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Abstract. In this paper large resistor-capacitor (RC) networks that consist of randomly distributed con-
ductive and capacitive elements which are much larger than those previously explored are studied using an
efficient algorithm. We investigate the emergent power-law scaling of the conductance and the percolation
and saturation limits of the networks at the high and low frequency bounds in order to compare with a
modification of the classical Effective Medium Approximation (EMA) that enables its extension to finite
network sizes. It is shown that the new formula provides a simple analytical description of the network re-
sponse that accurately predicts the effects of finite network size and composition and it agrees well with
the new numerical calculations on large networks and is a significant improvement on earlier EMA formu-
lae. Avenues for future improvement and explanation of the formula are highlighted. Finally, the statistical
variation of network conductivity with network size is observed and explained. This work provides a deeper
insight into the response of large resistor-capacitor networks to understand the AC electrical properties,
size effects, composition effects and statistical variation of properties of a range of heterogeneous materials
and composite systems.

1 Introduction

Composite materials that consist of conductive and
dielectric phases are present in a wide variety of man-
ufactured materials and in nature. Therefore an under-
standing of the behaviour of such materials in terms of
composition effects, size effects and statistical variation of
properties is critical to enable the design of composites
with specific properties. An intriguing aspect of heteroge-
neous materials and composite systems is the anomalous
power law frequency dependence of the AC conductivity;
termed by Jonscher as the “universal dielectric response”
(UDR) [1–3]. A variety of systems have been observed to
follow the universal dielectric response; examples include
ionically conducting ceramics in single crystal and poly-
crystalline form, glassy materials, mixtures of rock and
water, polymer composites loaded with a variety of con-
ductive fillers, and biological materials such as skin and
nail.

A characteristic of the universal dielectric response is
that at low frequencies the AC conductivity, Y ′(ω) is fre-
quency independent [4], Y ′(0) which can be considered the
DC conductivity, while at higher frequencies the AC con-
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ductivity increases with increasing frequency and follows
a power law,

Y ′(ω) = Y ′(0) + Aωn (1)

where ω is angular frequency (2πf), A is a constant and
0 < n < 1.0. The relative permittivity (k) also follows a
power-law decay such that, k ∼ ωn−1. Figure 1a shows an
example of the UDR from experimental data of a water
saturated porous ceramic with 22%vol. porosity whereby
measurements were made at regular intervals until the
ceramic was dry [5]. The frequency independent region,
Y ′(0), and frequency dependent regions can be clearly ob-
served and Y ′(0) decreases as the ceramic dries and the
fraction of conducting water decreases.

A recent interpretation of the UDR is that it is a char-
acteristic of the random resistive and capacitive paths
formed by the microstructure of the material. These flow-
paths can be modelled using 2D lattices of randomly po-
sitioned resistors and capacitors; for example in the wa-
ter saturated ceramic in Figure 1a the resistors represent
conductive water filled pores and the capacitors represent
the regions insulating ceramic. Such models do not di-
rectly represent the 3D physical structure of the disor-
dered binary mixture, but are rather a more abstract rep-
resentation of the various flow-paths though the modelled
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Fig. 1. (a) Experimental AC conductivity data of water sat-
urated 22 vol.% porous ceramic during drying as the com-
position varies from a fully saturated state (where capaci-
tor fraction, p = 0.78) to a dry state (where p → 1). (b)
Example of a 2D resistor-capacitor (R-C) network to repre-
sent a microstructure containing randomly distributed con-
ductors and insulators. (c) Simulations of conductivity and
capacitance of a relatively small 2D square RC network con-
taining 512 randomly spaced components, 60% 1 kΩ resis-
tors and 40% 1 nF capacitors. R−1 = ωC is satisfied at
ω = 106 s−1.

medium. The resistors have a fixed conductivity, strictly
the complex admittance, and map to conductive flow-
paths in the material, whereas the admittance of the ca-
pacitors varies according to the applied frequency and rep-
resent paths through the dielectric regions of the medium.

An example of an RC network is shown in Figure 1b
which consists of a two-dimensional array of randomly
positioned resistors and capacitors. The analysis of the
properties of random resistor-capacitor networks has been
presented by Almond and co-workers [4–8]; typically for
networks that contain a much smaller number of resis-
tors or capacitors (less than 104 components) than will
be examined in this work. Good correlation of experimen-
tal data with the RC microstructural network approach
has been reported using a water infiltrated porous fer-
roelectric ceramic which can be considered as a random
microstructure consisting of conducting water filled pores
that represent the resistive regions (R in Fig. 1b) and in-
sulating ceramic that represent the capacitive regions (C
in Fig. 1b) [9].

An example of a typical response of a RC network
is presented in Figure 1c, which shows the frequency de-
pendent conductivity and capacitance of a small network
of 512 components where 60% of the components are
1 kΩ resistors and 40% are 1 nF capacitors; as deter-
mined using circuit simulation software. The conductivity
and capacitance in Figure 1b reveals that the frequency
response is qualitatively similar to the UDR; i.e. equa-
tions (1) and (2). The network response is best under-
stood by considering the frequency dependent conductiv-
ity of the individual resistor and capacitor components in
the network. The resistor conductance (R−1) is frequency
independent while the capacitors capacitor conductance
(iωC) rises linearly with frequency. This leads to the
following observations [4,7,9]:

(i) at low frequencies the conductance of the resistors
is much larger than that of the capacitors which
effectively act as open circuits, R−1 > ωC. The
AC currents will flow through the resistors and if
a percolation path of resistors exists across the net-
work the current will flow preferably through these
resistors;

(ii) at high frequencies the conductance of the capacitors
is much larger than that of the resistors, R−1 < ωC.
The capacitors effectively act as short circuits and AC
currents will flow through the capacitors. If a perco-
lation path of capacitors exists across the network
the AC current will flow preferably through these
capacitors;

(iii) at “intermediate” frequencies the AC currents flow
through both resistors and capacitors, since R−1 ∼
ωC. In this frequency range the presence of perco-
lated resistors or capacitors has little influence on
network response since both resistors and capacitors
have a similar conductance.

