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Abstract. We present a spin-rotation-invariant Green-function theory for the dynamic spin susceptibility
in the spin-1/2 antiferromagnetic t-J Heisenberg model on the honeycomb lattice. Employing a gener-
alized mean-field approximation for arbitrary temperatures and hole dopings, the electronic spectrum of
excitations, the spin-excitation spectrum and thermodynamic quantities (two-spin correlation functions,
staggered magnetization, magnetic susceptibility, correlation length) are calculated by solving a coupled
system of self-consistency equations for the correlation functions. The temperature and doping depen-
dence of the magnetic (uniform static) susceptibility is ascribed to antiferromagnetic short-range order.
Our results on the doping dependencies of the magnetization and susceptibility are analyzed in comparison
with previous results for the t-J model on the square lattice.

1 Introduction

In recent years the two-dimensional carbon honeycomb
lattice, the graphene, has been extensively studied due to
its peculiar electronic properties (for a review see [1,2]).
Studies of the graphene beyond the simple model of non-
interacting electrons by taking into account the Coulomb
interaction (CI) reveal a rich phase diagram with phase
transitions to the antiferromagnetic (AF) state, spin-
density wave (SDW), charge-density wave (CDW), and
nonconventional superconductivity (SC).

In many papers the electronic properties of the Hubbard
model on the honeycomb lattice were investigated. It
was found that at a sufficiently large single-site Coulomb
repulsion U > Uc ≈ 4t, the AF long-range order (LRO)
emerges for a single layer close to half-filling [3–5]. The
phase diagram and spin excitations of the Hubbard model
for graphene layers using the mean-field approximation
(MFA) and the random-phase approximation were con-
sidered in reference [6]. Depending on the value of U and
electronic density n, various phases were observed: at large
U > Uc ≈ 3.8t, the AF phase for n . 1 was found, while
at larger doping the ferromagnetic and spiral phases were
obtained. The quantum phase transition in the half-filled
Hubbard model on the honeycomb lattice at U > Uc with
Uc/t ≈ 4 − 5 was found in [7] using the quantum Monte
Carlo (QMC) and series expansion techniques. The tem-
perature dependence of the specific heat also points to
the AF phase transition at U > Uc. In reference [8] phase
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transitions in the Hubbard model of N -flavor electrons on
the honeycomb lattice have been discussed in the limit of
large N . There, a semimetal to AF insulator phase tran-
sition at the quantum critical point in the universality
class of the Gross–Neveu model was found. A general low-
energy theory of electrons with repulsive short-range CI
on the honeycomb lattice at half-filling is presented in [9].

The phase diagram of extended Hubbard models with
nearest-neighbor (nn) and next nearest-neighbor (nnn)
repulsive interactions V1 and V2, respectively, on the hon-
eycomb lattice in MFA was obtained in reference [10]. A
phase transition from the semimetal to Mott insulating
phases at half-filling was found at large U > Uc ≈ 3.8t.
For small V1 and V2 the AF phase appears, while for larger
V1 and V2 the renormalization group (RG) analysis shows
transitions to the SDW or CDW.

In a more recent QMC calculation [11] a gapped AF
phase at half-filling for U/t > 4.3 was found, and for
the intermediate coupling 3.5 < U/t < 4.3, an insulating
gapped spin-liquid state formed by short-range resonat-
ing valence bonds was predicted. But later QMC studies
of larger clusters have not confirmed this transition to
the spin-liquid state [12]. The two-particle self-consistent
approach for the Hubbard model on the honeycomb
lattice in reference [13] shows the semimetal to spin-
liquid transition before the transition to the AF state.
In reference [14], effective spin models for the Hubbard
model on the honeycomb lattice at half-filling were
derived. It was observed that the six-spin interactions
frustrate the AF order and may lead the spin-liquid state
behavior. But the spin-liquid state has not been found in
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other publications. The transition from the weak-coupling
semimetal to the strong-coupling insulating phase was
studied in [15] using QMC simulations for the SU(N)-
symmetric Heisenberg model with the nn flavor exchange
interaction on the honeycomb lattice at half filling. In the
SU(2) case a direct transition between the semimetal and
an AF insulator was obtained. In reference [16] a contin-
uous quantum phase transition between the semimetallic
and the insulating AF states was found at Uc/t = 3.78
by considering a staggered magnetic moment in the local
magnetic field. A direct transition from a Dirac semimetal
to an AF Mott insulator was confirmed in reference [17]
by using the projective auxiliary-field QMC simulations
and a finite-size scaling analysis. Although the existence
of the spin-liquid state in the Hubbard model on the hon-
eycomb lattice is still under discussion, the transition from
the semimetal to the AF LRO phase is proved for a large
enough single-site CI, U > Uc ≈ 4t.

