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Abstract. Describing the emergence of phases of condensed matter is one of the central challenges in
physics. For this purpose many numerical and analytical methods have been developed, each with their
own strengths and limitations. The functional renormalization group is one of these methods bridging
between efficiency and accuracy. In this paper we derive a new truncated unity (TU) approach unifying
real- and momentum space TU, called TU2FRG. This formalism significantly improves the scaling com-
pared to conventional momentum (TU)FRG when applied to large unit-cell models and models where the
translational symmetry is broken.

1 Introduction

Predicting the phase diagrams of real materials is one
of the central goals and challenges of condensed mat-
ter research. For this purpose, many numerical tech-
niques have been developed for many different scenar-
ios [1–5]. In the weak to intermediate coupling regime,
pertubatively motivated approaches have been very
successful [6–10]: Starting from simple random-phase
approximation (RPA) [11] to the more elaborate self-
consistent fluctuation-exchange (FLEX) formalism [12],
these methods have been widely used to study mag-
netism and superconductivity. The biggest drawback
of these methods is that they are biased. In particular
they do not account for all diagrammatic contributions
up to a certain order. This problem can be remedied
by adopting the Parquet approximation or using the
functional renormalization group (FRG) [13,14]. These
methods sum up all diagrammatic contributions up to a
certain order, therefore giving a coherent and unbiased
picture of the phases of matter. This higher accuracy
comes at a higher numerical cost, making calculations
of many relevant toy models of real solids hard or even
impossible. Thus, it is critical to find suitable approx-
imations to reduce the numerical cost of these meth-
ods, while maintaining the advantage of unbiased pre-
dictions. An illustrative comparison of the three meth-
ods discussed above and the method presented in this
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paper is given in Fig. 1. There we summarize the capa-
bilities of each of the four methods in five different
categories: Few-Band, Many-Band, Non-translational
invariant, Extended interactions and frequency depen-
dence. Each of the methods has its strengths and weak-
nesses. For example, plain FRG can be used to consider
the full frequency dependence of the effective inter-
action, but is hardly applicable to non-translationally
invariant models without any further approximations.
While this can be solved using the TU2FRG, we lose
part of the full frequency dependence to be applica-
ble to a wider set of models as otherwise numerical
cost would be too high. RPA is only calculating the
spin-fluctuation mediated effective interaction and is
thus numerically cheap; but inter-channel feedback is
neglected and the concept of renormalization is not
included. sFLEX builds on top of RPA and iterates its
self-energy till convergence while including all spin and
charge fluctuation diagrams, but this comes at the cost
of comparable scaling to FRG for many-bands and non-
translational invariant models.

One approach recently put forward for this purpose
is the use of truncated unities, the so called trun-
cated unity FRG (TUFRG) [15] or truncated unity
Parquet approach [16]. The main proposition of these
approaches is to reduce the numerical effort by reducing
the degrees of freedom under consideration by truncat-
ing the dependence of weakly varying variables. This
approach was already successfully applied in the square
lattice Hubbard model [16–18] and graphene [19–22].
On the other hand, in the real-space representation
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Fig. 1 Illustrative comparison of the capabilities of four different methods concerning different use cases. We compare the
simple RPA+FLEX without self consistency, the self-consistent FLEX, standard FRG and the here presented TU2FRG.
We define few-bands as the range between one and twenty bands and many-band as all systems with more than 20 bands.
The corner frequency dependence is measured by the number of frequencies included in the method. The capability of each
method to process effects of long range interactions is measured in the number of dependencies allowed for the effective
interaction generated by the method. For all corners we used the scaling combined with the accuracy in terms of the number
of diagrams included by the method to estimate its capability in this direction

the so called extended coupled ladder approximation
and analogously the real-space TUFRG was put for-
ward [23–26]. Another big advantage of methods like
Parquet or FRG is that in principle one can bench-
mark the numerical accuracy by taking into account
higher order terms. This has been recently implemented
in one incarnation in the multiloop-formalism [27–29],
where the authors were able to match results to numer-
ically exact methods in the half-filled Hubbard model
up to intermediate interactions strengths. Thus, there
are currently two different directions of research in the
methodological development of FRG, the first is the
increase of numerical accuracy, the second is the adap-
tion to broader classes of models. In this paper we
will present a new approach which falls into the sec-
ond category. It aims to enable simulations of mod-
els with broken translational symmetries, such as qua-
sicrystals [26], boundary effects, finite size effects [30]
or disorder. Additionally, we fuse this approach with
known momentum-space TUFRG to enable studies of
models with large unit cells or many orbitals, as in the
case of twisted materials or Kagomé metals [31,32]. For
this purpose we derive a full TUFRG-scheme including
momentum-, frequency- and real-space unities, in the
following called TU2FRG. This can be seen as a key
stepping-stone to establish FRG as the default method
for calculating electronic instabilities for wide classes of
electronic models.

2 Derivation of the flow equations in the
unity-space

We start the derivation from the general flow equations
in the second order truncation. As the derivation of
these flow equations is well documented [13,33] we omit
it here for the sake of conciseness, and just derive their
representation in full unity-space, inserting a unity in
all relevant degrees of freedom except spin. The flow

equation for the self-energy reads

dΣ(1, 3)
dΛ

= −T
∑

S2,4Γ (1, 2; 3, 4)eiω20
+
, (1)

where we defined the single-scale propagator
S = G

[
∂Λ(G0)−1

]
G with the full Greens-function defined

as GΛ = R(Λ)
iω−H−R(Λ)ΣΛ =

[
(G0)−1 − ΣΛ

]−1. The flow
equation for the effective interaction Γ is separable
into the three two-particle-irreducible (2-PI) channels
according to Eq. (2), each of which is associated with a
specific fermionic-bilinear:

Γ (1, 2; 3, 4) = U(1, 2; 3, 4) + ΦP (1, 2; 3, 4)

+ ΦD(1, 2; 3, 4) + ΦC(1, 2; 3, 4). (2)

We have the particle–particle channel (P ), whose bilin-
ear is of cooper pair type. We have the direct parti-
cle hole channel (D), which has a density–density type
bilinear and we have the crossed particle hole channel
(C) with a spin–spin bilinear. Each of these bilinears
can be linked to a different mean-field decoupling, thus,
divergences in a channel indicate a phase transition to
a certain ordered state [34].

