopping parameters. We set
tij,oo′ = 1 for nearest-neighbors and tij,oo′ = t′ for next-
nearest-neighbors. For the reproduction of the results in
Fig. 4b we choose t′ = 0.1. The site-dependent Hubbard
interaction with U = 3.6 reads

HI = U
∑
i,o,σ

ni,o,σni,o,σ̄ . (24)
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(a) (b)

Fig. 4 Rashba and graphene model reference results. The
plots show the critical scale as a function of filling fac-
tor. Markers encode the type of ordering; circles: antiferro-
magnetism, plus signs: d-wave superconductivity. a Rashba
model. The complete analysis can be found in Ref. [50], here
we only show internal consistency between the three imple-
mentations. We use the following parameters: t′ = 0.15,
α = 0.1, U = 3 and the filling factor ν ∈ [0.35, 0.59] with
ν = 0 (ν = 1) corresponding to a completely empty (filled)
system. b Graphene model. The markers and colors follow
the same scheme as in (a). We choose the same parameter
set as in Ref. [9]: t′ = 0.1, U = 3.6. For ease of comparison,
we use the doping δ = 2ν−1 instead of the filling factor. The
transition from magnetic to superconducting phase occurs
at slightly different temperatures than in the reference which
however employs singular mode FRG. Graphene is also
notoriously resolution dependent (momenta and formfac-
tors) in FRG calculations due to incommensurate phases
[3] and the multi-site nature of the system. We nonetheless
obtain the central results of the publication at δ ≈ 1/4 as
well as the transition on either side

Additionally to the results in Fig. 4b, we have repro-
duced the critical interaction strength of the half-filled
system (ν = 0.5) without next-nearest-neighbor hop-
ping (t′ = 0) to be Ucrit ≈ 2.7t. This is in agreement
with both Ref. [53] as well as the expectation that FRG
lies between mean-field Ucrit ≈ 2.2t [54] and quantum
Monte-Carlo Ucrit = 3.6t − 4.0t [55–58] predictions.

5 Results—benchmark systems

The test systems were chosen to cover a breadth of dif-
ferent aspects of functional renormalization group cal-
culations in an attempt to reveal common errors. The
two-dimensional square lattice Hubbard model is cho-
sen as the starting point. We choose the SU(2) sym-
metric representation which warrants the usage of the
SU(2) symmetric set of flow equations from Fig. 1. To
also cover the non-SU(2) flow equations it is imperative
to include a non-SU(2) symmetric model. We, there-
fore, also consider the square-lattice Rashba model with
spin–orbit coupling. While this pair of models should
complete the verification of the momentum dependen-
cies in the contractions calculated during the flow, we
want to extend the benchmarks to include a multi-band
model with non-orthogonal lattice vectors. This is cru-

cial in finding phase-errors as well as non-periodicities
of the Hamiltonian. We, therefore, evaluate and publish
data for a honeycomb lattice Hubbard model, which is a
simple model for graphene. While this is obviously not
a complete list of possible models one could show equiv-
alence for, inconsistencies in this subset should uncover
most inconsistencies that can arise during the imple-
mentation of the FRG. If more models are desirable or
advisable the equivalence class will be extended and the
repository [59] updated appropriately.

5.1 Square lattice SU(2): the Hubbard model

The simplest test case is the square-lattice Hubbard
model. Having indicated that our codes reproduce pre-
viously published results we now define parameters sets
for the benchmarks. The chosen way of integration is
grid-FRG—this allows the greatest confirmation across
the three codes—other reproduction of data are avail-
able for comparisons upon request. Be mindful that RS-
TUFRG or TUFRG benchmarks can only be supported
by a subset of implementations.

Model: To make the test as accessible as possible we
shall fix t = 1, this allows implementations which use
this—rather common—scale to implement a compar-
ative calculation. The remaining parameters of Eqs. 20
and 21 are (arbitrarily) defined to the following nonzero
values: U = 3.0 and t′ = −0.1. In the case of the single
band SU(2) symmetric Hubbard model the interaction
is constant:

V (k1,k2,k3) = U . (25)

The chemical potential is defined as μ = 0.5. We chose
to define the chemical potential rather than the filling
to remove the indirection of its calculation. This process
is inaccurate, especially at the small system sizes dis-
cussed here. As the first step of any momentum space
FRG calculation likely is checking for correctness in
the non-interacting part of the Hamiltonian, we pro-
vide band structures along the high-symmetry paths
for each of the models discussed in Appendix A.