Superconducting phase transitions in the Hubbard
model on the honeycomb lattice have been considered in
several publications. The RG approach was used in [18] to
study phase transitions in the extended Hubbard model
with the on-site interaction U , the nn intersite repul-
sion V , and the spin-exchange interaction J . Close to
half-filling, the SDW or CDW orders occur for large U
and V , while for a large doping f -wave triplet-pairing
and d + id-wave singlet-pairing emerge. Chiral triplet
superconductivity on the graphene lattice was considered
in [19]. Using the dynamic cluster approximation for the
Hubbard model with U/t = 2 − 6, a transition from the
d+ id-wave singlet pairing at weak coupling to the p-wave
triplet pairing at larger coupling was observed in [20].
More references on studies of superconduction phase tran-
sitions in the Hubbard model on the honeycomb lattice
may be found in reference [20].

In the limit of strong correlations, U � t, the conduc-
tion band of electrons on the honeycomb lattice splits into
the singly- and doubly-occupied Hubbard subbands. In
this limit the Hubbard model can be reduced to the t-J
model for the projected electron operators in one subband.
This model was investigated by several authors. In [21] a
single-hole excitation was considered within the t-J spin-
polaron model. The results obtained for the honeycomb
lattice are qualitatively similar to those for the square lat-
tice. A detailed study of the t-J model on the honeycomb
lattice was presented in [22]. The ground-state energy and
the staggered magnetization in the AF phase as function
of doping δ have been calculated using the Grassmann
tensor product state approach, exact diagonalization and
density-matrix renormalization methods. The occurrence
of the time-reversal symmetry breaking d+ id-wave SC at
large doping was found. Moreover, a coexisting of the SC
and AF order was observed for low doping, 0 < δ < 0.1,
where the triplet pairing is induced (see also [23]).

In the papers cited above mostly the phase diagram of
the correlation models on the honeycomb lattice at zero
temperature was studied. Less attention has been paid to
the investigation of electron- and spin-excitation spectra
and of thermodynamic properties as functions of tem-
perature and electron concentration. Motivated by this
shortcoming, in the present paper we report results of

investigations of these spectra and of the thermodynamics
in the limit of strong correlations within the t-J model. In
our previous paper [24] we have studied the honeycomb
Heisenberg model at half-filling over the whole temper-
ature region both in the AF and paramagnetic phases.
Thereby, we have calculated the dynamic spin suscepti-
bility (DSS) within the spin-rotation-invariant relaxation-
function theory [25–27] using the generalized mean-field
approximation (GMFA). Let us point out that the GMFA
has been successfully applied to several quantum spin sys-
tems (see, e.g., [24] and references therein). In the present
paper we consider the effects of doping on AF order within
the GMFA for the DSS. Similar studies have been done
for the t-J model on the square lattice in our paper [26].

In Section 2 we formulate the t-J model in terms of
Hubbard operators. The electronic excitation spectrum
is calculated in Section 3. The spin-excitation spec-
trum and thermodynamic quantities are considered in
Section 4. The numerical results and discussion are given
in Section 5. The conclusion can be found in Section 6.

2 The t-J model

We study the Hubbard model on the honeycomb lattice
in the limit of strong electron correlations U >> t, when
it can be reduced to the one-subband t-J model:

H = −t
∑
〈i,j〉σ

ã+
i,σãj,σ − µ

∑
i,σ

ni,σ +HH , (1)

where ã+
i,σ = a+

i,σ(1 − ni,σ̄) and ãiσ = aiσ(1 − ni,σ̄) are
projected creation and annihilation electron operators
with spin σ/2 (σ = ±1, σ̄ = −σ) in the singly occu-
pied Hubbard subband, ni,σ = ã+

i,σ ãi,σ. Here, t is the nn
electron hopping energy.

The Heisenberg Hamiltonian in (1) is given by

HH =
J

2

∑
〈i,j〉

(
Si Sj −

1

4
ni nj

)
, (2)

where J = 4t2/U is the nn AF exchange interaction and
ni =

∑
σ ni,σ.

To take into account on a rigorous basis the projected
character of electron operators ã+

i,σ, we employ the Hub-

bard operator (HO) technique [28]. The HOs are defined
as

Xnm
i = |i, n〉〈i,m|, (3)

for three possible states at a lattice site i: |i, n〉 = |i, 0〉
and |i, σ〉 for an empty site and for a singly occupied site
by an electron with spin σ/2, respectively.