The power law response of the electrical networks, such
as that observed in Figure 1c, occurs at intermediate fre-
quencies where the resistor and capacitor conductances
are similar (R−1 ∼ ωC). For the network in Figure 1b the
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condition R−1 = ωC is at ω = 106 s−1, since R = 1 kΩ
and C = 1 nF. Almond et al. have shown empirically that
the network power law response [4,9] can be related to
the component values by a simple logarithmic mixing rule
where the network complex conductivity (Y ∗

network) is

Y ∗
network = (iωC)p(R−1)1−p (2)

where p is the fraction of capacitors in the network. Truong
et al. [10] have presented a possible explanation of the
logarithmic mixing rule for random mixtures as a general
case of the series and parallel mixing rules. The logarith-
mic mixing rule also predicts that the phase angle in ra-
dians, is

phase angle = [(1 − p) · π/2]. (3)

The frequency response of resistor-capacitor networks
has been employed to understand the frequency de-
pendent conductivity and permittivity of a number of
materials and composites at a range of scales of conductor-
insulator heterogeneity. This includes zirconia ceram-
ics [11], ferroelectric-conducting polymer composite sys-
tems [7], granular thin films [12], and water adsorbed in
mesoporous materials [13]. The networks have also been
used to explain the influence of conductivity on the high
permittivity of lead halide perovskite solar cell materi-
als [14], understand electromagnetic moisture sensing of
materials [15] and dielectric loss in ferrite materials [16].
Two-dimensional arrays of resistors, capacitors and diodes
have been used by Bychanok et al. to examine the elec-
tromagnetic properties of polymers filled with carbon nan-
otubes [17]. Mechanical networks that consist of elements
of different stiffness have also been considered [18].

Previous analysis of relatively small RC net-
works [4–7,11,19] has shown that the AC conductivity ex-
hibits a large distribution of magnitudes at low (R−1 >
ωC) and high (R−1 < ωC) frequencies. These large dis-
tributions are due to the different possible combinations
of percolating or non-percolating resistors or capacitors
that form in the network. It is clear that whether or not
percolation paths are formed is dependent on the propor-
tion of resistors or capacitors in the network. The power
law region at intermediate frequencies is far more sharply
defined for range for networks of the same composition
since the AC current is flowing though both components
in this frequency range; it has been suggested [4] that the
power law response in this frequency range is an emer-
gent property of RC networks. To date simulations have
been undertaken on relatively small random RC networks
with a small number of random networks realizations. This
has limited the possible insights on aspects of the influ-
ence of RC network size on the low and high frequency
distribution of AC conductivity, the statistical variation
of conductivity with network size and finite size effects
on percolation. As an example, Almond et al. [8] ex-
amined networks where the number of components (N)
was approaching 10 000 and Hamou et al. provided a de-
tailed study on large numbers of networks with up to
500 000 components [20]. The influence of network size is
of interest to understand the influence of scale in real ma-
terials or composite systems; for example bulk materials

can be effectively considered as infinitely large networks
while composite thin films at the micrometer scale con-
taining nanometer sized inclusions are effectively smaller
finite electrical networks.

In this paper we explore the validity of theoretical ap-
proximations in various regimes (network size and compo-
sition) by comparing them to large ensembles of 2D square
electrical networks at a very large range of sizes. In Sec-
tion 2 we summarise the various analytical and numerical
methods from the previous work of ourselves and others.
The analytical expressions presented in Section 2.1 com-
bine classical averaging approaches with spectral methods
into a suggestive asymptotic formula. This formula enables
extension of the Effective Medium Approximation (EMA)
to finite network sizes, and avenues for future improve-
ment and explanation of the formula are highlighted. The
RC network models are solved numerically using an effi-
cient algorithm based on the reduction method of Frank
and Lobb [21], which is outlined in Section 2.2. The ap-
proach allows numerical calculations of the electrical prop-
erties of RC networks with network sizes and random re-
alizations that are much larger than previously explored,
approaching up to 2 × 106 components with 1024 ran-
dom realization of each network type. The algorithm is
used to calculate the equivalent properties of networks of
a range of sizes and proportions of resistors and capac-
itors. This enables investigation of the validity of these
approximation schemes to determine the network proper-
ties, as presented in Section 3. In Section 3.1 the typical
responses of the RC networks in different regimes of com-
position (p) and size (N) are demonstrated, before com-
parison with the asymptotic formula in Sections 3.2–3.4.
Finally, in Section 3.5 some interesting observations of the
statistical variation of network conductivity with network
size at the different ranges of frequencies, R−1 < ωC,
R−1 > ωC, and R−1 ∼ ωC are explored and explained.

2 Resistor-capacitor (RC) network calculation
methodologies

2.1 Analytical approximation methods

For networks of randomly sited single conductive compo-
nents, classical percolation theory gives good results [22].
However, in the case of binary mixtures where the com-
ponents have a variable conductivity ratio (here due to
the capacitive components having frequency-dependent
admittance), other analytical approaches are required.
These include: empirically derived mixing laws, such as
equation (2), which are valid in the intermediate power-
law region [4]; averaging approaches such as the Effective
Medium Approximation [23], valid away from the criti-
cal percolation probability where network size (which rep-
resents granularity in a real material) does not have an
effect; approaches based on the distribution of the pole-
zero (generalised eigenvalue) spectra [8], which account
for network size effects near the critical mixing ratio but
only approximately capture the percolation and satura-
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tion limits away from criticality; as well as more specula-
tive combinations thereof, as described next.

2.1.1 Effective medium approximation (EMA) for an infinite
network

The purely empirical power-law mixing rules described
earlier, equations (2) and (3), are limited to providing an
estimate of the properties of RC networks at intermedi-
ate frequencies where R−1 ∼ ωC. However, the approach
does not provide an indication of the AC conductivity at
low or high frequencies where currents percolate through
resistors or capacitors, respectively [4]. Here, the “clas-
sical” Effective Medium Approximation (EMA) formula
is derived using an averaging method, which provides an
approximation to the conductance as a function of ω for
a homogeneous RC network. The approximation assumes
perfect mixing, implying an infinitely large network, and
therefore works only in cases where network size is unim-
portant, away from the critical mixing ratio of the two
components. Empirical corrections have previously been
made in cases of finite-size networks [24], but these are far
from adequate, as will be demonstrated later (Sect. 3.3)
when we examine a wide range of RC network sizes.