Meshing: It is essential for exact numerical accuracy
that the momentum space is meshed identically. We
propose the following patching scheme: An equispaced
grid of 6 points along each edge is laid within the first
PZ to include all high-symmetry points. 36 is a sensi-
ble choice for the total number of points because while
being small enough to be quickly calculated it still con-
tains points that are not high-symmetry points. The
resulting mesh can be seen in Fig. 5a. This mesh is
used wherever momenta are needed, for the discretiza-
tion of the vertex as well as the integration over the
loop momentum. It should be noted that the refinement
mentioned in Sect. 2.4 is not applied in these calcula-
tions to reduce sources of potential error.
Flow: The most difficult aspect of the calculations to
align are the parameters and calculations involving the
integration from high to low scale. There are many
options of integrators, Euler or adaptive, each with a
significantly different update scheme for d/dΛ. Even
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(a) (b)

Fig. 5 Momentum space meshing in test cases. a Square
lattice models (Hubbard and Rashba) have a square Bril-
louin zone (BZ) and a square primitive zone (PZ). b Triag-
onal lattice systems (e.g., graphene) have a hexagonal BZ
and a PZ in rhombus shape. Both meshes are an equispaced
grid along the basis vectors of the reciprocal lattices G1 and
G2. In the hexagonal case we can see that the PZ mesh will
fill the BZ only after backfolding of points, this is intended
behavior

minute details such as the order of operations (calcu-
lating ΔΛ(Λn+1) or ΔΛ(Λn)) are relevant. For this rea-
son we decide to use the simplest possible integrator,
constraining the issues in the numerical analysis:

The integration scheme is a fixed-stepwidth Euler
integration which yields V (Λn+1) = V (Λn)+ΔΛ

dV
dΛ (Λn).

We fix ΔΛ = 0.1 ≡ const. and perform 90 iterations
of the FRG-flow starting at Λ = 10. We disable all
other termination conditions and are thus certain to
obtain V (Λ = 1.0). To avoid misinterpretation, we pro-
vide pseudocode for the procedure: For regulator of the

Algorithm 1 Flow scheme with constant update
1: Λ = 10
2: Δ = 0.1
3: Initialize vertex V = V0

4: for n = 0, 1, . . . , 90 do
5: Evaluate L̇(Λ) with Eq. 7
6: Evaluate dV

dΛ
(Λ) via Fig. 1

7: V ← V + ΔdV
dΛ

8: Λ ← Λ − Δ
9: end for

FRG equations we also default to the simplest possible
choice, the sharp cutoff. This is used in all subsequent
calculations.

5.2 Square lattice non-SU(2): the Rashba model

The meshing of the square BZ (Fig. 5a) as well as the
parametrization of the Λ integration are equivalent to
the setup presented for the Hubbard model.

Model: We choose the model parameters to ensure bro-
ken particle–hole symmetry as well as broken SU(2)
symmetry. The non-interacting Hamiltonian is defined
by Eq. (22) while the interacting part Eq. (21) can

be represented as a Hubbard interaction of electrons
of opposite spins:

V σ1σ2σ3σ4(k1,k2,k3)
= U(1 − δσ1σ2) [δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3 ] . (26)

We set the parameters to t′ = −0.1, U = 3.0, α = 0.5
and μ = 0.2.

5.3 Hexagonal lattice SU(2): the graphene model

For the graphene model we choose the parametrization
of the FRG-flow to remain equivalent but need to rede-
fine the BZ meshing (Fig. 5b).

Model: The parameters for the calculation of graphene
are: U = 3, t′ = 0.1 and μ = 0.2. Due to the sublat-
tice structure of graphene the choice of origin in the
Fourier transforms of the Hamiltonian is relevant. This
is detailed in Appendix D, here it suffices to mention
that we choose the proper gauge which transforms both
sites of the graphene model with respect to the origin
of the unit cell. Any other choice of Fourier transform
would result in an improper (non-periodic) gauge of the
Hamiltonian. We specify the interaction in the orbital
space of graphene to be a site-local Hubbard interac-
tion:

V o1o2o3o4(k1,k2,k3) = Uδo1,o2δo2,o3δo3,o4 (27)

To be precise we specify the real space lattice vectors
(ai) and positions of the atoms within the first unit cell
(xi):

a1 = (
√

3/2,−1/2, 0)T a2 = (
√

3/2, 1/2, 0)T ,
(28)

x1 = (1/
√

3, 0, 0)T x2 = (2/
√

3, 0, 0)T . (29)

Meshing: The meshing is defined as an equispaced grid
of 6 × 6 points along the lines defined by the two recip-
rocal lattice vectors G1 = (2π/

√
3,−2π, 0)T and G2 =

(2π/
√

3, 2π, 0)T. This mesh covers the PZ (cf. Fig. 5b)
which is equivalent to any BZ due to the above choice
of proper gauge.

Using this meshing ensures an even distribution of
the weights to the momentum points during integra-
tions. As before this mesh is used for all momenta
required in the calculations.