This decomposition allows a separation of the flow
equations into the three channels [13]:

dΦP (1, 2; 3, 4)
dΛ

= −Γ (1, 2; 1′, 2′) (G(1′; 3′)S(2′; 4′))

·Γ (3′, 4′; 3, 4), (3a)

dΦC(1, 2; 3, 4)
dΛ

= Γ (1, 4′; 1′, 4)L(1′, 2′; 3′, 4′)

·Γ (3′, 2; 3, 2′), (3b)

dΦD(1, 2; 3, 4)
dΛ

= −Γ (1, 4′; 3, 1′)L(1′, 2′; 3′, 4′)

·Γ (3′, 2; 2′, 4), (3c)

where in- and out-going indices (of a diagrammatic rep-
resentation of these equations) are separated by a semi-
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colon and we defined L(1′, 2′; 3′, 4′) = G(1′; 3′)S(4′; 2′)
+S(1′; 3′)G(4′; 2′).

In principle, one just needs to integrate Eqs. (1) and
(3a, 3b, 3c) numerically, which is a computationally
heavy task and is not possible for many models of inter-
est. In particular, the flow equations computation time
scales ∝ O(N6

o N3
kN3

ω) with No the number of orbitals,
sites and spins per unit cell, Nk the number of momen-
tum points and Nω the number of Matsubara frequen-
cies. In addition, storing the vertex requires N4

o N3
kN3

ω
elements, such that it becomes apparent that a more
efficient representation has to be found for the study
multi-orbital/multi-site models.

In the following we will derive the flow equations
in the full unity-space. We will argue why this repre-
sentation is advantageous when compared with brute
force solutions, and what its limitations are. To keep
our derivation as general as possible, we will keep all
dependencies of the vertex; site, momentum, frequency
and spin (note that we exclude the case of non-energy-
conserving models). The starting point for our deriva-
tion are the Mandelstamm variables, see Eq. (4), each
of which is associated with one of the channel’s momen-
tum transfer. For brevity we condense the momentum
and frequency contributions into a four vector denoted
as q and collapse the spin and site indices into orbital
indices o.

qP = k1 + k2 = k4 + k3,

qC = k1 − k4 = k3 − k2,

qD = k1 − k3 = k4 − k2.

(4)

These Mandelstamm variables can now be used to
rewrite the flow equations in compact fashion. For
brevity we introduce an abbreviation for sets of increas-
ing indices i1, i2, i3, i4 as i1..4. Additionally we use an
altered Einstein sum convention, where we sum or inte-
grate out each doubly occurring index. It has to be kept
in mind that the momentum summations stem from a
Fourier transformation, therefore they always include
a normalization factor, which too gets suppressed for
brevity. Thereby we arrive at the following set of flow
equations.

dΣo1,o2(k)
−TdΛ

= So′
1,o′

2
(k′)Γo1,o′

1,o2,o′
2
(k, k′, k)eiω′0+ ,

(5a)

dΦP
o1..4(k1..3)

dΛ
= −1

2
Γo1,o2;o′

1,o′
2
(k1, k2; q)

[Go′
1;o

′
3
(q)So′

2;o
′
4
(k1 + k2 − q)

+ So′
1;o

′
3
(q)Go′

2;o
′
4
(k1 + k2 − q)]

Γo′
3,o′

4;o3,o4(q, k1 + k2 − q; k3), (5b)

dΦC
o1..4(k1..3)

dΛ
= Γo1,o′

4,o′
1,o4(k1, k2 − k3 + q; q)

[Go′
1;o

′
3
(q)So′

4;o
′
2
(k2 − k3 + q)

+ So′
1;o

′
3
(q)Go′

4;o
′
2
(k2 − k3 + q)]

Γo′
3,o2;o3,o′

2
(q, k2; q), (5c)

dΦD
o1..4(k1..3)

dΛ
= −Γo1,o′

4;o3,o′
1
(k1, q − k1 + k3; k3)

[Go′
1;o

′
3
(k3 − k1 + q)So′

4;o
′
2
(q)

+ So′
1;o

′
3
(k3 − k1 + q)Go′

4;o
′
2
(q)]

Γo′
3,o2;o′

2,o4(q, k2; q − k1 + k3). (5d)

These equations are the starting point for all subse-
quent derivations. So far, spin and orbitals or sites are
treated equally, this means that oi = (õi, si) is a multi-
index consisting of both. For the following derivation
we will denote spin and orbitals separately as spins and
orbitals need to be treated differently and redefine õ ≡ o
as the site and orbital index.

The motivation to transform into the unity-space fol-
lows from the behavior of RPA-like resummations of
each channel [17]; In the flow equations, the lowest
order of diagrams we do not account for is U3, which
fixes our truncation order in the interaction. Usually
the initial interaction has a finite range, or drops off
as a function of the distance. Therefore, for the sake of
the argument we now assume an interaction between
nearest neighbors, with a density-density bilinear, thus
Us1,s2,s3,s4

o1,o2,o3,o4
(ω1, ω2;ω3) = U0δ

s1,s3
o1,o3

δs2,s4
o2,o4

δ<o1,o2>, where
δ<o1,o2> is only one if the two indices belong to neigh-
bouring sites. If we now insert this interaction into the
P -channel flow equation we obtain

dΦ
P |s1..4
o1..4 (ω1, ω2;ωP )

dΛ

=
∑

ω

U2
0 δ<o1,o2>δ<o3,o4>

[Gs1;s3
o1;o3

(ω)Ss2;s4
o2;o4

(ωP − ω)

+ Ss1;s3
o1;o3

(ω)Gs2;s4
o2;o4

(ωP − ω)]. (6)

We observe that in the frequency space we do not
generate terms depending on ω1 and ω2, whereas
in real-space, we will keep on generating terms ∝
δ<o1,o2>δ<o3,o4> if we insert ΦP into the right hand
side again. Thus, on a single channel level, we cover all
dependencies by only allowing for very specific index
combinations, and neglecting all others as they will be
always zero. The argument carries over to the other two
channels. If we now include the feedback in between
the channels by reconstructing Γ we will again gener-
ate additional dependencies. These will have a hierar-
chy in the distance, where larger distances correspond
to higher order interaction terms increasing with the
distance from the initial index combinations. As a con-
sequence, we can identify leading and subleading depen-
dencies of each channel, which can be exploited to arrive
at an efficient description of the problem.