We initially consider resistors with a frequency inde-
pendent conductance y1 = 1/R and capacitors with a
frequency dependent conductance y2 = iωC that are in
proportion 1−p and p, respectively. The EMA states that
the effective medium conductance Y for a two-dimensional
square lattice where the number of components N→ ∞ is
given by solutions of the quadratic equation,

Y 2 + (1 − 2p)(y2 − y1)Y − y1y2 = 0, (4)

for which solutions can be obtained either numerically, or
in the usual way. This formula can further be rearranged,
by defining

θ = Y /
√

y1y2, μ = y2/y1 and ε = 1 − 2p, (5)

into the following symmetric form, which will be compared
to the spectral formula in the next section,

θ − 1
θ

+ ε

(√
μ − 1√

μ

)
= 0. (6)

As stated above, the EMA assumes perfect mixing in an
infinitely large network and it fails to capture any size,
N , dependent scaling of the network response. We will
see later that as the fractions of capacitors or resistors in
the network approaches the percolation limit when |ε| is
small, which for a two-dimensional square lattice pc = 0.5
the network response becomes more dependent on network
size [8]. Therefore, the EMA is most appropriate when p
is not too close to the network percolation limit.

We can draw a number of conclusions from equa-
tion (6).

Firstly, if ε = 0 then we have that

θ = 1, Y =
√

y1y2 (6a)

which is the well known Keller mixing law [25].

Secondly, if ε is positive, and |μ| is large, then there is
an asymptotic solution of the form

θ ∼ 1
ε
√

μ
, Y ∼ y1

ε
. (6b)

Thirdly if |μ| is small then

θ ∼ ε√
μ

, Y ∼ εy1. (6c)

Note that the ratio of these two solutions is given by 1
ε2 .

If ε is negative then the roles of y1 and y2 are reversed.
It is of interest to observe that the first of these formu-

lae becomes unbounded as we approach the critical value
of ε = 0. This is because we have made the assumption
that the networks we are considering have an infinite size.

2.1.2 Spectral formulae for a finite network

A complementary method, using a combination of statis-
tical techniques and spectral analysis, has been used by
Budd et al. [8] to derive analytical expressions that are
valid for critical values of pc = 0.5 in the case of a fi-
nite network size. These methods accurately capture the
effect of the network size on the conductivity frequency
response. This approach works by considering the statis-
tics of the poles and zeros of the rational function of μ,
which describes the admittance frequency response of the
network. For RC networks these poles and zeros all lie on
the imaginary axis, and interlace with each other. Indeed,
the poles and zeros correspond to the eigenvalues of the
Laplacian matrix of the RC network formed by applying
Kirchoff’s laws to it, with extensions to include the bound-
ary conditions which apply at the edges of a finite network.
The method uses statistical arguments to show that these
eigenvalues satisfy a log-Normal distribution and deter-
mines certain statistical regularities between their spac-
ings, which apply in the case of ε = 0. By applying these
statistical regularities to an evaluation of the admittance
function, it is shown in [8] that it is possible to derive four
formulae for the admittance function for each of the four
combinations of percolating or non-percolating resistor or
capacitor bonds, which is strictly valid in the critical case
of p = pc = 0.5.

In the following treatment we illustrate only the case
with percolating resistor components (formula 40 in [8]),
which has a response resembling networks with p <
0.5, ε > 0, but the approach can be used for the other
three cases starting from the results in [8].

Restating the working in [8] for the case considered
with percolation of resistors, but not capacitors, if the
network is a square lattice with a large number of compo-
nents, N , then the admittance

Y (μ) ≈ y1

(
1/N + μ

N + μ

) 1
2

. (7)
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We can rearrange the above equation following [8], in a
similar way to the classical EMA and using the same def-
initions, into the symmetric form, equation (8),

θ − 1
θ

=
1
N

(
1
μθ

− μθ

)
. (8)

This equation has a very similar form to equation (6), with
the term of size 1/N acting as a perturbation of the Keller
mixing law. It is shown in [8] that equation (8) provides a
close agreement to the calculated percolation/saturation
limits for a finite network, as well as the scaling behaviour
of the conductivity with network size for intermediate fre-
quencies. To summarise this:

Firstly, as N → ∞ we recover the exact Keller mixing
law with θ = 1.
Secondly, if N is large, and |μ| is also large, then equa-
tion (8) has the asymptotic solution describing a per-
colation situation which takes the form,

θ ∼
√

N√
μ

, Y ∼
√

Ny1. (8a)

Thirdly, if N is large and |μ| is small, then equation (8)
has a further asymptotic solution describing a perco-
lation situation which takes the form

θ ∼ 1√
N
√

μ
, Y ∼ y1√

N
. (8b)

In this case the ratio of the two results is 1/N .
Fourthly, the mixing region with θ ≈ 1 is valid for the
range in which,

1
N

� μ � N (8c)

and hence the width of the mixing region depends crit-
ically on the network size.

We shall see a numerical validation of all of these results
in the next section on our simulations for RC networks for
a wide range of sizes.

2.1.3 Combining the two formulae to give a Modified EMA
(MEMA) formula valid for finite networks

We now make the assumption that there is a more general
formula for the scaled admittance, θ, which depends both
on the deviation from criticality ε and the deviation δ =
1/N from an infinite network size. The derivation of such
a general formula is likely to be problematic, however we
can deduce its approximate form in the case of small ε
and δ from equations (6) and (8). Indeed, both of these
can be considered as perturbations of the Keller mixing
law θ − 1

θ = 0, as either small values of ε or δ vary from
zero. Therefore, using the multivariate Taylor expansion,
we can combine these two formulae to give the following

more general approximation [8] that is valid over a range
of values for which ε is small and N is large:

θ − 1
θ

+ ε

(√
μ − 1√

μ

)
=

1
N

(
1
μθ

− μθ

)
. (9)

We call this new formula the modified effective medium
approximation, MEMA. We note that it can easily be re-
arranged into a simple quadratic equation and can thus be
readily solved to find θ for all values of N and ε. For very
large N it reduces to the EMA approximation (Eq. (6))
(and the size of the network becomes unimportant), and
for very small ε to the spectral approximation (Eq. (8)),
where the size of the network becomes critical. There is
thus a point where one approximation becomes more valid
than the other. To see this more precisely we consider the
case of large |μ| in which case we have the approximate
formula,

θ − 1
θ

+ ε
√

μ = −μθ/N.