5.4 TUFRG results

As Code #2 as well as Code #3 are capable of TUFRG
calculations we are also able to generate benchmarks
for this approximation. Equivalence is however much
harder to achieve for TUFRG and because the target
audience for the comparison is smaller the results are
omitted from this publication. Upon request datasets
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as well as exact descriptions of the procedures involved
will be provided.

5.5 The benchmarks

5.5.1 Comparing instructions

The comparative data include the following aspects of
the FRG evaluation:

1. The maximum contribution to ΔΛ
dV
dΛ (Λ) by each of

the P -,C-, D-channel diagrams (or the sum of the
D-channel diagrams for the SU(2) systems)

2. The maximum vertex element after each iteration
of the flow

3. The final effective vertex V (Λ = 1.0) at each dis-
cretization point of the Brillouin zone (and spin/site
index for Rashba/Graphene)

The first and second set of data can be compared
by calculating the corresponding values in the trial
implementation. The definition of maximum used is
the maximal absolute value of the complex numbers
|z| =

√�(z)2 + (z)2. Discrepancies in these offer
insight into possible faults in singular channels or pref-
actors.

The third and most important result to compare is
the effective vertex at the final scale. Here, we offer
an array of values (of datatype double complex). The
recommended approach is to sort the reference array
as well as the respective result from the trial code by
some metric (i.e., max[�(z)] or max[(z)]) and compare
the sorted arrays. Note that equivalence can be reached
only to computational accuracy (discrepancies from the
resolution of double, rounding, compiler optimizations,
etc. may occur).

While it is also possible to obtain element-wise repro-
duction, this is dependent on the order of the discretized
momentum points. Because this stems from the mesh
generation scheme as well as the choice of PZ, neither
of which has physical implications, we recommend sub-
verting this dependency.

6 Conclusion and outlook

This publication set out to rectify the missing link
for internal consistency of momentum space functional
renormalization group calculations. We have verified
the validity of the implementations by proving agree-
ment with established results for momentum space
functional renormalization group calculations and uni-
formity to unprecedented levels between the three
implementations. This gives us the confidence in the
claim that the datasets obtained are “correct” in
the scope of the specific approximation (i.e., treating
only the four-point vertex in momentum space, while
neglecting self-energies and frequency dependencies of
the vertex) of FRG. We provide these results with the

intent of their continued reproduction and verification
by members of the FRG community. Because the realm
of tests can be as vast as the scope of FRG calcula-
tions we invite a continued investment by the commu-
nity. The obvious extensions include frequency and self-
energy dependent calculations. Please engage with the
authors for required assistance in the reproduction.

Furthermore, the authors are currently working to
combine their codes under a single, versatile “commu-
nity code” with a polished, common, easy-to-use inter-
face. While this is a major undertaking it is necessary
to make the resulting code accessible to both the FRG
community and the more general audience of physicists
interested in many-body phenomenæ.
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(a) (b) (c)

Fig. 6 Band structures of (a) square lattice tight binding model (Hubbard), (b) square lattice tight binding model with
Rashba-SOC (Rashba) and (c) hexagonal lattice tight binding model (graphene), where the shorthand notation associates
the band structures with the benchmark systems as defined in Eq. (5). We note for the Hubbard model the expected saddle
point at the X-point. The square lattice Rashba band structure has band crossing points at X and M while for graphene
we draw attention to Dirac cone around the K-point

To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

Appendix A: Band structures

In Fig. 6, we present the bandstructures of the models from
the three test cases with subtracted chemical potential. In
subfig (a), we show the band structure of the square lattice
Hubbard model with t = 1, t′ = −0.1 and μ = 0.5. In sub-
figure (b), we show the Rashba model as defined in Eq. (22),
with t = 1, t′ = −0.1, α = 0.5 and μ = 0.2. Finally subfig-
ure (c) shows Graphene with t = 1, t′ = 0.1 and μ = 0.2.
These datasets are identical to the benchmark cases, thus
reproduction of the band structures is a good initial test.

Appendix B: Minimum scale and momen-
tum resolution

The oscillatory behavior at low scales seen in the critical
scale as a function of t′ in the grid-FRG results for the
Hubbard model (see Fig. 3a) implies that for Λ < 10−3, the
momentum resolution we employed (20 × 20 coarse points
and 25×25 fine points) cannot resolve smaller scales. To sup-
port this, we show the (momentum k) integrated particle–
particle and particle–hole loops at high-symmetry trans-
fer momenta as a function of Λ obtained from the grid-
FRG simulation in Fig. 7. We specifically chose the value
t′ = −0.35 to be consistent with Fig. 3. As expected, the
loops cannot be resolved to scales smaller than Λ < 10−3,
as indicated by the dashed gray lines.