For this purpose we define a set of functions gby
(ox, k)

which give for each site x the momentum and frequency
dependent connections to site y. These functions are
required to form an orthonormal basis on the space of
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the momentum, site and frequency, thus fulfilling

∑

b1

gb1(o2, k)g∗
b1(o3, k

′) = δk,k′δo2,o3 , (7)

∑

o,k

gb1(o, k)g∗
b2(o, k) = δb1,b2 . (8)

The choice of the basis set is not unique and we will
discuss two possibilities later. With these unities we
can define projections onto the leading dependencies of
each channel as

P̂ [Γ ]b1,b3
o1,o3

(qP )s2;s4
s1;s3

=
∫

dk1 dk3
∑

o2,o4

gb1(o2, k1)

· g∗
b3(o4, k3)Γo1..4(k1, qP − k1; k3)s1..4 , (9)

Ĉ[Γ ]b1,b3
o1,o3

(qC)s4;s2
s1;s3

=
∫

dk1 dk3
∑

o2,o4

gb1(o4, k1)

· g∗
b3(o2, k3)Γo1..4(k1, k1 − qC ; k3)s1..4 , (10)

D̂[Γ ]b1,b4
o1,o4

(qD)s3;s2
s1;s4

=
∫

dk1 dk4
∑

o2,o3

gb1(o3, k1)

· g∗
b4(o2, k4)Γo1..4(k1, k4 − qD; k1 − qD)s1..4 .

(11)

Note the spin reordering in each of the projections,
which is performed to enable a reformulation of the flow
equations in terms of batched matrix multiplications.
These projections are designed such that we fully keep
all ladder-like contributions of each channel. Depending
on how we truncate the basis we take the feedback in
between the channels into account only approximately.
The inverse projections follow from the completeness
relation as

P̂−1[P̂ [Γ ]]o1..4(k1..3)s1..4

=
∑

b1,b3

g∗
b1(o2, k1)gb3(o4, k3)

· P̂ [Γ ]b1,b3
o1,o3

(qP )s2;s4
s1;s3

, (12)

Ĉ−1[Ĉ[Γ ]]o1..4(k1..3)s1..4

=
∑

b1,b3

g∗
b1(o4, k1)gb3(o2, k3)

· Ĉ[Γ ]b1,b3
o1,o3

(qC)s4;s2
s1;s3

, (13)

D̂−1[D̂[Γ ]]o1..4(k1..3)s1..4

=
∑

b1,b4

g∗
b1(o3, k1)

· gb4(o2, k1 + k2 − k3)D̂[Γ ]b1,b4
o1,o4

(qD)s3;s2
s1;s4

.

(14)

To benefit from the interaction hierarchy in the basis
function dependence, we truncate the unity to small
number of basis functions. Thereby, the projection pro-
cedure becomes approximate and the full effective inter-
actions cannot be recovered exactly anymore. While
the error between the truncated and the full unity is
uniform in the number of basis functions included, the
error in the projected channels is non-uniform, see dis-
cussion above. This allows for a faithful representa-
tion of the effective interaction with only a few basis
functions. For better readability we explicitly expand
the summations when we insert a new unity. We begin
with the flow equations for P̂ [ΦP ] ≡ P , starting from
Eq. (3a) in Eq. (15).

dP b1,b3
o1,o3

(qP )s2;s4
s1;s3

dΛ

= −gb1(o2, k1)g
∗
b3(o4, k3)

1
2
Γ

s1,s2;s
′
1,s′

2
o1,o2;o′

1,o′
2
(k1, qP − k1; p)

(
G

s′
1,s′

3
o′
1;o

′
3
(p)Ss′

2,s′
4

o′
2;o

′
4
(qP − p) + G ↔ S)

)

Γ
s′
3,s′

4;s3,s4

o′
3,o′

4;o3,o4
(p, qP − p; k3) (15)

= −gb1(o2, k1)g
∗
b3(o4, k3)

1
2
Γ

s1,s2;s
′
1,s′

2
o1,o2;o′

1,o′
2
(k1, qP − k1; p)

∫
dp1

∑

n2

∫
dp2

∑

n4

δ(p − p1)δo′
2,n2

(
G

s′
1,s′

3
o′
1;o

′
3
(p1)S

s′
2,s′

4
n2;n4(qP − p1) + G ↔ S)

)

δo′
4,n4δ(p2 − p1)Γ

s′
3,s′

4;s3,s4

o′
3,o′

4;o3,o4
(p2, qP − p2; k3) (16)

= −gb1(o2, k1)
1
2
Γ

s1,s2;s
′
1,s′

2
o1,o2;o′

1,o′
2
(k1, qP − k1; p)g∗

b′
1
(o′

2, p)

gb′
1
(n2, p1)g∗

b′
3
(n4, p1)

(
G

s′
1,s′

3
o′
1;o

′
3
(p1)S

s′
2,s′

4
n2;n4(qP − p1) + G ↔ S)

)

gb′
3
(o4, p2)Γ

s′
3,s′

4;s3,s4

o′
3,o′

4;o3,o4
(p2, qP − p2; k3)g∗

b3(o4, k3)
(17)

= −1
2
P̂ [Γ ]b1,b′

1
o1,o′

1
(qP )s2;s

′
2

s1;s′
1
L

pp;b′
1,b′

3
o′
1,o′

3
(qP )s′

2;s
′
4

s′
1;s

′
3
P̂ [Γ ]b

′
3,b3

o′
3,o3

(qP )s′
4;s4

s′
3;s3

. (18)

Here, we defined the particle-particle loop derivative
and analogously the particle-hole loop derivative as

Lpp;b1,b3
o1,o3

(qP )s2,s4
s1,s3

=
∫

dp1 gb1(n2, p1)g∗
b3(n4, p1)

· (
Gs1,s3

o1;o3
(p1)Ss2,s4

n2;n4
(qP − p1) + G ↔ S)

)
,

(19)

Lph;b1,b3
o1,o3

(qX)s3;s2
s1;s4

=
∫

dp1 gb1(n4, p1)g∗
b3(n2, p1)
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· (
Gs1,s3

o1;o3
(p1)Ss4,s2

n4;n2
(p1 − qX) + G ↔ S)

