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Abstract. We discuss the friction and motion of a model of a dimer with asymmetric interactions with a
substrate potential. Starting from the consideration that a rigid dimer with spacing equal to half of the
period of the potential has exactly zero static friction like the infinite incommensurate Frenkel Kontorova
model, we show how stick-slip behaviour and friction arise as a function of asymmetry. We argue that
this model can yield a simple yet insightful description of the frictional behaviour of graphene flakes on
graphite and of superlubricity. The results can also be of interest for diatomic molecules on surfaces.

1 Introduction

The friction of crystalline layers sliding on incommensu-
rate substrates can be extremely low [1,2], a phenomenon
called structural superlubricity [3]. For nanometer sized
graphene flakes sliding on graphite, the friction as a
function of rotation angle between the flake and sub-
strate displayed peaks for the perfect commensurate case
(flake and substrate with the same orientation) and de-
creased rapidly for incommensurate cases [2]. In the last
years, superlubricity is attracting increasing interest in the
literature [4–7].

Superlubricity can be easily justified by means of the
one-dimensional (1D) Frenkel Kontorova (FK) model de-
scribing a harmonic chain on a periodic potential. For in-
commensurate ratios of the chain lattice spacing a to the
period of the potential b this model displays the so-called
Aubry transition to a state of vanishing static friction for
weak coupling to the substrate [8,9]. For incommensurate
contacts, in fact, the total energy does not vary with the
position of the chain onto the potential, formally corre-
sponding to a continuous modulation function. This ex-
act result applies in the thermodynamic limit of infinite
chains. For a finite system, the difference between com-
mensurate and incommensurate contacts is lost due to
relaxation at the edges [10]. Therefore the fact that su-
perlubricity has been observed for finite graphene flakes
at incommensurate contact suggests that the relaxation
at the edges is negligible. Indeed the graphitic bond is one
of the strongest in nature and molecular dynamics simula-
tions show that the bond length at the edges of graphene
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flakes varies during the motion by less than 0.005 Å with
respect to the bulk value, preserving the incommensurate
contact.

In experiments and simulations, the superlubric slid-
ing is usually lost due to irreversible rotations to a com-
mensurate contact [4,11] with resulting high friction and
stick-slip behaviour. However, it has been recently exper-
imentally shown that friction can be increased reversibly
by applying load to the incommensurate flake. This re-
versible transition from superlubric to stick-slip sliding
occurs while the flake remains at incommensurate contact
and can be attributed to vertical motion of the carbon
atoms at the edge with negligible in-plane stretching, a
mechanism not described by the standard 1D FK model.
In the stick-slip regime, the friction increases with load
but remains at least one order of magnitude smaller than
for commensurate contact [12].

Here we propose a minimal model based on a dimer
with asymmetric interactions with a periodic potential
that well describes the behaviour observed for incommen-
surate graphene flakes under load [12]. The two particles in
the dimer are meant to represent the edge and the centre of
a flake with different interactions to the substrate. At the
same time this model can be an interesting model to de-
scribe the motion of diatomic molecules on surfaces. Mod-
els of dimer in a symmetric potential under the effect of
an external modulation breaking the symmetry and lead-
ing to ratchet effects have been previously studied [13,14].
The interest of the model we propose is that the limiting
case of a symmetric, rigid dimer with interatomic distance
equal to one half of the substrate periodicity has, like the
infinite incommensurate FK model, the property that the
energy does not depend on the position. In this respect, it
represents a perfectly incommensurate finite system with
vanishing static friction. This property makes it possible
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Fig. 1. The asymmetric dimer in a periodic potential.

to examine in general terms the effect of asymmetric in-
teractions and deviations from perfect incommensurability
on friction.

2 Model

We model a graphene flake by a 1D harmonic dimer
formed by two particles with coordinates x1 and x2 con-
nected by a spring of spring constant K and rest length L.
Particle 1 will represent the edge of the graphene flake and
particle 2 the center of the flake. The harmonic potential
energy is:

UH =
K

2
(x2 − x1 − L)2 . (1)

The graphite substrate is modeled by a periodic sinusoidal
potential:

US = U0 − U1 cos
(

2πx1

a

)
− U2 cos

(
2πx2

a

)
(2)

where U1 and U2 are the amplitudes of the sinusoidal po-
tentials with periodicity a and U0 = U1 + U2. Figure 1 il-
lustrates this model. By changing the values of U1 and U2

we change the behavior of edge and centre of the flake as
will be explained later. By changing the ratio L/a the com-
mensurability of the system is changed. A ratio L/a = 1
gives a commensurate contact. An incommensurate con-
tact is realized by a rigid dimer (K → ∞) with L/a = 1/2.
In fact, if U1 = U2, the total energy UH +US does not de-
pend on the position of the dimer on the substrate as for
the incommensurate FK model. One atom can be at the
bottom and one at the top of US or at any intermedi-
ate position without energy change, implying a vanishing
friction force (superlubricity) to displace the dimer on the
substrate. We note that 1/2 is also the first term in the
Fibonacci series that approximates the irrational number
1/τ with τ = 1+

√
5

2 , the golden mean for which the FK
model has been much studied.