The electron number operator and the spin operators
in terms of HOs are defined as

ni =
∑
σ

Xσσ
i = X++

i +X−−i , (4)

Sσi = Xσσ̄
i , Szi = (σ/2) [Xσσ

i −X σ̄σ̄
i ]. (5)
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The completeness relation for the HOs, X00
i +

∑
σX

σσ
i =

1, rigorously preserves the constraint of no double occu-
pancy of the quantum state |i, n〉 on any lattice site i.
From the multiplication rule Xnm

i Xkl
i = δmkX

nl
i follow

the commutation relations:[
Xnm
i , Xkl

j

]
± = δij

(
δmkX

nl
i ± δnlXkm

i

)
. (6)

The upper sign refers to Fermi-type operators such as
X0σ
i , while the lower sign refers to Bose-type operators

such as ni (4) or the spin operators (5).
Using the Hubbard operator representation,

equation (3) for ã+
iσ = Xσ0

i , ãjσ = X0σ
j and

equations (4) and (5), we write the Hamiltonian of
the t− J model (1) in the form:

H = −t
∑
〈i,j〉σ

Xσ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
J

4

∑
〈i,j〉σ

(
Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)
. (7)

The Hamiltonian has the conventional form of the
t-J model in terms of Hubbard operators (see, e.g., [29]).

We consider the honeycomb lattice shown in Figure 1.
The lattice is bipartite with two triangular sublattices A
andB. Each of theN sites on the A sublattice is connected
to three nn sites belonging to the B sublattice by vectors
δj , and N sites on B are connected to A by vectors −δj :

δ1 =
a0

2
(
√

3,−1), δ2 = −a0

2
(
√

3, 1), δ3 = a0(0, 1). (8)

The basis vectors are a1 = δ3 − δ2 = (a0/2)(
√

3, 3) and

a2 = δ3 − δ1 = (a0/2)(−
√

3, 3), the lattice constant is

a = |a1| = |a2| =
√

3a0, where a0 is the nn distance (see
Fig. 1); hereafter we put a0 = 1. The reciprocal lattice vec-

tors are k1 = (2π/3)(
√

3, 1) and k2 = (2π/3)(−
√

3, 1). In
the two-sublattice representation it is convenient to split
the site indices into the unit cell and sublattice indices,
i→ iα, α = A, B.

The chemical potential µ depends on the average
electron occupation number

n = nα =
1

N

∑
i,σ

〈niα,σ〉, (9)

where N is the number of unit cells and 〈. . .〉 denotes the
statistical average with the Hamiltonian (7).

3 Electronic excitation spectrum

To calculate the electron excitation spectrum within the
model (7), we consider the anticommutator two-time
matrix Green function (GF) [30]

Ĝij,σ(t− t′) = −iθ(t− t′)〈{X̂0σ
i (t), X̂σ0

j (t′)}〉

≡ 〈〈X̂0σ
i (t), X̂σ0

j (t′)〉〉, (10)

Fig. 1. Sketch of the honeycomb lattice, where δ1, δ2, δ3 are
the nearest-neighbor vectors (8), and a1, a2 are the lattice
vectors.

where {X,Y } = XY +Y X,X(t) = eiHtXe−iHt, and θ(x)
is the Heaviside function. Here we introduce the Hubbard
operators in the two-sublattice representation:

X̂0σ
i =

(
X0σ
iA

X0σ
iB

)
, X̂σ0

j =
(
Xσ0
jAX

σ0
jB

)
. (11)

The Fourier representation in (k, ω)-space is defined by

Ĝij,σ(t− t′) =

∫ ∞
−∞

dω

2π
e−iω(t−t′)

× 1

N

∑
k

eik(ri−rj)Ĝσ(k, ω). (12)

Differentiating the GF (10) with respect to the time t we
get

ω Ĝij,σ(ω) = δijτ0Q+ 〈〈Ẑ0σ
i | X̂σ0

j 〉〉ω, (13)

where Ẑ0σ
i = [X̂0σ

i , H], τ0 is the unity matrix, and
Q = 〈X00

iα +Xσσ
iα 〉 = 1− nα/2.

Now, we project the many-particle GF in (13) on the
single-electron GF by introducing the irreducible part of
the Ẑ0σ

i operator,

〈〈Ẑ0σ
i | X̂σ0

j 〉〉ω =
∑
l

Êilσ〈〈X̂0σ
l | X̂σ0

j 〉〉ω

+〈〈Ẑ0σ(irr)
i | X̂σ0

j 〉〉ω, (14)

which is orthogonal to the right-hand side operator:

〈{Ẑ0σ(irr)
i , X̂σ0

j }〉 = 0. This results in the equation for the
frequency matrix,

Êij = 〈{[X̂0σ
i , H], X̂σ0

j }〉 Q−1. (15)