)
,

(20)

where X ∈ {C,D}. The derivations for the flow equa-
tions for Ĉ[ΦC ] and D̂[ΦD] follow analogously (as can
be seen in App. Appendix A) and result in

dĈ[ΦC ]b1,b3
o1,o3

(qC)s4;s2
s1;s3

dΛ
= Ĉ[Γ ]b1,b′

1
o1,o′

1
(qC)s4;s

′
4

s1;s′
1

· L
ph;b′

1,b′
3

o′
1,o′

3
(qC)s′

4;s
′
2

s′
1;s

′
3
Ĉ[Γ ]b

′
3,b3

o′
3,o3

(qC)s′
2;s2

s′
3;s3

, (21)

dD̂[ΦD]b1,b4
o1,o4

(qD)s3;s2
s1;s4

dΛ
= −D̂[Γ ]b1,b′

1
o1,o′

1
(qD)s3;s

′
4

s1;s′
1

· L
ph;b′

1,b′
4

o′
1,o′

4
(qD)s′

4;s
′
2

s′
1;s

′
3
D̂[Γ ]b

′
4,b4

o′
4,o4

(qD)s′
2;s2

s′
3;s4

. (22)

So far, this is a mere reformulation, but we already
note that the flow equations are transformed into
matrix products, and that the summation over momenta
is now only required inside the loop derivative calcula-
tions.

As it is impossible for many models to store the
full reconstructed vertex, we instead store the three
projected channels P̂ [ΦP ] ≡ P , Ĉ[ΦC ] ≡ C and
D̂[ΦD] ≡ D. This reduces the memory requirement
from N4

o N3
kN3

ωN4
s to N2

o NkNωN2
b N4

s (with Ns the
number of spins and No th number of sites and orbitals
in the unit cell). Depending on how many basis func-
tions are required to reach convergence of the calcula-
tions, this can be a drastic reduction. For the derivation
of the unity-space self-energy we recall that in principle
we can approximately restore the full vertex as

Γ s..4
o..4 (k1..3) = P̂−1[P b1,b2

o1,o2
(qP )s2;s4

s1;s3
]

+ Ĉ−1[Cb1,b2
o1,o2

(qC)s4;s2
s1;s3

] + D̂−1[Db1,b2
o1,o2

(qD)s3;s2
s1;s4

].
(23)

Inserting this into the self-energy flow equation results
in

dΣs1;s3
o1;o3

(k1)
−T · dΛ

= Ss2;s4
o2;o4

(k2)

·
[
P̂−1[P ] + Ĉ−1[C] + D̂−1[D]

]s1..4

o1..4
(k1, k2; k1)

(24)

= Ss2;s4
o2;o4

(k2)
[

g∗
b1(o2, k1)gb3(o4, k1)P̂ [ΦP ]b1,b3

o1,o3
(k1 + k2)s2;s4

s1;s3

+ g∗
b1(o4, k1)gb3(o2, k1)Ĉ[ΦC ]b1,b3

o1,o3
(k1 − k2)s4;s2

s1;s3

+ g∗
b1(o3, k1)gb4(o2, k2)D̂[ΦD]b1,b4

o1,o4
(0)s3;s2

s1;s4

]
. (25)

The FRG in unity-space has therefore reduced to
Eqs. (18, 21, 22, 25) which need to be integrated. So
far we did not discuss the specific form of the unity,
nor specify how we implement these equations.

3 Specification of the unity

In this section, we will discuss a suitable choice of
momentum- and real-space unities. For the frequency
unity, we will stick to an on-site form factor expansion
in the following, corresponding to a single-frequency-
per-channel approximation [24,25,35]. For a more in
depth discussion of the frequency dependence we refer
the reader to [36–39]. To differentiate between the full
basis functions we discussed before and the momentum-
and real-space basis, we refer to the latter as form-
factor-bonds. The intuitive way to implement the unity
in momentum- and real-space is to utilize a two step
procedure: We formally write

gb1(o2,k1) = g̃b̃1
(o2) · fm(k1), (26)

which amounts to using completely separate sets of
bonds and form-factors. This is easy to implement
as it simply adds another projection into existing
momentum-space TUFRG codes. Additionally, the pro-
jections can be pulled apart making numerical imple-
mentations faster and easier to handle. However, this
simple approach comes with a big drawback: For mod-
els with multiple sites per unit cell, graphene to name
just one example, this approach always breaks the rota-
tional symmetry as soon as we introduce a cutoff dis-
tance and neglect corresponding form-factor-bonds, as
visualized in Fig. 2. The problem arises, as the def-
inition of a unit cell introduces a preferred direction
for each site, and momentum form-factors are gener-
ated in shells around the origin. Thus, the real space
distance between sites is not covered correctly in the
form-factor shells. Via this inconsistency we take some
length-scales, and thereby interaction orders, only par-
tially into account destroying the unbiased nature of the
method. Even though this is not a problem if we con-
verge in form-factor-bonds, it is still a bias and could
possibly lead to unexpected behavior and renders obser-
vations of nematic phases doubtful.

Luckily, these issues can be resolved. For this, we
start with a full real-space description of the lattice,
where we set up bonds on the full lattice as real-space
Kronecker deltas, as defined in Eq. (27).

gb̃i
(õj) = δõi+b̃i,õj

= δr̃i+b̃i,r̃j
. (27)

Here r̃ as opposed to r indicates that the objects are
full lattice vectors. Therefore, the bond b̃i connects the
site with index õi to another site, such that only if õj is
equivalent to this site, the Kronecker delta is non-zero.

This basis can now be truncated according to the
length of the corresponding bonds ensuring the conser-
vation of rotational and inversion symmetries. To return
to a mixed space form-factor-bond basis, we need to
Fourier transform these bonds according to:

gbi
(oj ,k,k′) =

∑

Ri,Rj

e−ikRie−ik′Rj δr̃i+b̃i,r̃j
, (28)
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Fig. 2 Visualisation of the first form factor shell in a hon-
eycomb lattice (graphene), the reference unit cell is marked
in light blue, the six first form factor shells are marked in
pink. We observe, that if we include all bonds within the unit
cell and the first form factor shell, we still do not include
all connections within a distance of 2√

3
, but instead we lack

the connection to the site marked in red

where we defined r̃i = Ri + ri, with Ri the existing
lattice vectors and ri the vectors within the unit cell.
We also introduce b̃i = Bi + bi for the bonds. Again
bi is equivalent to the connection between site i and
the image of another site j within the same unit cell
and Bi gives the connection between the unit cells. It
is important to notice, that these two length scales are
fully separate, which means that two vectors from the
two different sets, within the unit cell and beyond the
unit cell, can never add to zero.