We want to further highlight the fact that these loop inte-
grals are in fact the same as the onsite formfactor projection
of the TUFRG loops. The non-oscillatory behavior of the
TUFRG codes in Fig. 3b as well as the small kink at around
t′ = −0.2 can be explained by the fact that long-range
interactions cannot fully be captured in TUFRG when they
are present in multiple channels. Therefore, at the phase

Fig. 7 Integrated particle–hole (left) and particle–particle

(right) loops
∫

dl L̇Λ
±(l, ±(q−l)) at high-symmetry values of

q as a function of scale Λ. The points q are indicated in
the legends. Note that at Λ = 10−3, we add a dashed gray
emphasizing the minimum value of Λ for which the loops
can be considered to be converged. Below this scale, the
spacing of eigenenergies (for the discretization we chose) is
larger than Λ leading to a divergence that is cut off

boundaries, the truncation employed leads to slightly dif-
ferent behavior than in the grid-FRG case—the momentum
resolutions employed in the integrations are similar.

Appendix C: Analysis of effective vertex

Having obtained the effective interaction V Λc from the eval-
uation of the flow equations we list useful strategies to deter-
mine types of phase transitions.

Element picking

The simplest method for phase identification is element
picking. Here we consider the elements known to drive dif-
ferent phases and compare their values, choosing the biggest
magnitude as the phase. This works very well for systems
with a finite set of known and simple phases such as the
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Hubbard model. We can identify all three phases in Fig. 3
by means of this.

For the superconducting phase we can consider the ele-
ment at k1 + k2 = 0, using the remaining momentum
dependencies to distinguish that we encounter a d-wave
superconductor. In the truncated unities approximation this
becomes even more powerful as the other momenta are
already expanded into the formfactor basis. For the anti-
ferromagnetic phase we consider the momentum transfer
k1 − k3 = (π, π). As this drives the C-channel diagram
we can assume a spin-density-wave with wave vector (π, π)
which corresponds—on the square lattice—to antiferromag-
netism. Similarly we can decipher ferromagnetism by exam-
ining the vertex at the momentum transfer k1 −k3 = (0, 0),
a spin-density-wave with this wave vector corresponds to a
ferromagnetic phase.

Susceptibilities

For particle–hole instabilities (spin-density waves and charge-
density waves in the SU(2) case), it is instructive to study
the (crossed) particle–hole susceptibility using the vertex
given at the end of the FRG flow projected to the cor-
responding channels. [60] To efficiently calculate these, we
define the Fermi particle–hole loop at scale Λ as

LΛ,o1o2o3o4
f,+ (qD, kD) =

∑

b1b2

uo1b1(kD)u∗o3b1(kD)

uo2b2(k′
D)u∗o4b2(k′

D)
[
f
(
εD/Λ

) − f
(
ε′
D/Λ

)]

[
εD − ε′

D

]−1
, (C.1)

with the Fermi function f(x) =
(
1 + ex

)−1
and εX =

εb1(kX), ε′
X = εb2(k

′
X). From this, we calculate the four-

point susceptibility as

χo1o2o3o4
D (qD) =

∑

kDk ′
D

o′
1o′

2o′
3o′

4

L
Λ,o1o2o′

1o′
2

f,+ (qD, kD)

V
Λ,o′

1o′
2o′

3o′
4

D (qD, kD, k′
D) L

Λ,o′
3o′

4o3o4
f,+ (qD, k′

D).

(C.2)

Linearized gap equation

For P instabilities, it is convenient to solve a linearized gap
equation to obtain details about the system’s leading order-
ing tendencies [60]. We define the P -channel Fermi loop at
scale Λ as

LΛ,o1o2o3o4
f,− (qP , kP ) =

∑

b1b2

uo1b1(kP )u∗o3b1(kP )

uo2b2(k′
P )u∗o4b2(k′

P )
[
f
( − εP /Λ

) − f
(
ε′
P /Λ

)]

[
εP + ε′

P

]−1
. (C.3)

We can then proceed to define a superconducting linearized
gap equation as

λ Δo1o2
P (k) =

∑

k ′o3o4o′
1o′

2

V Λ,o1o2o3o4
P (qP = 0, k, k′)

L
Λ,o3o4o′

1o′
2

f,± (qP = 0, k′) Δ
o′
1o′

2
P (k′). (C.4)

The eigenproblem in Eq.(C.4) is in general non-Hermitian
and thus numerically unstable. Therefore, we instead solve
the following singular value decomposition:

V̂ Λ
P L̂Λ

f,− = Û Σ̂ V̂ † . (C.5)

The right singular vectors V̂ are gap functions projected to
the Fermi surface (with “temperature” broadening set by
Λ) and the left singular vectors do not include the Fermi
surface projection and display the gap’s symmetry. In the
case of non-SU(2) and two-site systems, it is instructive to
transform the superconducting (P ) gap to singlet [ψ(k)] and
triplet [d(k)] space [61,62]:

Δ̂(k) = i
[
σ̂0ψ(k) + σ̂ · d(k)

]
σ̂y, (C.6)

with σ̂ Pauli matrices and σ̂0 the identity matrix.