Now set θ = φ/
√

μ, divide by
√

μ, rearrange and ignore
terms of size 1/μ to give (to leading order)

φ2 + εN φ − N = 0.

Hence we have, on taking the positive root of this
equation,

φ =
εN

2

[√
1 +

4
Nε2 − 1

]
. (9a)

Thus if Nε2 � 1 we have φ = 1/ε and if Nε2 � 1 we
have φ =

√
N .

Hence on rescaling we recover the previous two perco-
lation limits. We draw the important conclusion that the
behaviour of the network is approximately independent of
N when the network is sufficiently large such that [8],

|ε|2 = |1 − 2p|2 � 1/N (10)

otherwise we will see the effects of the finite network size.
The results of solving the MEMA analytical approxi-

mation (Eq. (9)) will be compared to the numerical solu-
tion of the wide range of network sizes solved using the
Frank and Lobb approach in Section 3.4.

2.2 Numerical Frank and Lobb method

In this section the method employed to evaluate the fre-
quency dependent admittance and phase of the large RC
networks is described. We consider a square network with
S nodes on the horizontal side and therefore a total of
N = 2S2 components; for the sake of simplicity the di-
agrams in Figures 3–5 show only resistors but we have
generalised the approach to consider networks containing
both resistors and capacitors. An example network with
S = 4 and thus N = 32 components is shown in Figure 2a.
The total admittance Y (ω) of this network is obtained
through the equivalent impedance Zeq(ω) calculated using
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(a)

(b)

Fig. 2. (a) The initial 4 × 4 electrical network with S = 4
and N = 32. (b) An example of transformation (Y → Δ) and
(Δ → Y ).

the Frank and Lobb [20] reduction scheme. The method of
Frank and Lobb is based on transformation of star-delta
and delta-star, as shown in Figure 2b, and the transfor-
mation is defined in both directions.

This method applies a sequence of delta-star transfor-
mations to the components (the resistors or capacitors)
that form the bonds between the nodes of the lattice. An
example of this transformation, which we call the propa-
gator transformation, is illustrated in Figures 3a–3d. This
can be decomposed into three separate parts: first a delta-
star (Δ → Y ) transformation (Figs. 3a and 3b), then a
redefinition of the lattice point, and finally a star-delta
(Y → Δ) transformation (Figs. 3c and 3d). The middle
step is included primarily for clarity. In transforming from
Figures 3a to 3b, admittances 6, 7, and 8 are determined
from 1, 2, and 3 by equation (11):

Δ → Y :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

YA = Y1Y2+Y1Y3+Y2Y3
Y1

YB = Y1Y2+Y1Y3+Y2Y3
Y2

YC = Y1Y2+Y1Y3+Y2Y3
Y3

.

(11)

Then, in the transformation from Figures 3c to 3d, admit-
tances 9, 10, and 11 are determined from 4, 5 and 8 by
equation (12):

Y → Δ:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y1 = YBYC

YA+YB+YC

Y2 = YBYC

YA+YB+YC

Y3 = YAYB

YA+YB+YC
.

(12)

When some of the admittances are missing, the propagator
usually becomes more simple. An example of this is shown
in Figures 3e–3h, where one bond is missing [20]. The final
result of this sequence of transformations, as in Figure 4, is
to reduce the lattice to a single bond that has the same ad-
mittance (Fig. 4i) as the entire lattice in Figure 4 [21]. The
benefits of the approach compared to other approaches,
such as efficient sparse matrix techniques, as used in the
simulation algorithms from SPICE (Simulation Program
with Integrated Circuit Emphasis) [4] is that reducing the
network to a single bond is computationally less expensive.
Figure 5 compares the CPU time as a function of system
size solved via Frank and Lobb approach with “Double”
and “Quad” precision calculations run on 512 CPU cores
in parallel. The times are for a single reduction of a ma-
trix at a single frequency. The corresponding longer times
for sparse matrix techniques are shown for comparison; the
Sparse Matrix involves solving the Kirchoff matrices using
sparse matrix routines in Python [26] and using Berkley
SPICE circuit simulation via the “NGSPICE” open-source
implementation [22]. The increasing solve time with net-
work size for “NGSPICE” in Figure 5 makes solving large
networks impractical, while the Frank and Lobb has a
consistent solve time t ∼ N1.5 and is much more rapid
than Sparse Matrix or NGSPICE method. This computa-
tionally efficient approach enables this work to solve large
numbers of networks that are much larger than previously
explored.

The outputs of the numerical simulations of the Frank
and Lobb RC networks will now be described. Network re-
sults will be compared with both the logarithmic mixing
(Eqs. (2) and (3)) and MEMA (Eq. (9)) to demonstrate
the extent to which the MEMA formula agrees with the
numerical simulations both close to the percolation thresh-
old (p ∼ pc) and away from the percolation threshold as
the size of the network is increased.

3 Results

3.1 Initial Frank and Lobb Network results
at p = 0.4, 0.5 and 0.6

The results in this section are presented to demonstrate
the response of the system in the various regimes of p
and N . We initially consider a binary network comprising
of a random mixture of capacitors and resistors which are
in proportions p and (1 − p) respectively, where the re-
sistors have a frequency independent admittance of R−1

(R =1 kΩ) and capacitors a complex admittance of iωC
(C = 1 nF). To compare and build on results obtained
in the earlier work on smaller networks (N ∼ 103) [5,7,8],
the network response of 1024 separate networks of ran-
domly positioned resistors and capacitors were computed
using the Frank and Lobb based algorithm with a range of
sizes, S = 64, 128, 256, 512, 1024 and therefore N = 8192,
32 768, 131 072, 524 288, 2 097 152. Since the critical per-
colation proportion for a two-dimensional square lattice
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Fig. 3. The transformation delta-star (a), (b) and star-delta (c), (d). The transformation when some bonds are missing (e–h).