From the translational invariance it follows that the
sum of two lattice vectors must be a lattice vector,
i.e. Rj = Rl + Ri and using this we can write

gbi
(oj ,k,k′) =

∑

Ri,Rj

e−ikRie−ik′Rj δri+b̃i+Ri,rj+Rj

(29)

=
∑

Ri,Rl

e−i(k+k′)Rie−ikRlδri+b̃i,rj+Rl

(30)

= δk,−k′
∑

Rl

e−ikRlδri+bi+B i,rj+Rl
.

(31)

Within the Kronecker delta we have two different and
separate length scales, one within the unit cell, and one
beyond. Due to the fully separate nature of the two
length scales, the Kronecker delta can only be non-zero
if both δri+bi,rj

and δRl,B i
hold, which allows us to

split the Kronecker delta into two parts

gbi
(oj ,k) =

∑

Rl

e−ikRlδri+bi,rj
δRl,B i

(32)

= e−ikB iδri+bi,rj
. (33)

As one would naively expect we obtain as form-
factor-bonds the plain wave form factor multiplied by
a suitable real-space Kronecker-delta, which is also
obtained when applying two separate unities for real-
and momentum-space after applying the so called fil-
tering process of Ref. [21], in which the rotational sym-
metry gets explicitly enforced.

For each model, it has to be ensured that the results
are converged in form-factor-bonds. These runs are
costly in computation time and complex as the con-
vergence is different at each point in parameter space.
Thus it is important to understand the physical impli-
cations of a certain bond cutoff. For this purpose the
pure real space representation of the form-factor-bonds,
see Eq. (27), is most suitable. We observe, that remov-
ing certain bond vectors b̃i amounts to neglecting cer-
tain orbital combinations in the inter-channel projec-
tions. Their importance can be deduced by inspecting
single-channel flows, which amount to RPA-like resum-
mations.

The TU2FRG code consists of three numerically
challenging steps; the calculation of the loop deriva-
tives (Eqs. (19) and (20)), the inter-channel projections
(Eq. (23)) and the flow equations (Eqs. (18, 21, 22, 25)).
We will now discuss each implementation in detail.
The flow equations in the representation presented
here already have the form of batched matrix prod-
ucts, which are implemented in BLAS-libraries and are
numerically very efficient. Thus we only discuss the pro-
jections and the loop derivative implementation.

4 Implementation of the flow equations

4.1 Loop derivatives

The loop derivatives with the above defined form-
factor-bonds inserted reduce to the following expres-
sions

Lpp;b1,b3
o1,o3

(qP )s2;s4
s1;s3

=
∫

dp1 e−ip1B 1eip1B 3 (34)

·
(
Gs1,s3

o1;o3
(p1)S

s2,s4
o1+b1;o3+b3

(qP − p1) + G ↔ S
)
,

Lph;b1,b3
o1,o3

(qX)s4;s2
s1;s3

=
∫

dp1 e−ip1B 1eip1B 3

·
(
Gs1,s3

o1;o3
(p1)S

s4,s2
o1+b1;o3+b3

(p1 − qX) + G ↔ S
)
.

(35)

As the integral over p1 is decoupled from the flow
equation, we can refine the momentum integration of
the loop [17,40]. This can either be done by choosing
a separate grid for the integration or by implement-
ing an adaptive integration scheme. There are multi-
ple options to implement this refinement; The simplest
option is to use a finer mesh for the p1 integration. This
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has the advantage of conserving all symmetries but is
numerically more demanding then the second strategy.
Alternatively we add an additional sum around each k-
point which sums up a mini Wigner–Seitz cell around
this momentum point for each single-scale propagator-
propagator product, analogously to the refinement used
in N -patch FRG schemes [40].

So far we did not specify the cutoff-function we chose
for the calculations. Here, many different cutoffs are
possible each with specific advantages and disadvan-
tages. The Ω-cutoff [41] for example is a smooth cutoff
which simplifies the integration of the flow equation in
the case of self-energy feedback. The temperature cut-
off [33] allows for a physical interpretation of the crit-
ical scale as a critical temperature and the interaction
cutoff [42] allows for scanning for the critical interac-
tion strength in a single FRG run. Each of these cutoffs
comes with a more or less severe drawback, for example
the interaction cutoff does not regularize infrared diver-
gences. The biggest complications arise if one is inter-
ested in large unit cell models, as for example twisted
materials [31,43,44]. Here the analytic Matsubara sum-
mation scales ∝ N4

o , making it the numerical most
costly part of the whole calculation by a factor of No.
On the other hand, the numerical Matsubara summa-
tion requires summing up many frequencies for conver-
gence. If the calculation of the Green’s function is non-
negligible, this step can also become the bottleneck of
the calculation as for a reasonable resolution we need
many frequencies, for which in each step the Green’s
functions have to be recalculated. A solution to these
numerical issues is the sharp cutoff R(Λ) = θ(|ω| − Λ),
which reduces the number of Green’s functions required
to be calculated in each step to 2Nω −1, but introduces
discontinuities of the loop derivatives on the frequency
axis. Therefore, the integration of the flow equations
has to be performed more carefully, i.e. the integrator
must never integrate over one such discontinuity. The
integration procedure has to be adopted such that we
end with an integration step right before the discon-
tinuity and the next step is then performed starting
from a point right behind it. Thereby we minimize the
numerical error introduced by the discontinuity.

4.2 Projection

As we truncate the unity we are unable to exactly
recover the three channels Φ or the effective vertex Γ
exactly. Additionally due to memory constraints it is
often impossible to even store the full vertex. There-
fore, we need to derive efficient formulas for these inter-
channel projections. The naive form of these projec-
tions, see Eq. (36) requires three Brillouin-zone integra-
tions in addition to four form-factor-bond sums, mak-
ing it numerically demanding. We will instead derive
a form which has superior scaling and requires as few
operations on the projected vertex channels as possible,
as these are the largest objects in our calculation. Note
that in pure momentum space, such derivations have
been performed similarly [17,20] and are dubbed the

real-space trick. Using the above-defined form-factor-
bonds we can rewrite the projections explicitly starting
with the C to P projection using qC = k1 + k3 − qP ,
see Eq. (36) till Eq. (41).