Appendix D: Pitfalls during evaluations

During the production of the results for each model we
encountered numerous possible pitfalls which can lead to
different results in the test set. The first and most impor-
tant one is to make sure that the models are defined exactly
as above. Other common mistakes that occur are using dif-
ferent sign conventions or wrong input parameters, so if the
results do not match this should be the first suspect. Oth-
erwise the following section may help identify problems in
the comparison. Most of these pertain to general problems
which should be taken into account when implementing an
FRG-code.

Signs and prefactors of the diagrams

One of the main issues with functional renormalization
group calculations is fixing the prefactors (signs and values)
within the flow equations (cf. Fig. 1). Here, we want to list
some strategies which can be employed to obtain the cor-
rect values for the special case of the square lattice Hubbard
model at half filling (and t′ = 0). A graphical representation
for the SU(2) symmetric rules is shown in Fig. 8.

Non-SU(2) diagrams

The following rules apply to the three diagrams of the non-
SU(2) equation:

1. For an initially attractive interaction, the absolute value
maximum of the P -channel contribution must increase
over the flow (for the first steps).

2. Using an initially repulsive interaction, the C- and
D-channel contributions to the effective vertex must
increase over the flow (for the first steps).

3. The C- and D-channel contributions must be equivalent
up to a reordering of the orbital and momentum indices
and sign including the prefactors in the flow equations.
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(a) (b)

(c) (d)

Fig. 8 Graphical representation of test system properties.
For all cases, we used the test system parameters, except
for μ = 0, t′ = 0 such that the symmetries hold.(a) Vertex
maximum as a function of scale in single channel flow in
P for U = −3 (blue) and C for U = 3. The two lines are
the same (point 1 in the text). (b) Full repulsive flow, D
channel contribution that is identically zero at first step.
(cf. point 1) (c) Full repulsive flow, all channels and vertex.
(cf. point 1) (d) Full attractive flow (U = −3) with all
channels and vertex. (cf. point 1)

Fig. 9 Example lattice with sublattice structure with
nearest-neighbor hopping t from B to A site

SU(2) diagrams

1. When calculating the single-channel flow in C- and P -
diagrams the results must be equal when inverting U .

2. The total value of the D-channel contribution must be
zero in the first step.

3. For an initially repulsive interaction, the C-channel con-
tribution to the effective vertex must increase over the
flow (for the first steps).

4. When calculating an attractive interaction in P -channel
the maximum of the effective vertex must increase over
the flow (for the first steps).

BZ-periodicity of systems with basis

Here, we want to address the periodicity of the Hamiltonian
in the case of existing sublattice structure.

Fourier transforming into momentum space there are two
options for handling the positions of the orbitals. We can
either use the actual positions in the transformation or
we map all sites onto the origin and Fourier transform
with respect to this. Using the first option introduces non-
periodicities. We will illustrate this using a simple two site
model:

H0 = t
∑

〈ij〉

(
c†

i,Acj,A + c†
i,Bcj,B + c†

i,Aci,B

+c†
i,Bci,A + c†

i,Acj,B + c†
j,Bci,A

)
.

(D.7)

We define the Fourier transforms with respect to the origin
as follows:

ci,A =

∫

BZ

dk eikR icA (D.8)

and

ci,B =

∫

BZ

dk eikR icB (D.9)

resulting in the non-interacting Hamiltonian of the form

H0 = t

∫

BZ

dk

{
c†

A(k)cA(k) + c†
B(k)cB(k) + c†

A(k)cB(k)

+c†
B(k)cA(k) +

∑

v ∈{a1,a2,
a1+a2}

eikv
[
c†

A(k)cB(k)

+c†
B(k)cA(k)

]}
, (D.10)

which is a perfectly 2π periodic form of the non-interacting
Hamiltonian. We shall call this gauge a “proper” gauge. Now
to study the effects of an improper gauge, where we use the
actual positioning of the sublattice within the unit cell to
define the improper gauged Fourier transforms:

ci,A =

∫

BZ

dk eikR icA (D.11)

and

ci,B =

∫

BZ

dk eik(R i+
a 1
2 +

a 2
2 )cB . (D.12)

Using these expressions to Fourier transform H0 we can see
that we collect some phase-terms which are not 2π periodic
in k:

H0 = t

∫

BZ

dk

{
c†

A(k)cA(k) + c†
B(k)cB(k) + c†

A(k)cB(k)

+c†
B(k)cA(k) +

∑

v ∈{a1,a2,
a1+a2}

eikv eik(
a 1
2 +

a 2
2 )

[
c†

A(k)cB(k)

+c†
B(k)cA(k)

]}
. (D.13)

We can, therefore, no longer evaluate H0 after backfolding
into the first BZ, instead we need to evaluate them in higher
BZs.