Using the Fourier transformation of the GF (12) we obtain
the equation for the GF in the GMFA neglecting the last
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term in (14) which describes inelastic scattering:

[ωτ0 − Ê(k)] Ĝσ(k, ω) = τ0Q. (16)

Here the electronic excitation spectrum in GMFA is
determined by the matrix of correlation functions:

Ê(k) =
1

N

∑
i,j

exp[ik(ri − rj)]Êij

= Q−1

(
ε(k) εAB(k)
ε∗AB(k) ε(k)

)
, (17)

where ε(k) = 〈{[X0σ
kA, H], Xσ0

kA}〉 = 〈{[X0σ
kB , H], Xσ0

kB}〉
and εAB(k) = 〈{[X0σ

kA, H], Xσ0
kB}〉. The solution of the

matrix equation for the GF (16) reads:

Ĝσ(k, ω) =

(
GAA,σ(k, ω) GAB,σ(k, ω)
GBA,σ(k, ω) GBB,σ(k, ω)

)
=

Q

D(k, ω)

(
ε(k)− ω − εAB(k)
−ε∗AB(k) ε(k)− ω

)
. (18)

The electronic spectrum is defined from the equation

D(k, ω) = [ε(k)− ω]2 − |εAB(k)|2

= [ε+(k)− ω][ε−(k)− ω], (19)

and is given by

ε±(k) = ε(k)± |εAB(k)|. (20)

The calculation of the matrix elements in (17) gives the
following result for ε(k):

ε(k) = −µ+
3t

Q
D1 −

3J

4
nα +

3J

2Q
C1 ≡ −µ̃, (21)

where we introduce the nn correlation functions for elec-
trons and spins,

D1 = 〈Xσ0
iAX

0σ
i+δ1,B〉, C1 = 〈S+

iAS
−
i+δ1,B

〉. (22)

For the off-diagonal energy we have:

εAB(k) = −t̃ γ1(k), (23)

t̃ = tQ

[
1 +

3C1

2Q2

]
+ J

D1

2Q
, (24)

where γ1(k) =
∑
b exp(ik

−→
δb ) and |γ1(k)|2 = 1

+4 cos(
√

3kx/2)[cos(
√

3kx/2) + cos(3ky/2)]. Note that
equations (21), (23), (24) are similar to the results
obtained for the spectrum of the t-J model on the square
lattice in [29].

Thus, the electronic spectrum has two branches:

ε±(k) = −µ̃± t̃ |γ1(k)|. (25)

It agrees with the spectrum of graphene (see, e.g., [1,31]),
except for the renormalization of the chemical potential µ̃

Fig. 2. Brillouin zone (bold) and hole Fermi surface for
n = 0.95 (thin solid), 0.76 (dashed), and 0.7 (dotted).

and the hopping parameter t̃ due to strong correlations.
Therefore, in the strong-correlation limit the cone-type
dispersion is conserved, i.e., the spectrum reveals Dirac
cones at the corners (K points) of the Brillouin zone (BZ).

The BZ and the Fermi surfaces (FS) for holes at the
electronic occupation numbers n = 0.95, 0.76, and 0.7
are shown in Figure 2. At n . 1 the hole FS is small
and centered at the Γ point. With decreasing n the FS
becomes larger, and at some characteristic value n0 = 0.76
the FS touches the BZ at M-points. At larger hole doping,
six pockets centered at the K-points emerge which shrink
to points for the half-filled band at n = 2/3.

For the diagonal GF we have

Gαα,σ(k, ω) =
Q

2

[
1

ε+(k)− ω
+

1

ε−(k)− ω

]
. (26)

The mean occupation number of electrons is equal to

nα =
1

N

∑
k,σ

nασ(k), (27)

with

nασ(k) = 〈Xσσ
kα〉 = 〈Xσ0

kαX
0σ
kα〉

=

∫ ∞
−∞

dω

eω/T + 1

[
− 1

π
ImGαα,σ(k, ω)

]
= Q

1

2
[N(ε+(k)) +N(ε−(k))], (28)

where N(ε±(k)) = [exp[ε±(k)/T ] + 1]−1, and nα ≤ 1.
For the off-diagonal GF in (18) we obtain

GAB,σ(k, ω) = Q
εAB(k)

2 |εAB(k)|

×
[ 1

ε+(k)− ω
− 1

ε−(k)− ω

]
, (29)

and for the corresponding correlation function we get

〈Xσ0
kBX

0σ
kA〉 = Q

γ1(k)

2|γ1(k)|
[N(ε−(k))−N(ε+(k))]. (30)
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4 Spin-excitation spectrum and
thermodynamics

To calculate the spin-excitation spectrum and to evalu-
ate the thermodynamic quantities in the model (7), we
consider the two-time matrix commutator GF [30]:

Ĝ±ij(t− t
′) = −iθ(t− t′)〈[S+

i (t) , S−j (t′)]〉
≡ 〈〈S+

i (t) | S−j (t′)〉〉, (31)

where [S, Y ] = SY − Y S. The Fourier representation of
the spin GF, 〈〈S+

q | S−−q〉〉ω, is defined by the same relation
as for the electronic GF (12).