P̂ [Ĉ−1[C]]b1,b3
o1,o3

(qP )s2;s4
s1;s3

=
∫

dk1 dk3

∑

o2,o4

gb1(o2,k1)g∗
b3(o4,k3)Ĉ−1

[C]o1,o2;o3,o4(k1,k2;k3)s2;s4
s1;s3

(36)

=
∫

dk1 dk3 e−ik1B 1δr1+b1,r2e
ik3B 3δr3+b3,r4

eik1B
′
1δr1+b′

1,r4e
−ik3B

′
3

δr3+b′
3,r2C

b′
1,b′

3
o1,o3(qC)s4;s2

s1;s3
(37)

=
∫

dk1 dk3

∑

b′
1,b′

3

e−ik1(B 1−B ′
1)eik3(B 3−B ′

3)

δr3+b′
3,r1+b1δr1+b′

1,r3+b3∑

R

eiqCRC
b′
1,b′

3
o1,o3(R)s4;s2

s1;s3
(38)

=
∫

dk1 dk3

∑

b′
1,b′

3

e−ik1(B 1−B ′
1)eik3(B 3−B ′

3)

δr3+b′
3,r1+b1δr1+b′

1,r3+b3∑

R

ei(k1+k3−qP )RC
b′
1,b′

3
o1,o3(R)s4;s2

s1;s3
(39)

=
∑

b′
1,b′

3,R

δR,B 1−B ′
1
δR,B ′

3−B 3δr3+b′
3,r1+b1

δr1+b′
1,r3+b3e

−iqP R

∫
dqC e−iqCRC

b′
1,b′

3
o1,o3(qC)s4;s2

s1;s3

(40)

=
∫

dqC

∑

b′
1,b′

3

δB ′
3−B 3,B 1−B ′

1
δr3+b′

3,r1+b1

δr1+b′
1,r3+b3e

iqP (B 3−B ′
3)eiqC(B 3−B ′

3)C
b′
1,b′

3
o1,o3(qC)s4;s2

s1;s3
.

(41)

The idea is to perform a Fourier transformation of
C to decouple the integration over momenta from the
channel. In a second step, we then revert this trans-
formation obtaining a more compact description of the
formulas. The projections can now be implemented as
follows: For each combination of incoming indices and
bonds (o1, b1, o3, b3) (TO) we store the allowed index
combinations (o1, b′

1, o3, b
′
3) (FROM). For each element

TO we need to store the offset to the first correspond-
ing element in the FROM list, as well as the number of
elements corresponding to this. Additionally, we cache
all occurring eiqC(B 3−B ′

3), where (B3 − B′
3) has to be

mapped back to the minimal representation within the
extended unit cell, we will call this the form-factor map.
Lastly, we need to store for each of the FROM and
TO elements, which element of the form-factor map
corresponds to it. In total we thus have five distinct
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Fig. 3 Scaling of the time t needed to perform a single flow step with respect to the number of momentum points (left),
number of sites (center) and number of bonds, right. The scaling expected from the analytical expressions is shown in
orange

arrays for the projection, which is reduced to a highly
sparse reordering plus multiplication with a prefactor.
The other projections can be treated analogously and
the derivations can be found in App. Appendix B. An
advantage of this rewriting is not only that we removed
one momentum integration, but also do not sum over
four independent form factors-bonds. The Kronecker-
deltas remove one of the summations, thus effectively
reducing the scaling to ∝ N3

b . In total, each of the inter-
channel projections scales ∝ N2

s N4
σN2

kN3
b , which clearly

is better than the initial ∝ N2
s N4

σN3
kN4

b

5 Advantages and limitations

Here we will shortly discuss the main advantages and
limitations of this approach. The additional calcula-
tions required for the TU reduce the scaling, but
increase the time constant of the calculation. There-
fore, it can be numerically more efficient to use a grid
FRG implementation for models with small unit cells,
the square lattice Hubbard model to name just one.
Another drawback is the reliance on short ranged inter-
actions, as the method is based on only developing long
ranged behavior at high orders in U . This is however
not as drastic as naively expected [15]. Furthermore,
this restriction to short ranged interaction introduces a
slight bias towards short ranged fluctuations as inter-
channel contributions are restricted to certain length
scales. In form-factor-bond converged calculations this
bias is, however, negligible. The advantages are superior
scaling in all degrees of freedom, allowing for computa-
tions in many models previously unaccessible to FRG.
The main scalings of a flow step are shown in Fig. 3.
Using hybrid architecture and MPI, the time constant
can be brought down further. Especially the usage of
GPUs can reduce the the computation time a lot. To
verify the validity of the implementation we ensured the
reproduction of FRG benchmark results [45].

In stark contrast to brute force FRG, this implemen-
tation is not memory bound anymore, instead we are
bound for most use cases by the computation time due
to the linear scaling of the memory in the number of
momentum points. The exception to this rule are sys-

tems with very large unit cells. Another big advantage
of the method presented here, is that it can be read-
ily employed in models without translational symme-
try. We simply have to leave the momentum variables
out of the equations and arrive at a real-space TUFRG
formalism [26].

6 Application

Many body localization [46–49] has been a central topic
in condensed matter theory in recent years. Its obser-
vation in optical gases [50,51] lead to a surge in the-
oretical works trying to understand this phenomenon.
However, the methods applicable in this case are lim-
ited as the thermalization hypothesis does not hold
and the systems are non-translationally invariant. So
far there mostly DMRG [52,53] and ED [47] have been
applied to investigate these phenomena. Both methods
do not scale favorable in 2D. Here we aim to show, that
the presented method could be used to study this phe-
nomenon. For this purpose we consider a 8 site Hubbard
chain with open boundary conditions, a random on site
potential and on-site interactions

H = −
∑

i,j,σ

(tδ<i,j> + riδi,j)c
†
i,σcj,σ +

∑

i

Uni,↑ni,↓,

(42)

where δ<i,j> = 1 if i and j are neighbouring sites, t = 1
is chosen as unit of energy and ri is a random number
∈ [−0.5, 0.5]. As we include all terms up to order U3, we
expect the error to scale accordingly, which is verified
in Fig. 4.