While in theory this is a seemingly natural gauge, the
periodicity of the Hamiltonian is required for the momentum
meshing used in this work. Furthermore, using an improper
gauge will change the topological properties of the model
system. The definition of a 2π periodic gauged representa-
tion is, therefore, of paramount importance.
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Handedness of coordinate systems

While it may be obvious we want to briefly discuss the hand-
edness of the momentum lattice. When defining a basis of
three vectors spanning space we should define the third vec-
tor such that the span product v = (x × y) · z > 0. This is
called a right-handed coordinate system.

When defining the real basis ai of the system instead
we take care that it is right handed, the momentum lattice
vectors Gi can then be obtained via the transformations:

[G1, G2, G3] = 2π
(
[a1, a2, a3]

−1)T . (D.14)

Appendix E: Refinement and symmetries

Using the refinement to subsum the dependencies within the
area associated with a mesh-point, we run into issues which
slightly break the symmetry of the Hamiltonian. For clarity,
we will refer to the center the refinement collapses into as
coarse point.

Definition of symmetric refinement

When defining the refined mesh points atop the coarse mesh
points some attention is needed to obtain a set invariant
under the symmetry operations of the coarse mesh. For an
illustration of the set let us consider a hexagonal BZ into
which we have introduced the coarse mesh via the meth-
ods discussed in Sect. 2.4. Defining the refined mesh as a
scaled-down version of the coarse mesh would result in a
mesh which is not invariant under the symmetry transfor-
mations, this is blatantly obvious from Fig. 10. The proper
method employed in the implementations discussed here is
to define a refined mesh of multiple times the size of the
refined area size and reduce the points to the set which
is closest to the coarse center point [Wigner–Seitz like con-
struction, cf. Figure 10b]. Depending on the system’s lattice,
it may be needed to double-count some of the refined points
and introduce non-unitary integration weights.

Orbital–band-transformation symmetry breaking

Even when using a properly symmetric refined mesh there
are remaining symmetry issues in the orbital-to-band trans-
formations: We assume a model system with momentum-
dependent orbital–orbital symmetry relations (such as the
mapping of graphene-sites under rotation). When we intro-
duce refinement we have two options of calculating the aver-
aged non-refined loop:

– Calculate the average in band space, then transform into
orbital space using the transformation matrices of the
coarse points. This is subject to the band-crossing prob-
lem presented in the paragraph “Band Crossing Prob-
lem”

– Transform each refined point into orbital space and
average in orbital space. This is subject to the sym-
metry breaking of refinement presented the paragraph
“Summed Symmetries”.

(a) (b)

Fig. 10 Refinement under symmetries. a Intuitive but
incorrect definition of the refined mesh atop the coarse mesh.
As can clearly be seen under a rotation of C3 the indicated
coarse points transform into each other, a rotation of the
refinement, however, renders it incommensurate. b Proper
definition of the refinement area as the Wigner-Seitz cell
around the coarse point. It is apparent that these points will
respect all symmetry transformations of the coarse mesh

Fig. 11 Problem with band crossings and Refinement.
When refining in band space representation the band
structure shown in the left plot we ignore the fact that
a band crossing occurs within the region around the
coarse mesh point. The orbital-to-band transformations,
calculated only at the points of the coarse mesh point will
map the averaged band into the orbital space respective
their order at the coarse point

Band crossing problem

To illustrate the issue of evaluating the average in band
space and transforming into orbital space afterwards we
imagine a region of the BZ where multiple bands cross
(cf. Fig. 11). Mathematically, we can formulate the prob-
lem that arises when the mapping from orbitals to bands
changes as

∑

kf

∑

b1b2

u∗o1b1(l + kf )u∗o3b2(l′ ± kf )

L̇Λ,b1b2
± (l + kf , k − kf )uo3b1(l + kf )uo4b2(l ± kf )

�=
∑

b1b2

u∗o1b1(l)u∗o2b2(l′)uo3b1(l)uo4b2(l′)

∑

kf

L̇Λ,b1b2
± (l + kf , l′ ± kf ) (E.15)
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Summed symmetries

Applying a symmetry to the Hamiltonian reads

Sk H(k) = U†(k)H(k)U(k) , (E.16)

where U provides the needed phase-shifts and orbital maps
for the transformation of orbitals across BZ-boundaries.
From this, we can deduce the following relation:

Sk

[
∑

kf

H(k ± kf )

]

= U†(k)

(
∑

kf

H(k ± kf )

)
U(k)

�=
∑

kf

U†(k ± kf )H(k ± kf )U(k ± kf )

=
∑

kf

Sk±kf [H(k ± kf )]

=
∑

kf

[H(k ± kf )] .