In the relaxation-function theory developed on the
basis of the equation of motion method in [25,26] we
obtain the following representation of the DSS χ̂(q, ω) =

−Ĝ+−(q, ω):

χ̂(q, ω) = [F̂ (q) + Σ̂(q, ω)− ω2 τ0 ]−1 × m̂(q). (32)

Here, F̂ (q) is the frequency matrix of spin exci-
tations in the GMFA, where the approximation
−S̈+

qα = [[S+
qα, H], H] = ΣβFαβ(q)S+

qβ is made,

and m̂(q) is the moment matrix with components

mαβ(q) = 〈[iṠ+
qα, S

−
−qβ ]〉 = 〈[[S+

qα, H], S−−qβ ]〉. The self-

energy Σ̂(q, ω) can be expressed exactly by a multispin
GF (see [25,26]).

We consider the GMFA for the DSS neglecting the self-
energy in (32). Then, for a lattice with basis the zero-order
DSS is given by (cf. [24])

[F̂ (q)− ω2 τ0 ]× χ̂(q, ω) = m̂(q). (33)

For the static spin susceptibility we obtain

χ̂(q, 0) ≡ χ̂(q) = F̂−1(q)× m̂(q). (34)

The direct calculation of the matrix elements mαβ(q)
yields

m̂(q) =

(
mAA mAB(q)

m∗AB(q) mAA

)
, (35)

where

mAA = −6JC1 + 6tD1, (36)

mAB(q) = (2JC1 − 2tD1)γ1(q). (37)

To calculate the frequency matrix F̂ (q) in
equation (33), we start from the second derivative

−S̈+
i . Taking into account only the diagonal contribu-

tions F tti = [ [S+
i , Ht], Ht] , and F JJi = [ [S+

i , HJ ], HJ ] ,
where Ht(HJ) is the hopping (exchange) part of the
model (7), we obtain

F tti =
∑
j,n

tij

{
tjn
[
H−ijn +H+

nji

]
− (i⇐⇒ j)

}
, (38)

F JJi =
1

4

∑
j,n

Jij

{
Jjn [2Pijn +Πijn]− (i⇐⇒ j)

}
, (39)

where

Hσ
ijn = Xσ0

i X+−
j X0σ

n +X+0
i (X00

j +Xσσ
j )X0−

n , (40)

Pijn = Szi S
z
j S

+
n + S+

n S
z
i S

z
j − Szi S+

j S
z
n − SznSzi S+

j , (41)

Πijn = S+
i S
−
j S

+
n +S+

n S
+
i S
−
j −S

+
i S

+
j S
−
n −S−n S+

i S
+
j . (42)

We do not consider the off-diagonal terms F tJi , F Jti as
discussed in [26].

We perform the following decoupling procedure pre-
serving the local correlations. Decoupling the operators
in Hσ

ijn we introduce the parameter λ:

Xσ0
i X+−

j X0σ
n = λ〈Xσ0

i X0σ
n 〉S+

j , (43)

where for n = i, 〈Xσ0
i X0σ

i 〉 = 〈Xσσ
i 〉 = n/2 , and the

second term of Hσ
ijn with n 6= i is neglected (cf. [32]).

Analogously, the operators in Πijn=i and Pij,n=i are
decoupled as

Πiji = 2Piji = −(1−X00
i )S+

j = −(1− λ δ)S+
j , (44)

where δ = 〈X00
i 〉 = 1 − n is the hole concentration, and

we used the equations: S+
i S
−
i = X++

i , Szi S
+
i + S+

i S
z
i =

0, and (Szi )2 = (1/4)(X++
i + X−−i ) . The parameter

λ describes the renormalization of the vertex for spin
scattering on charge fluctuations.