Even though we do not incorporate the full frequency
content we stay below a relative error of about 1% up to
U = 2. This offers a route to further exploring this fas-
cinating phenomenon in higher dimensions with FRG.
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Fig. 4 Relative error of the occupation number predicted
by the single frequency TU2FRG compared to exact diag-
onalization. Calculations were performed at T = 0 an 8
site open boundary conditions Hubbard chain with random
on-site potentials. Even at intermediate interactions, here
U = 2, the relative the error does not exceed 1%

7 Conclusion and outlook

We presented a new full unity-space derivation of the
level-two truncated FRG flow equations up to first
loop order. The real-space variant of this approach
has already been successfully applied to quasicrys-
tals [26] and finite sized models [30]. The TU2FRG
we derived further extends the grasp of FRG signif-
icantly and enables calculations for many interesting
systems. Additionally, we presented possible implemen-
tation strategies for the key operations of the flow
of Γ 4 and have shown that the optimal scalings can
be reached. Furthermore, we showed that the present
implementation could be used to investigate disorder
effects and possible many-body localization on a quali-
tative level.

The next step towards establishing FRG as the go to
method for electronic instability calculations at weak
to intermediate couplings is to prove its applicability
in systems of interest, such as multi-layer graphene
[54–56], twisted materials [57,58] and Kagome metals
[32]. Furthermore, it is desirable to implement a more
sophisticated frequency unity which then enables us
to study phonon and photon mediated superconductiv-
ity. Recent works in this direction [39] show promising
results. The combination with the recently developed
single boson exchange formulation of the FRG [59] also
is an interesting route for further developments. The
derived formalism is also directly applicable in Parquet
approaches [16], extending the applicability of these
method to larger unit cell models.
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Appendix

Appendix A: Flow equations

In the following, we derive the non-SU(2) invariant flow
equations for the C and D projected channels. We begin
with the C projected channel starting from Eq. (A.1) and
with the D-channel starting from Eq. (A.5).

dĈ[ΦC ]b1,b3o1,o3(qC)s4;s2
s1;s3

dΛ

= gb1(o4, k1)g
∗
b3(o2, k3)Γ

s1,s
′
4;s

′
1,s4

o1,o
′
4;o

′
1,o4

(k1, k1 − qC ; p)

·
(
G

s′
1,s

′
3

o′
1;o

′
3
(p)S

s′
4,s

′
2

o′
4;o

′
2
(p − qC) + G ↔ S)

)

Γ
s′
3,s2;s3,s

′
2

o′
3,o2;o3,o

′
2
(p, p − qC ; k3) (A.1)

= gb1(o4, k1)g
∗
b3(o2, k3)Γ

s1,s
′
4;s

′
1,s4

o1,o
′
4;o

′
1,o4

(k1, k1 − qC ; p)

· δ(p − p1)δo′
4,n4(

G
s′
1,s

′
3

o′
1;o

′
3
(p1)S

s′
4,s

′
2

n4;n2(p1 − qC) + G ↔ S)
)
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· δ(p2 − p1)δo′
2,n2

Γ
s′
3,s2;s3,s

′
2

o′
3,o2;o3,o

′
2
(p, p2 − qC ; k3) (A.2)

= gb1(o4, k1)g
∗
b′
1
(o′

4, p)Γ
s1,s

′
4;s

′
1,s4

o1,o
′
4;o

′
1,o4

(k1, k1 − qC ; p)

· gb′
1
(n4, p1)g

∗
b′
3
(n2, p1)(

G
s′
1,s

′
3

o′
1;o

′
3
(p1)S

s′
4,s

′
2

n4;n2(p1 − qC) + G ↔ S)
)

· gb′
3
(o′

2, p2)Γ
s′
3,s2;s3,s

′
2

o′
3,o2;o3,o

′
2
(p, p2 − qC ; k3)g

∗
b3(o2, k3) (A.3)

= Ĉ[Γ ]
b1,b

′
1

o1,o
′
1
(qC)

s4;s
′
4

s1;s
′
1
L

ph;b′
1,b

′
3

o′
1,o

′
3

(qC)
s′
4;s

′
2

s′
1;s

′
3
Ĉ[Γ ]

b′
3,b3

o′
3,o3

(qC)
s′
2;s2

s′
3;s3

.

(A.4)

dD̂[ΦD]b1,b4o1,o4(qD)s3;s2
s1;s4

dΛ

= −gb1(o3, k1)g
∗
b4(o2, k4)Γ

s1,s
′
4;s3,s

′
1

o1,o
′
4;o3,o

′
1
(k1, p − qD; k1 − qD)

·
(
G

s′
1,s

′
3

o′
1;o

′
3
(p − qD)S

s′
4,s

′
2

o′
4;o

′
2
(p) + G ↔ S)

)

Γ
s′
3,s2;s

′
2,s4

o′
3,o2;o

′
2,o4

(p, k4 − qD; p − qD) (A.5)

= −gb1(o3, k1)g
∗
b4(o2, k4)Γ

s1,s
′
4;s3,s

′
1

o1,o
′
4;o3,o

′
1
(k1, p − qD; k1 − qD)

· δ(p − p1)δo′
4,n4

(
G

s′
1,s

′
3

o′
1;o

′
3
(p1 − qD)S

s′
4,s

′
2

n4;n2(p1) + G ↔ S)
)

· δ(p2 − p1)δo′
2,n2

Γ
s′
3,s2;s

′
2,s4

o′
3,o2;o

′
2,o4

(p, k4 − qD; p − qD) (A.6)

= −gb1(o3, k1)g
∗
b′
1
(o′

4, p)Γ
s1,s

′
4;s3,s

′
1

o1,o
′
4;o3,o

′
1
(k1, p − qD; k1 − qD)

· g∗
b′
3
(n2, p1)gb′

1
(n4, p1)(

G
s′
1,s

′
3

o′
1;o

′
3
(p1 − qD)S

s′
4,s

′
2

n4;n2(p1) + G ↔ S)
)

· gb′
3
(o′

2, p2)g
∗
b4(o2, k4)Γ

s′
3,s2;s

′
2,s4

o′
3,o2;o

′
2,o4

(p2, k4 − qD; p2 − qD)

(A.7)

= −D̂[Γ ]
b1,b

′
1

o1,o
′
1
(qD)

s3;s
′
4

s1;s
′
1
L

ph;b′
1,b

′
3

o′
1,o

′
3

(qD)
s′
4;s

′
2

s′
1;s

′
3
D̂[Γ ]

b′
3,b4

o′
3,o4

(qD)
s′
2;s2

s′
3;s4

.