(E.17)

Having summed over the phases of the refined points we are
unable to identify the appropriate transformation matrices.
This problem does not arise if the averaging is performed in
band space as the phases introduced by the transformation
matrices are zero—the Hamiltonian in band space corre-
sponds to the energies.

One possible solution for this problem is thus averaging
in band space (averaging the energy) and then applying
the orbital-to-band transformation of the coarse point. For-
tunately, there exists an orbital-space solution to properly
correct for these quantitative effects in the loop derivative,
presented below.

Re-symmetrizing the refined loops from orbital
space

Given a multi-site tight-binding system described by hop-
ping amplitudes as a function of site indices, the matrix
US(k) can analytically be constructed for each point-group
symmetry S of the system. Note that the real space
unit cell must be chosen such that its origin aligns with
the system’s rotational symmetries. Otherwise, rotations
(and other point-group symmetries) are only symmetries
of the system with additional real space displacements (i.e.,
momentum-space complex phase shifts). The procedure to
obtain the matrix US(k) is straightforward and shortly pre-
sented in the following:
1. For each site index o of the tight-binding Hamiltonian

apply the symmetry S to its real space position ro by
calculating r̃o = Ŝro.

2. Find the site index o′ and integer vector ı (of dimension
‘dimensionality’ D) such that ro′ = ı · R + r̃o with
R = (R1, . . . , RD)T the system’s lattice vectors.

3. Save above information in a map XS(o) that takes the
site index o and returns the vector XS(o) with X1

S(o) =

o′, X2,...,D+1
S (o) = ı.

4. Set the elements of the transformation matrix to U
o,X 1(o)
S

(k) = exp

[
iŜk · ( ∑D

l=1 X1+l(o)Rl

)]
.

As (free) Green’s functions transform in the same way as
the tight-binding Hamiltonian under symmetries, we have

S
[
G(k)

]
= U†

S(k)G(Ŝ(k))US(k). (E.18)

From this, we can follow that the loops must transform as
two Green’s functions in their respective orbital and momen-
tum indices. For both the particle–particle and particle–hole
loops, this amounts to

S
[
Lo1o2o3o4

± (k1, k2)
]

=
∑

o′
1o′

2o′
3o′

4

U
∗,o1o′

1
S (k1)U

o3o′
3

S (k1)

U
∗,o2o′

2
S (k2)U

o4o′
4

S (k2)L
o′
1o′

2o′
3o′

4
± (Ŝk1, Ŝk2). (E.19)

Above equation holds if the site indices o1 and o3 correspond
to one Green’s function and o2 and o4 to the other, with
o1, o2 being ingoing and o3, o4 outgoing legs.

With above transformation rule at hand, we can derive
a straightforward formula used for re-symmetrizing the
refined loop. Let the system’s symmetry be described by
a point group G of order NG . The re-symmetrized refined
loop LS follows as

LS,o1o2o3o4
± (k1, k2) =

1

NG

∑

S∈G
S

[
Lo1o2o3o4

± (k1, k2)
]
.

(E.20)

Appendix F: Multi-site TUFRG and symme-
tries

When using the TUFRG approximation for multi-site sys-
tems we need to be aware that we introduce a mixing of dif-
fering length scales in the interaction. This is exemplified in
Fig. 12 where we can clearly see that the proper-gauge rep-
resentation of the interaction (all sites Fourier-transformed
with respect to the same position) allows the definition of
the formfactor basis only with respect to the remaining A

(a) (b)

Fig. 12 Example of symmetry breaking in TUFRG. Here
we want to show the symmetry breaking introduced in
TUFRG when analyzing a lattice with basis. The red boxes
represent the unit cells of the lattice. We consider the
nearest-neighbor interaction from a B to an A site as an
example. a Square lattice with basis in the proper gauge
representation. The formfactor expansion of the nearest-
neighbor onsite interaction will consist of the indicated cou-
plings. b Physical representation of the couplings indicated
in (a). It is apparent that this mixes different length scales
and no longer respects the symmetry of the lattice
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positions. The realspace representation of the first shell is
drawn in Fig. 12a, where we also indicate an exemplary
interaction from a B-site to all neighboring A-sites. If we
now transform into the physical picture in b we can clearly
see that the seemingly consistent interaction length mixes
differing length scales. If we transformed into the formfactor
basis the different length scales would have been integrated
into the same formfactor shell, loosing the ability to differ-
entiate their contributions. In the cross-channel projections
this introduces a slight symmetry breaking into the approx-
imation. We see breaking of otherwise degenerate states as
well as slight modifications of critical scales.

This behavior can be rectified by introducing a site-
dependent formfactor expansion. We need to define a dif-
ferent set of neighboring formfactors for the A and B site in
the above example.