Fig. 4. Reduction of a small cell to a single conductance using the bond propagator and series transformation.
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8 16 32 64 128 256 512 1024 2048

S (N=2S 2)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

t
(s
)

t∼N
1. 5

t∼N
1. 2

Double

Quad

NGSPICE

Sparse Matrix

Fig. 5. CPU time for system size solved for a single reduction
of a circuit at a single frequency via Frank and Lobb method
with double and quad precision. Corresponding times for sparse
matrix techqniues (Sparse Matrix and NGSPICE) shown for
comparison.

is pc = 0.5 [28], networks with the following proportions
of capacitors were selected:

(i) p = 0.4 where there are percolated resistors, but not
capacitors;

(ii) p = 0.6 where there are percolated capacitors, but
not resistors;

(iii) p = pc = 0.5 where there is an equal probability of
percolation of capacitors or resistors.

In Figures 6 to 8 we plot the admittance, |Y (ω)|, and
phase response for 1024 different realisations of the largest
network for N = 2 097 152 components as a function of ω.

In Figure 6a for the case p = 0.4 there are percolation
paths of resistors and not capacitors and the low frequency
conductivity is frequency independent; with slope = 0.
At low frequencies, where R−1 � ωC, the capacitors are
considered open circuit and the AC currents flow through
percolated resistors. This can also be seen in Figure 6b
where the phase is zero at low frequencies since both cur-
rent and voltage are in phase, as would be expected for
a resistor. At intermediate frequencies, R−1 ∼ ωC and
the power law region can be observed where the AC con-
ductivity rises with a slope ∼0.4, as predicted from equa-
tion (2). This region spans approximately four orders of
magnitude (ω ≈ 104–108 s−1). The phase of the network
in the intermediate frequency region agrees well with that
predicted by equation (3) which is 0.4 × −90◦ = −36◦;
the frequency range at which the phase is at this value
is relatively narrow compared to other studies restricted
to smaller networks (e.g. N = 512 [4]). At higher frequen-
cies, where ωC � R−1 the capacitors act as short circuits,
however, there are insufficient capacitors to percolate the
network so the conduction paths across the network all re-
tain a number of resistors which impose an upper limit on
the admittance and set its high frequency independence
(Fig. 6a); again the phase approaches zero at these high
frequencies (Fig. 6b).

For the case p = 0.6 in Figure 7a there is percolation of
capacitors, but not of resistors. At low frequencies the ad-
mittance continues to fall as the frequency decreases (slope
= 1) despite R−1 � ωC since there are insufficient resis-
tors to percolate the network. As a result all conduction
paths across the network must employ one or more capac-
itors which sets the low frequency admittance and its fre-
quency dependence. This can be seen in Figure 7b where
the phase is –90◦ since current leads voltage in a capacitor.
At intermediate frequencies (ω ≈ 104–108 s−1) the power
law region can again be observed and rises with frequency
with a slope ≈0.6, as predicted from equation (2). The
phase in this frequency range also agrees well with –55◦
predicted by equation (3), see Figure 7b. The agreement
in phase is best at ω ≈ 106 where R−1 = ωC and this
is true for all network compositions; see Figures 6b, 7b
and 8b. At higher frequencies, ωC � R−1, the percola-
tion of capacitors results in the conductivity rising lin-
early with frequency (slope = 1) as the AC currents flow
through the percolated capacitors with the resistors act-
ing as open circuits. The percolation of capacitors at high
frequencies leads to a phase of –90◦ (Fig. 7b).

For the case p = 0.5 in Figure 8 there is an equal prob-
ability of the percolation of capacitors or resistors in the
network. In this case the power law region of the conduc-
tivity spans a much wider frequency range with a slope of
0.5 (ω ≈ 102–1010 s−1) and a phase of –45◦, as predicted
by equations (2) and (3), respectively. The conductivity or
phase at low and high frequency depends on the existence
of either percolated capacitors or resistors, as indicated
in Figure 8. It is of interest to note that the frequency
range of the power law response is largest for this net-
work composition, the phase is also constant at a wider
range of frequencies (Fig. 8b) and we will see later that
for two-dimensional RC networks with p = 0.5 the power
law region is dependent on network size [8], as predicted
by the MEMA in equation (8c).

3.2 Frank and Lobb results with network size
and comparison with MEMA

The low and high frequency network response of the net-
works in Figures 6 to 8 are clearly influenced by whether
or not there are percolation paths of resistors or capaci-
tors within the network. Previous work has been limited
to smaller networks [4,5,7–9,18,19] and the distributions
of conductance at high and low frequencies at typically
much larger than those observed in Figures 6 to 8. The
outputs of the numerical Frank and Lobb networks and
the MEMA approximation will be compared to show how
the form of the magnitude of admittance |Y (ω)| depends
on the number of components, N , in networks of different
size and proportion. We compare the MEMA predictions
using equation (9) with numerical results for the Frank
and Lobb RC networks described in the previous section.

For our first computation we take networks with perco-
lated resistors with p = 0.4 (Fig. 9) and consider increas-
ing numbers of components, N , from 32 768 to 2 097 152
(S from 128 to 1024). We compute |Y (ω)| using the
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Fig. 6. Response of p = 0.4 (percolated resistors) network over a range of frequencies from R−1 � ωC to R−1 � ωC.
R−1 = ωC at ω = 106 s−1. Results are density plots of 1024 random realizations for N = 2097 152 components. We observe
resistive behaviour for this case, p = 0.4. The line in (a) and (b) shows the logarithmic mixing formulae, equations (3) and (4),
prediction for the networks. Unit of |Y | is Siemens.
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Fig. 7. Response of p = 0.6 (percolated capacitors) network over a range of frequencies from R−1 � ωC to R−1 � ωC.
R−1 = ωC at ω = 106 s−1. Results are density plots of 1024 random realizations for N = 2097 152 components. We see a
capacitive behaviour in case p = 0.6. The line in (a) and (b) shows the logarithmic mixing formula, equations (3) and (4),
prediction for the networks Unit of |Y | is Siemens.