(A.8)

In the more specialized, but very regularly used case
of SU(2)-invariant models, we can simplify these flow
equations by explicitly enforcing the crossing relations
(Eq. (A.9)). Additionally, in this case the Hamiltonian is
spin conserving, i.e. Hs1,s2 ∝ δs1,s2 , simplifying the loop
derivatives to being spin diagonal.

Γ s1..4
o1..4 (k1..3) = Vo1,o2,o3,o4(k1, k2, k3)δs1,s3δs2,s4

− Ṽo1,o2,o4,o3(k1, k2, k4)δs1,s4δs2,s3 (A.9)

The crossing relations follow from the transformation of the
effective action into the irreducible representations in spin
space [33]. For the full vertex we find that V = Ṽ . Thus,
instead of performing the flow for the spin dependent vertex
function, we can perform it for the spin independent vertex
V , sparing us a computational complexity of N6

s . Again we
can split the flow into three different channels, but special
care has to be taken of the C and D channel, as here we
find ṼC = VD and vice versa. The flow equations for the
channel specific V X -functions can now be obtained by pick-
ing a specific spin combination, for example ↑, ↓; ↓, ↑. The
flow equations are then adopted analytically by inserting
the decomposition from Eq. (A.9) for Γ , as can be seen in
Eq. (A.11).

dP̂ [V P ]b1,b3o1,o3(qP )

dΛ
=

1

2
P̂ [Γ ]

b1,b
′
1

o1,o
′
1
(qP )↑,↓;s′

1,s
′
2

· L
pp;b′

1,b
′
3

o′
1,o

′
3

(qP )P̂ [Γ ]
b′
3,b3

o′
3,o3

(qP )s′
1,s

′
2;↓,↑ (A.10)

= −P̂ [V ]
b1,b

′
1

o1,o
′
1
(qP )L

pp;b′
1,b

′
3

o′
1,o

′
3

(qP )P̂ [V ]
b′
3,b3

o′
3,o3

(qP )

(A.11)

dĈ[V C ]b1,b3o1,o3(qC)

dΛ
= −Ĉ[V ]

b1,b
′
1

o1,o
′
1
(qC)

· L
ph;b′

1,b
′
3

o′
1,o

′
3

(qC)Ĉ[V ]
b′
3,b3

o′
3,o3

(qC), (A.12)

dD̂[V D]b1,b3o1,o3(qD)

dΛ
= 2

[
D̂[V ] − Ĉ[V ]

2

]b1,b
′
1

o1,o
′
1

(qD)

· L
ph;b′

1,b
′
3

o′
1,o

′
3

(qD)

[
D̂[V ] − Ĉ[V ]

2

]b′
3,b3

o′
3,o3

(qD)

+
dĈ[V C ]b1,b3o1,o3(qD)

2dΛ
. (A.13)

Here we already reduced the number of vertex-loop-vertex
contractions for the D-channel from three to one by per-
forming a completion of the square. This has proven to be
crucial in the case of large unit cells as we basically reduce
the computational effort by 2

5
.

Appendix B: Projections

To enable the reader to directly start implementing its own
TU2FRG framework, we give in the following the rest of the
inter-channel projections. The derivations are quite lengthy
and therefore we again use our modified summing conven-
tion. We only need to derive four inter-channel projections,
as the C to P and the P to C projection are the same,
as well as the projections between the C and D channel.
The implementation strategy is the same as described in
Subsec. 4.2

P̂ [D̂−1[D]]b1,b3o1,o3(qP )s2;s4s1;s3

= e−ik1B 1δr1+b1,r2eik3B 3δr3+b3,r4eik1B
′
1δr1+b ′

1,r3

e−i(qP −k3)B
′
4δr4+b ′

4,r2D
b′
1,b

′
4

o1,o4(qD)s3;s2s1;s4 (B.14)

= e−ik1(B 1−B ′
1)eik3(B

′
4+B 3)e−iqP B ′

4δr1+b1,r3+b3+b ′
4

δr1+b ′
1,r3ei(k1−k3)RD

b′
1,b

′
4

o1,o3+b3
(R)s3;s2s1;s4 (B.15)

= δB 1−B ′
1,R

δB ′
4+B 3,R e−iqP B ′

4δr1+b1,r3+b3+b ′
4

δr1+b ′
1,r3e−iqDRD

b′
1,b

′
4

o1,o3+b3
(qD)s3;s2s1;s4 (B.16)

= δB 1−B ′
1,B

′
4+B 3δr1+b1,r3+b3+b ′

4
δr1+b ′

1,r3e−iqP B ′
4

e−iqD(B 1−B ′
1)D

b′
1,b

′
4

o1,o3+b3
(qD)s3;s2s1;s4 (B.17)

Ĉ[D̂−1[D]]b1,b3o1,o3(qC)s4;s2s1;s3

= e−ik1B 1δr1+b1,r4eik3B 3δr3+b3,r2eik1B
′
1δr1+b ′

1,r3

e−i(k1−qC)B ′
4δr4+b ′

4,r2D
b′
1,b

′
4

o1,o4(qD)s3;s2s1;s4 (B.18)

= e−ik1(B 1+B ′
4−B ′

1)eik3B 3δr1+b ′
1,r3δr1+b1+b ′

4,r3+b3

eiqCB ′
4ei(k1−k3)RD

b′
1,b

′
4

o1,o1+b1
(R)s3;s2s1;s4 (B.19)

= δB 1+B ′
4−B ′

1,R
δB 3,R δr1+b ′

1,r3δr1+b1+b ′
4,r3+b3
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eiqCB ′
4eiqDRD

b′
1,b

′
4

o1,o1+b1
(qD)s3;s2s1;s4 (B.20)

= δB 1+B ′
4−B ′

1,B 3δr1+b ′
1,r3δr1+b1+b ′
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4

e−iqDB 3D
b′
1,b

′
4
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= e−ik1B 1δr1+b1,r3eik4B 4δr4+b4,r2eik1B
′
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1,r2
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′
3
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= δB 1−B ′
1+B ′

3,R
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3−R )e−iqP RP

b′
1,b

′
3

o1,o1+b1
(qP )s2;s4s1;s3 (B.24)

= δB ′
1−B 1−B ′

3,B 4δr1+b ′
1,r4+b4δr1+b1+b3,r4
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3+B 4)eiqP B 4P
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