The contribution F JJi is proportional to products of
three spin operators on different lattice sites along nn
sequences, e.g., 〈iA, jB, kA〉. We perform the decoupling
of them as follows

S+
iAS

z
jBS

z
kA = α1〈SzjBSzkA〉S+

iA =
α1

2
C1 S

+
iA, (45)

S+
jBS

z
iAS

z
kA = α2〈SziASzkA〉S+

jB =
α2

2
C2 S

+
jB , (46)

S+
iAS

+
jBS

−
kA = α1〈S+

jBS
−
kA〉S

+
iA + α2〈S+

iAS
−
kA〉S

+
jB

= α1C1 S
+
iA + α2C2 S

+
jB . (47)

Here, the vertex renormalization parameters α1 and α2 are
attached to the nn and the nnn correlation functions C1

and C2, respectively, and the equality 〈Szi Szj 〉 = 1
2 〈S

+
i S
−
j 〉

due to spin-rotation invariance is taken into account.
Using these decouplings we obtain the frequency matrix
F̂ (q):

F̂ (q) =
1

2

(
FAA(q) FAB(q)
F ∗AB(q) FAA(q)

)
, (48)

where

FAA(q) = J2(3(1− λδ) + 12α2C2 + 2γ2(q)α1C1)

+3t2λ(δ − 2D2), (49)

FAB(q) = −γ1(q) fAB , (50)
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fAB = J2(1− λδ + 4α1C1 + 4α2C2)

+t2λ(δ − 2D2), (51)

with

γ2(q) =
∑
i,j 6=i

exp(iq(δi − δj))

= 4 cos

(√
3

2
qx

)
cos

(
3

2
qy

)
+ 2 cos

(√
3qx

)
, (52)

and the nnn correlation function D2 = 〈Xσ0
iαX

0σ
i+a1,α

〉.
Since the matrices m̂(q) and F̂ (q) commute, it is conve-

nient to solve equation (33) by introducing the eigenvalues
m±(q) and the normalized eigenvectors |E±(q)〉 of the
matrix (35):

[m̂(q)− τ̂0m±(q)]|E±(q)〉 = 0, (53)

which are given by

m±(q) = −(2JC1 − 2tD1)(3± |γ1(q)|), (54)

|E±(q)〉 =
1√
2

(
∓γ1(q)/|γ1(q)|

1

)
. (55)

For the same eigenvectors |E±(q)〉 the spin-excitation
frequencies are obtained as

ω2
±(q) =

1

2
(FAA(q)± |γ1(q)|fAB). (56)

In this notation the DSS reads

χαβ(q, ω) =
∑
j=±

χj(q, ω)〈α|Ej(q)〉〈Ej(q)|β〉, (57)

where

χ±(q, ω) =
m±(q)

ω2
±(q)− ω2

, (58)

and 〈α|E±〉〈E±|β〉 = 1/2 for α = β, otherwise
〈α|E±〉〈E±|β〉 = ∓γ1(q)/(2|γ1(q)|).

Using the spectral representation for the GF the corre-
lation function Crαβ = 〈S+

0αS
−
rβ〉 is written as

Crαβ =
1

N

∑
q6=Q

Cαβ(q)eiqr + CαβeiQr, (59)

where

Cαβ(q) =
∑
j=±

mj(q)

2ωj(q)
coth

ωj(q)

2T

×〈α|Ej(q)〉〈Ej(q)|β〉, (60)

Cαα = −Cα6=β = C, and the wave vector Q character-
izes the long-range order (LRO). The condensation part
C appears in the ordered phase when ω+(q) condensates

at Q which determines the LRO, ω+(Q) = 0. In the case of
AF order in the two-sublattice model, we have Q = (0, 0),
and the staggered magnetization mst is determined by

(mst)
2 =

3

2
C. (61)

Let us consider the uniform static susceptibility χ =
1
2 (χAA(0) + χAB(0)) = 1

2χ−(0) and the staggered sus-
ceptibility χst = χAA(Q)−χAB(Q) = χ+(Q). Expanding
χ−(q) around q = 0 we obtain

χ =
−2JC1 + 2tD1

J2(1− λδ + α1 C1 + 4α2 C2) + t2λ(δ − 2D2)
. (62)

We expand χ+(q) in the neighborhood of the AF vec-
tor Q and obtain χ+(Q+k) = χ+(Q)[1 + ξ2(k2

x + k2
y)]−1,

where for the correlation length ξ we get:

ξ2 = −3[J2(1− λδ + 7α1C1 + 4α2C2) + t2λ(δ − 2D2)]

2ω2
+(Q)

.

(63)
At zero temperature, for δ < δc the LRO occurs when
both the correlation length (63) and χ+(Q) diverge.

5 Results

To evaluate the spin-excitation spectrum and the ther-
modynamic properties, the correlation functions C1, C2,
the transfer amplitudes D1, D2, and the vertex parame-
ters α1, α2, and λ, appearing in the spectrum ω±(q) as
well as the condensation term C in the LRO phase have
to be determined as solution of a coupled system of self-
consistency equations. Besides equations (59) and (30) for
calculating the correlation functions and the transfer
amplitudes, respectively, we have the sum rule Cr=0,αα =
〈S+
iαS
−
iα〉 = (1− δ)/2 and the LRO condition ω+(Q) = 0.