Appendix G: Formfactor generation

We want to detail the generalization of the formfactor gen-
eration method described in Appendix 3 of Ref. [38]. To
do this, we first recall the methodology of that publication
before expanding to our new approach.

Original method

Given a symmetry Group G of the problem with group ele-
ments g and representations Γi with characters χi(g) we
define the projectors

P(Γi) =
∑

g∈G
χ∗

i (g)g, (G.21)

into the representation’s contribution.
To now find the shell-basis for this representation apply

the projector to a trial bond taken from the shell n of the
realspace lattice φn(r) = δi,i+r . The result is the realspace-
representation of the formfactor:

ϕ
(n)
i (r) = P (Γi)φ

(n)(r) =
∑

g∈G
χ∗

i (g)g φ
(n)
j (r) , (G.22)

a simple Fourier transformation yields the desired momen-
tum space formfactors:

ϕf (k) =
∑

r∈Bonds

e−ik ·r ϕf (r) , (G.23)

ϕf (r) =

∫

BZ

dk eik ·r ϕf (k) . (G.24)

For the multi-dimensional representation we use a number
of different trial bonds equal to the dimensionality. This
is supposed to ensure that the number of formfactors is
always sufficient to provide a unitary transformation from a
realspace lattice shell into formfactor space. This, however,
breaks down at longer ranges as will be seen in the next
section.

Improved version

The issues with the above mentioned method arise from its
non-generality, the dimensionality of the representations is

given but we encounter momentum shells which have more
points than we have representations in the symmetry group
(the fourth shell of the square lattice is an example). For
these shells the above mentioned procedure does not gener-
ate a sufficient number of formfactors for the unitary trans-
formation of the spaces. For these we are able to find mul-
tiple symmetry-inequivalent formfactors for a given repre-
sentation. To produce these formfactors while maintaining
orthogonality between the formfactors we use the following
procedure:

For all bonds of a given length in the realspace lattice we
apply the projector defined above for all representations.
We reduce the obtained (too large) set of realspace formfac-
tors ϕ(r) to a linearly independent subset and orthogonalize
using the Gram Schmidt orthogonalization procedure.

We can then promise the following equations for the form-
factor basis:

δ(k − k′) =
∑

f

ϕf (k)ϕ∗
f (k′) , (G.25)

δf,f ′ =

∫

BZ

dk ϕf (k)ϕf ′(k) . (G.26)

To ensure we generate the physical set of formfactors (the
ones described in Ref. [38]) we use the following iterative
algorithm for the generation of formfactors, this favors the
formfactors generated by the original method. The number

Algorithm 2 Generate all formfactors of shell n

1: F (n) = ∅
2: while Nϕ(n) < NBond(n) do
3: for b ∈ n do
4: for Γi ∈ G do
5: ϕ(r) = P(Γi)b
6: if ϕ(r) �= 0 and aϕ(r) /∈ F (n)∀a ∈ C then
7: F = F ∩ F [ϕ(r)];
8: end if
9: end for

10: end for
11: end while

of formfactors which need to be chosen is highly depen-
dent upon the problem under scrutiny. If the interactions
are highly localized, a few formfactors will suffice to cap-
ture the primary dependencies. A more detailed analysis of
the necessary number of formfactors should be performed
for each simulation.

Appendix H: Scaling tests

Beyond the equivalence checks and reproduction of known
results, we further checked the correct scaling behavior of
our implementations against exact solutions for small sys-
tems. Therefore, a short exact diagonalization code for a
1D Hubbard chain, a 1D Rashba chain and 2D graphene
has been implemented. We then calculated the occupation
number ρi,j = 〈c†

i cj〉 using ED and a RS-TUFRG implemen-
tation in the single frequency approximation [27,41]. The
error is expected to scale proportionally to U3. To verify
the correct scaling behavior, roughly 60 bosonic frequencies
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(a) (b) (c)

Fig. 13 Scaling error of the occupation matrix compared to exact diagonalization We show the maximal error of the occu-
pation number relative to the value of the exact diagonalization occupation number on the y-axis on a logarithmic scale.
On the x-axis, we show the interaction value on a logarithmic scale. As a guideline for the eye, we show the U2 and U3

error scalings expected from perturbative arguments. For the static calculations the error is expected to scale ∝ U2 and for
the dynamic to scale ∝ U3

were necessary and the accepted error of the adaptive inte-
grator has been set to 10−6, which allows us to verify the
proportionality down to an absolute error of ≈ 10−6.

The results are summarized in Fig. 13. At low values of
the interaction, the integration error leads to a deviation
from the expected scaling, as can be seen in all three cases.
For larger U, higher-order terms can become important also
deteriorating the scaling, this can be seen especially in the
two 1D systems. Apart from these minor effects, the data
follow the U3-curve very closely.
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