MEMA from equation (9) and compare these values with
the results of Frank and Lobb computations from 1024
random realizations of each network size. In Figure 9 we
see that the power-law region is typically in the range
(ω ≈ 104–108 s−1) and the size of the power-law region
does not change significantly with the wide range of net-
work sizes examined for p = 0.4. It can also be seen
that the MEMA as indicated by the solid green line, also
indicates that the power law region is also independent
of network size when p = 0.4 since |1 − 2p| is relatively
large, see equation (10). The broad range of conductivities
at low or high frequencies is due to different percolation

paths in networks of the same size and composition and
the distribution at high and low frequencies clearly de-
creases as the network size increases; for example com-
pare Figures 9a and 9d. This is to be expected since as
the networks size increases the percolation paths will be-
come similar in form to those in infinitely large networks.
Good agreement between the MEMA and Frank-Lobb
approach is observed in the power-law region. For small
networks the MEMA is within the broad distribution of
network results at high and low frequencies (e.g. Fig. 9a
when N is 32 768); and this was also the case for smaller
networks [8]. However, as the network size increases and
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Fig. 8. Response of p = pc = 0.5 (equal probability of the percolation of capacitors or resistors) network simulations at
frequencies from R−1 � ωC to R−1 � ωC. R−1 = ωC at ω = 106 s−1. The figures presented are density plots of 1024
random realizations for N = 2097 152 components for p = 0.5. The line in (a) and (b) shows the logarithmic mixing formula,
equations (3) and (4), prediction for the networks Unit of |Y | is Siemens.

the distribution decreases the agreement is reduced with
the MEMA overestimating conductivity at low frequency
and under-estimating conductivity at high frequencies; see
Figure 9d.

We now examine in Figure 10 computations at p = 0.6
that contain percolation of capacitors. We present the re-
sult of computing |Y (ω)| from a number of realizations
of the network for different size of N up to 2 097 152;
for the purposes of brevity only data at N = 8192 and
N = 2 097 152 are shown. Again the power-law region is
typically in the range (ω ≈ 104–108 s−1) and, as observed
for p = 0.4, the range does not change significantly with
network size; again this is well predicted by the MEMA
(green line in Fig. 10). The range of admittances at low or
high frequencies is due to different capacitive percolation
paths in networks at a particular size and composition
decreases as the network size increases. Good agreement
between the MEMA and Frank and Lobb approach is ob-
served in the power-law region but again the agreement
is reduced at large network sizes with the MEMA over-
estimating the admittance at low frequency and under-
estimating it at high frequencies; see Figure 10b.

Data for RC networks at the critical mixing ratio of
p = pc = 0.5 and N from 2048 to 2 097 152 are shown along
with a comparison with the MEMA is shown in Figure 11.
We focus only on the high ω limit for ease of visualisation,
given that the curves are symmetrical, and the results only
include the saturating cases (non-percolated capacitors),
in order to analyse and compare with the saturation lim-
its of the MEMA. In this limit ε = 1−2p = 0 and the
MEMA reverts to the rigorous spectrally derived formula,
equation (8) [8]. At the percolation limit, there is clearly
an increase in the frequency range of the power-law as the

network size increases and this is well predicted by the
MEMA; see solid lines in Figure 11.

3.3 Deviation of MEMA from Frank and Lobb
numerical results for p �= pc

The MEMA is shown to predict the numerical results well
when p = pc = 0.5 (Fig. 11) but less well when p 	= pc

(Figs. 9 and 10), where the 1/N term in equation (9) be-
comes insignificant and the MEMA reverts back to the
classical EMA. Our investigation of the large networks in-
dicates that a more accurate formula would retain some N
dependence up to larger network sizes and the response of
the MEMA and the numerical calculations are now com-
pared in more detail for networks where p < pc. These
networks have a resistive percolation path but no capaci-
tive path, so that the conduction becomes constant at the
limits of low and high frequency, as in Figure 9, allowing
ease of comparison with the MEMA. This is in contrast
to networks with p > pc where the presence of percolated
capacitors leads to a frequency dependent conductivity at
all frequencies, as in Figure 10. It can be seen from the
comparison of the MEMA with the numerical Frank and
Lobb calculations for p = 0.4 that the MEMA matches
the power law in the emergent region and qualitatively
the shape of the curve in the transition to the percola-
tion and saturation limits. However, it fails to capture the
precise conduction values of these limits.

Finite size networks were investigated by Jonckheere
and Luck [24], who gave some empirical evidence that,
rather than having percolation limits as given in equa-
tions (6b) and (6c), proportional to ε or, 1

ε in the limit of
|1 − 2p| � 1 that they are more closely approximated by
expressions of the form |Y | is proportional to |1 − 2p|±β.
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(a) (b)

(c) (d)

Fig. 9. Admittance magnitude for 1024 realizations of RC network with p = 0.4 (percolated resistors) and network size N of,
(a) 32 768, (b) 131 072, (c) 524 288, (d) 2 097 152 where, S = 128, 256, 512 and 1024. The green line is theoretical result based
on the MEMA and the red data is the Frank and Lobb numerical result. Unit of |Y | is Siemens.

From numerical results, on relatively small networks of
typical size N = 512, it was suggested that β ≈ 1.3. An
examination of this is shown in Figure 12, where the Frank
and Lobb numerical calculations at the low conductivity
limit, |Y |ω→0 (YFL red points with error bars) are com-
pared to those from the MEMA, plotted both unadjusted
(YM ) as well as the whole value raised to some power β;
Y β

M . The value of β = 1.3 [24] appears to be approximately
accurate in the small N limit (points labelled Y 1.3

M ), but
our ability to explore large networks indicates that as N
becomes very large the exponent tends instead to β ≈ 1.11
(points labelled Y 1.11

M ) for networks at p = 0.4. This is an
observation of interest that suggests that it should be the
focus of analytical attention for future investigations as
the reasons for this are currently unknown. We will see
later that the value of β has some dependency on network
composition and β ≈ 1.15 is more appropriate for a range
of network compositions.