That is, we have more parameters than equations. To
obtain a closed system of equations, we take the following
choice of the vertex parameters.

First, let us mention that the parameters α1 and α2

cannot be used to satisfy the sum rule at high enough
hole densities, because for t & J the t2 term in (51)
will dominate the J2 term at high enough doping levels.
Therefore, the influence of α1,2 on C0,αα rapidly weakens
with increasing doping. The vertex parameter λ, however,
which describes the coupling between the spin and hole
degrees of freedom, is suitable to satisfy the sum rule
over the whole doping region. Therefore, we determine
the parameters α1 and α2 in the Heisenberg limit (δ = 0)
and take their values also at finite δ, as was also done
in [26,27]. Following reference [24] we fix α1 and α2 by
the sum rule C0,αα = 1/2 and by the QMC value of the
staggered magnetization, mst(0) = 0.2681, given in [33].
We get α1(0) = 2.91 and α2(0) = 3.57. At finite temper-
atures we determine α1(T ) and α2(T ) from the sum rule
and the ansatz rα(T ) ≡ [α2(T ) − 1]/[α1(T ) − 1] = rα(0)
(see [24,34–36]). At finite doping, we use the sum rule
C0,αα = (1− δ)/2 to calculate λ(T, δ).
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Fig. 3. Spin-excitation spectrum ω−(q) (solid) and ω+(q)
(dashed) at T = 0 and J/t = 1/3 for (a) δ = 0 and (b) δ = 0.2.

5.1 Spin excitations

Let us first present the spectrum of spin excitations
ω±(q) at T = 0 calculated from equation (56). The
spectrum is plotted in Figure 3 along the symmetry direc-
tions X(−1, 0) → K(−2/3, 0) → Γ (0, 0) → Y (0, 1) →
K(1/3, 1) → Γ ′(1, 1) → M(1/2, 1/2) → Γ of the BZ
shown in Figure 2. In the LRO phase, i.e., at δ < δc,
the spin excitations are spin waves with gapless branches
depicted in Figure 3a. In the paramagnetic phase, spin
waves propagating in AF SRO can exist, if their wave-
length is smaller than the correlation length, i.e., if q >
qc = 2πξ−1. For dopings slightly above δc, where the cor-
relation length is large enough as discussed below, this
condition can be fulfilled. With increasing doping, we may
have q < qc so that the spin-wave picture breaks down,
and ”paramagnon” excitations with the energies ω±(q)
appear. Thus, our spin-excitation spectra may reveal a
smooth crossover from spin-wave to paramagnon behavior
depending on the wavenumber and doping. In the upper
(optical) branch, at δc a gap is opening at the Γ point,
i.e., at the AF wave vector Q = (0, 0) characterizing the
LRO phase in the two-sublattice model. As can be seen
in Figure 3, the spin-excitation energies are decreasing
with increasing doping. Interestingly, at the K points the
spin-excitation spectrum has a maximum.

5.2 Correlation functions and magnetization

In Figure 4 our results for the doping dependence of the
spin correlation functions for the first (C1), the second
(C2), and the third (C3, C4) neighbors at T = 0 are pre-
sented. The different sign of C1 and C2 reflects the AF
order which gradually decreases with increasing doping,
where at δ & 0.6 only nn spin correlations survive. The
third neighbor correlation functions C3 and C4 have sim-
ilar behavior because they connect spins on the same
sublattices A,B and have close distances r between the
spins: C3(r = 2 a0), C4(r = a0

√
7 ≈ 2.65 a0).

Considering the staggered magnetization mst(δ) at
T = 0 depicted in Figure 5, the AF LRO is suppressed
with increasing doping due to the spin–hole interaction.

Fig. 4. Spin correlation functions between the first (C1), the
second (C2), and the third (C3, C4) neighbors vs. doping at
T = 0 and J/t = 1/3.

Fig. 5. Staggered magnetization mst(δ)/mst(0) at T = 0 as
a function of doping for J/t = 1/3 (solid) and J/t = 1/2
(dashed). For comparison, the staggered magnetization for the
square lattice for J/t = 1/3 is given by a dotted line.

At the critical doping δc(J/t) we obtain a smooth
phase transition from the LRO phase to a paramagnetic
phase with AF SRO, where δc(J/t = 1/3) = 0.069 and
δc(J/t = 1/2) = 0.117. For J/t = 1/3 the critical doping
lies near the value δc & 0.1 found in [22] by density-matrix
renormalization group calculations and by a variational
method. For comparison, the staggered magnetization for
the square lattice for J/t = 1/3 is also shown in Figure 5
by a dotted line, where δc = 0.042 calculated as described
in [26].

Let us compare the results for δc at J/t = 1/3 in the
honeycomb lattice (δhlc ) with those found in the square lat-
tice (δslc ). Taking δhlc from the approach of [22], δhlc & 0.1,
and δslc from the cumulant approach of [37], δslc ' 0.045,
we have δhlc /δ

sl
c ' 2.2. In the GMFA calculations at

https://epjb.epj.org/
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Fig. 6. Uniform static spin susceptibility Jχ vs. doping at
J/t = 1/3.

Fig. 7. Inverse correlation length ξ−1 at J/t = 1/3 as a
function of doping (a) and temperature (b).

J/t = 1/3 we get δhlc = 0.069 and δslc = 0.042, i.e., the
ratio δhlc /δ

sl
c ' 1.64 nearly agrees with that given by the

approaches of [22] and [37]. That means, in the honey-
comb lattice the LRO is favored as compared with the
square lattice, although the coordination number zhl = 3
is smaller than zsl = 4. This behavior may be due to
different geometries of the hopping paths in the two
lattices.

5.3 Static susceptibility and correlation length

In Figure 6 the uniform static spin susceptibility χ is plot-
ted as a function of doping at various temperatures. The
increase in χ upon doping is caused by the decrease of AF
SRO (cf. Fig. 4), i.e., of the spin stiffness against the ori-
entation along a homogeneous external magnetic field. At
large doping, δ & 0.6, χ decreases with increasing δ due
to the decreasing number of spins. Note that the posi-
tion of the SRO-induced maximum of χ at δmax(T ) nearly

agrees with the doping at which the further-distance corre-
lation functions Cn (n = 2, 3, 4) become vanishingly small
(see Fig. 4). As compared with the results for the t − J
model on the square lattice, the values of δmax(T ) are
much higher. That means, similar to the behavior of LRO,
in the honeycomb lattice the SRO is favored as compared
with the square lattice.

Concerning the temperature dependence of χ at fixed
doping, from Figure 6 it can be seen that there appears a
maximum at Tmax(δ). This maximum can be understood
as a SRO effect in analogy to the explanation of the doping
dependence of χ.

Figure 7 shows the inverse correlation length ξ−1. Con-
sidering the doping dependence (Fig. 7a) at T = 0, in the
limit δ → δc+, AF LRO emerges which is connected with
the closing of the AF gap, ω+(Q)→ 0, and by (63), with
the divergence of ξ. At T > 0, there is no LRO so that
ξ remains finite, where ξ−1 almost linearly increases with
δ. This corresponds to the weakening of AF correlations
(see Fig. 4). Let us consider the temperature dependence
of ξ (Fig. 7b). At δ < δc, ξ diverges in the limit T → 0,
where at δ = 0, ξ exhibits the known exponential increase
(see [24]).

6 Conclusion

In the paper we have calculated the electronic and spin-
excitation spectra and evaluated thermodynamic quanti-
ties in the strong-correlation limit within the t-J model on
the honeycomb lattice. The electronic spectrum shows the
graphene-type dispersion with the renormalized chemical
potential and the hopping parameter. The Fermi surface
has 6 cones at K-points in the BZ at half-filling for the
electronic occupation number n = 2/3. The dynamic spin
susceptibility is calculated within a spin-rotation-invariant
generalized mean-field approach for arbitrary tempera-
tures and hole dopings. Our main focus was the analysis of
the doping dependence of the zero-temperature magneti-
zation, of the uniform static spin susceptibility and of the
AF correlation length which we have explained in terms of
SRO. The obtained results agree with our previous results
for the t-J model on the square lattice [26], but both the
AF LRO and SRO are found to exist in a larger doping
region.

Using the obtained data for the electronic and spin-
excitation spectra we can consider superconductivity as
has been done for the square lattice in [29]. In partic-
ular, we expect a high superconduction temperature Tc
at n = 0.76 when the chemical potential occurs close
to the van Hove singularity. The spin-excitation spec-
trum found in the paper can be used to consider the
spin-fluctuation mechanism of pairing induced by strong
kinematical interaction of electrons beyond the commonly
used MFA for the exchange interaction pairing. As shown
for the Hubbard model for U � t on the square lat-
tice [38,39], the spin-fluctuation mechanism of pairing
results in high-Tc. Of particular interest is the study of a
coexistence of SC and AF ground-state order at low dop-
ing found in [22]. This issue may be further elaborated
for finite temperatures within the layered honeycomb

https://epjb.epj.org/
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t-J model. So our investigation forms a good basis for
further analytical studies of superconductivity in the
honeycomb t-J model.
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