3.4 The dynamic range (|Y|ω→∞/|Y|ω→0) for p = pc

For networks on the percolation threshold p = pc = 0.5 the
maximum conductance at high frequency scales strongly
with N , as can been seen in Figure 11. This data focusses
only on the high ω limit for ease of visualisation; given that
the curves are symmetrical. It can be seen that the curves
given by the MEMA formula capture the upper limits of
the distribution of numerical results, which can be under-
stood heuristically in that realisations that are closest to
the percolation limit will be those with the minimum num-
ber of conductive (or maximum capacitive) bonds needed
to percolate, and any statistical deviation from this will
result in smaller conductance values. We define here the
dynamic range of the network, Ŷ , as:

Ŷ =
|Y |max

|Y |min
=

|Y |ω→∞
|Y |ω→0

. (13)
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(a) (b)

Fig. 10. Comparison of MEMA (green line) with the numerical Frank and Lobb computations (red data) for 1024 realizations
of the R-C network with p = 0.6 and network size N of (a) S = 64, N = 8192, (b) S = 1024, N = 2 097 152. Unit of |Y | is
Siemens.

Fig. 11. Frank and Lobb data for RC networks of size S =
32, 64, 128, 256, 512 and 1024 and N = 2048, 8192, 32 768,
131 072, 524 288, 2 097 152 for p = 0.5 (dashed data points) and
comparison with MEMA (solid lines). Unit of |Y | is Siemens.
We observe from this figure that there is a power-law mixing
region, which evolves into a percolation region. The boundary
for the mixing region increases (as predicted by MEMA) with
the network size.

Following the results in equations (6b) and (6c) and also
equations (8a) and (8b) we predict that the dynamic range
is given by,

Ŷ = 1/ε2 if Nε2 � 1 and Ŷ = N

if N is large, and Nε2 � 1 (13a)
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Fig. 12. Analysis of low frequency |Y |ω→0. YF L are numerical
Frank and Lobb results at the low conductivity limit for a
network of p = 0.4. YM is standard MEMA, taken to various
powers to test against results from Jonckhere and Luck [24]
(power = 1.3) for small N , and also to power 1.11 which seems
to agree better for large network with high N . Units of |Y | are
Siemens.

Note that this result can be obtained directly from equa-
tion (9a) by taking Ŷ = φ2 so that equation (9a) allows
us to see how the dynamic range depends on both the
closeness to criticality and the network size.
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(a) (b)

Fig. 13. The dynamic range Ŷ (N, p) = |Y |max/|Y |min. Numerical investigations are compared with the modified Effective

Medium Approximation (MEMA), raised to various powers as suggested in the literature [24]. In (a) Ŷ is plotted against the
network size N and in (b) against proportion of capacitors p.

In Figure 13a, Ŷ is plotted as a function of N for a
range of capacitor fractions with p < 0.5 (percolated re-
sistor networks). If p = 0.5 then ε = 0 and, as predicted
by equations (13a), Ŷ is expected to be directly propor-
tional to N for all values of N . However, if p < 0.5 then Ŷ
is only directly proportional to N for smaller values of N,

but becomes asymptotic to a finite value Ŷ (p) as N→ ∞.
The transition between these two forms of behaviour is
seen in Figure 13a and occurs when N = |1 − 2p|−2, as
indicated by equations (10) and (13a). This is best ob-
served in Figure 13a for the cases close to percolation at
p = 0.49 and p = 0.48 where Ŷ is predicted by equa-
tion (10) to be proportional to network size up to N = 104

and N = 103.4 respectively; this confirms the results in [8]
up to much larger values of N than previously explored.
For the case of p = 0.4 the transition is estimated by equa-
tion (10) at N = 102 and therefore Ŷ is independent of N
in Figure 13a (and Fig. 9). This can be of interest in real
systems where it is possible to determine the necessary
size of the effective material/composite RC network to
achieve properties that are independent of the number of
components.

It can also be seen that, in the transition region, the
distribution of Ŷ from the random Frank and Lobb real-
isations is large for relatively small networks and we will
see later that the standard deviation of the network con-
ductivity falls with 1/N0.5 (or 1/S). The size dependent
term in the MEMA (Eq. (9)) falls with 1/N , therefore
an important point to notice in Figure 13a is that this re-
sults in the overshoot of Ŷ of the Frank and Lobb network
simulations at intermediate values of N compared to its
final asymptotic value at large N ; i.e. once the standard
deviation shrinks with the network size.

There is clearly a discrepancy between the Frank and
Lobb numerical data of Ŷ and the solid MEMA lines with
the data points in Figure 13. As discussed in Section 3.3,
previous suggestions by Jonckheere and Luck for relatively
small networks (N = 512) state that the EMA can be cor-
rected by raising its predicted conductance to the power
of 1.3 [24] seem to be valid only for low to intermediate
values of N , but a better fit across the range of p values
considered appears to be some intermediate value, in this
case 1.15. This is confirmed by considering Ŷ as a function
of p as p → 0.5 in Figure 13b, showing its limiting value
as N → ∞ (S is increased from 16 to 1024 in the figure).
It has been shown in previous work [8] that the MEMA
predicts Ŷ ∼ |1 − 2p|−2 with some accuracy, although
Ŷ ∼ 1/|1− 2p|−2.6 was a better fit for networks; although
the study was limited to N = 10 000. Our ability to ex-
plore larger networks in this work show that Ŷ ∼ |1−2p|−2

and Ŷ ∼ 1/|1 − 2p|−2.6 under and over-predict, respec-
tively, except for low N , where the statistical variation is
a dominating factor, while a better fit across the range of
p is for Ŷ ∼ |1 − 2p|−2.3. However, it is clear that there
remains a discrepancy between the MEMA, simply raised
to any power, and the numerical results. It can be specu-
lated that the power itself has some dependence on p, as
might be expected by re-considering spectral derivations
of the conductance, such as that in [8], or a p dependence
in the right hand term of the MEMA.

3.5 Scaling of network variation with size

In Figure 14 we plot the standard deviation (σ) and the
standard deviation multiplied by the network size (Sσ)
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Fig. 14. The effect of the network size on the (a) standard deviation (σ) and (b) product of standard deviation and network
size (Sσ), p = 0.4 and 1024 realisations.

of the admittance with ω for different network sizes S,
for p = 0.4. Both (σ) and (Sσ) are smallest at the con-
dition R−1 = ωC since in this frequency range AC cur-
rents flow through both resistors and capacitors so that
there is minimal variation between random networks of
the same composition. As the frequency is increased or
decreased relative to the frequency at R−1 = ωC the stan-
dard deviation increases linearly and eventually plateaus
to a constant value at low and high frequencies where there
is percolation, see Figure 14a. Interestingly the product
(Sσ) for networks of different sizes fall on the same line
in Figure 14b. The origin of this behaviour stems from
the binary choice of components in the networks being
taken from a Bernoulli probability distribution since they
are created with each of the N = 2S2 components used
to fill the network lattice chosen randomly to be either
a capacitor or resistor with probability p or (1 − p). This
results in a normal distribution for the number of resistors
and capacitors over the whole network. The mean num-
ber of the capacitors is therefore pN and the variance is
p(1 − p)N in each bond. As would be expected from cen-
tral limit theorem the variance of the mean is p(1− p)/N
(strong law of large numbers) and the standard devia-

tion is
√

p(1 − p)/N or
√

p(1 − p)
/
2S2; therefore Sσ is

expected to be constant. This simple method of under-
standing network size on the distribution of conductivity,
or other properties such as permittivity, is of interest to
understand the influence of sample size or variability is
properties of materials or composite systems.

4 Conclusions

In this paper we have investigated and compared mod-
els representing the conduction flow-paths though disor-

dered random composite media in terms of new MEMA
formula and RC networks that are much larger than previ-
ously explored. An efficient algorithm based on the Frank
and Lobb reduction method has been used to study in
detail the frequency dependent admittance of large two-
dimensional square lattice resistor-capacitor networks.
The approach employed involves a sequence of transfor-
mations to reduce the lattice to a single bond that has
the same admittance as the network and this has allowed
networks to be studied with up to 2 × 106 resistor or ca-
pacitor components. The ability to assess such large net-
works has allowed us to study the statistical variation of
the network properties with network size by analysis up to
1024 networks of a specific size, and component fraction.
Results from the networks in terms of emergent power-
law scaling of the conductance and the percolation and
saturation limits at the high and low frequency bounds
were compared with a Modified Effective Medium Ap-
proximation (MEMA) that extends the Effective Medium
Approximation (EMA) to finite network sizes. It shows
that new MEMA formula gives good results over a wide
range of values of network compositions and sizes, and pro-
vides a simple analytical formula for the network response
that accurately predicts the effects of (finite) network size
and composition, while at the same time showing where
it remains to be improved and explained. It is also seen
that:

(i) Good agreement between the power law mixing rules,
MEMA and the Frank and Lobb numerical results
is observed in the power-law region. The power law
mixing rules described earlier are limited to provid-
ing an estimate of the properties of RC networks at
intermediate frequencies where R−1 ≈ ωC.

(ii) For small networks the MEMA is within the broad
distribution of network results at high and low

http://www.epj.org


Eur. Phys. J. B (2017) 90: 39 Page 15 of 16

frequencies However, as the network size is increased
to the large sizes explored in this work the dis-
tribution of conductance decreases significantly and
the agreement is reduced As an example for p =
0.4 (percolated resistors) the MEMA overestimates
conductivity at low frequency and under-estimates
conductivity at high frequencies, so that the dynamic
range is not predicted accurately. Our results over a
large range of network sizes indicate the percolation
admittances are more closely approximated by ex-
pressions of the form |Y | proportional to |1 − 2p|±β ,
β = 1.11 when p = 0.4 while the previously reported
value of β = 1.3 [24] appears to be approximately
accurate in the small N limit.

(iii) For networks on the percolation threshold p = pc =
0.5 the conductance given by the MEMA scales well
with the network size, N, with the dynamic range,
|Y |ω→∞/|Y |ω→0, being directly proportional to N for
all values of N . If p < 0.5 then Ŷ is only directly pro-
portional to N for small values of N and p close to
the percolation limit and becomes asymptotic to a
finite value as the network size increases. A transi-
tion between these two forms at N = |1 − 2p|−2 is
observed and confirms the results in [8], but up to
much larger values of N than previously explored.

(vi) Previous suggestions that the EMA could be cor-
rected by raising its predicted conductance to the
power of 1.3 [24] seem to be only valid for low to
intermediate values of N , but our ability to explore
very large values indicate a better fit appears to be
some intermediate value, here 1.15, for p < 0.5 so that
the dynamic range, Ŷ is proportional to |1− 2p|−2.3.

(v) The distributions of network admittance values at
high and low frequencies decrease as the network
size increase and a scaling of the conductivity dis-
tribution was observed. The standard deviation of
the distribution of admittance values was found to
be inversely proportional to the network size and the
product (Sσ) for networks of different sizes fall on
the same line. The origin of this behaviour stems
from the binary choice of components in the networks
being taken, which results in a normal distribution
for the number of resistors and capacitors over the
whole network. The scaling condition is explained by
the network having the variance of the mean being
p(1 − p)/N (strong law of large numbers) and the
standard deviation is therefore

√
p(1 − p)/N .

The data from the very large two dimensional square
resistor-capacitor networks provides a deeper insight into
the responses of such networks and their relationships to
the limits of analytical approximations, such as logarith-
mic mixing and our MEMA for prediction of network re-
sponse. Methods of correction to improve analytical pred-
ications are proposed. While we have focussed on network
conductance, the approach can also be easily used to ex-
plore other frequency dependent properties, such as capac-
itance. The data also elucidates the statistical nature of
the networks as a function of frequency, composition and
size. It should be highlighted that in many cases materials

exhibit three-dimensional conduction where the percola-
tion limits are different. For example there is a possibility
to achieve percolation of both resistors and capacitors in
the same 3D network which is a common characteristic
of the universal dielectric response (UDR), such as in Fig-
ure 1a. This data on large RC networks all contributes to a
deeper understanding of the frequency dependent proper-
ties of real heterogeneous materials and composite mate-
rial systems to understand size effects, composition effects
and statistical variation of properties.
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