The sliding friction of the system, can be studied by
means of the Tomlinson model [15]. The dimer is pulled
at constant speed vp by a spring, with spring constant Kp,
connected to the centre of mass of the dimer. The friction

is defined as the time average of the spring force Fp defined
below.

Assuming the same mass for the two particles, chang-
ing to adimensional units (as in [16]):

t → 2π

a
√

m
t, xi → a

2π
xi, L → a

2π
L, K → 4π2

a2
K

and defining the center of mass and relative coordinate as:
{

xCM = 1
2 (x1 + x2)

xR = x2 − x1 − L
(3)

the equation of motion becomes:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍCM = − 1
2U+ sin xCM cos

(
xR+L

2

)
+ 1

2U− cosxCM sin
(

xR+L
2

)
+Kp [vpt − xCM + xCM (0)] − ηẋCM

ẍR = −2KxR − U+ cosxCM sin
(

xR+L
2

)
+U− sin xCM cos

(
xR+L

2

)

(4)

where we defined U+ = U1+U2 and U− = U1−U2 and η is
a damping constant. In the Tomlinson model, the friction
is given by the time average of the force in the pulling
spring:

Ffriction =
1
T

∫ T

0

Fpdt (5)

where T is the period of the motion of the dimer and

Fp = Kp [xCM (0) + vpt − xCM (t)] . (6)

We solve the equation of motion by the Runge Kutta 2 (or
improved Euler) method with time step (in adimensional
units) h = 10−4 giving conservation of energy. Further-
more η = 2, Kp = 0.4 and vp = 10−3 are used.

3 Results

We first consider a symmetric dimer (U1 = U2). In Fig-
ure 2 we compare the behavior of Fp and xCM as a func-
tion of time for an incommensurate dimer (L/a = 1/2)
with different values of K. A rigid dimer has K = ∞,
namely a fixed length. The motion of a rigid dimer fol-
lows the pulling spring without any stretching whereas,
for decreasing spring constant, the motion becomes more
of stick-slip type resulting in higher friction. The case of
a rigid dimer, describes well a graphene flake where the
in-plane distortions are negligible.

In Figure 3 Ffriction is shown as a function of L for the
symmetric periodic potential U1 = U2. For weakly bound
dimers (with small K) the friction is (almost) independent
of L. In fact, the energy stored in the spring is small com-
pared to substrate energy and therefore L does not play
a large role. For more strongly bound dimers (K > 0.20),
the friction has always a minimum at L/a = 1/2, cor-
responding to the incommensurate case, and maxima at
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Fig. 2. Force in the pulling spring, Fp, and position of the cen-
tre of mass as a function of time for a dimer with L/a = 1/2
and different values of K in a potential with U1 = U2 = 1.00.
The friction, Ffriction is, the average spring force (Eq. (6)) (hori-
zontal lines). The rigid dimer has zero friction and a continuous
motion. With decreasing spring constant, the friction increases
and the motion evolves to a stick-slip behaviour.
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Fig. 3. Friction of the dimer as a function of its rest length
L for the symmetric potential: U1 = U2 = 1.00 and different
values of K.

L/a = 0 and L/a = 1, corresponding to the commensurate
case. A comparison for this case of Figure 3 with Figure 3
of reference [2] shows a qualitative agreement with the
experimental results for graphene flakes on graphite. The
friction minima and maxima can be understood by look-
ing at the motion of the dimer as shown in Figure 4 for
the rigid dimer with L/a = 1/2 and L/a = 1.

These results for symmetric dimers show that the on-
set of friction is related to relaxation of the dimer in the
periodic potential, leading to variation of the interatomic
distance x2 − x1. As already discussed, the strong bond-
ing in graphene does not lead to substantial in-plane re-
laxation at the edges that can explain the experimentally
observed transition from continuous to stick-slip motion.
We show now, that asymmetry of the interactions with the
substrate (U1 �= U2) can lead to stick-slip behaviour even
for a rigid dimer, with consequent friction, albeit much
lower than for commensurate cases.

Figure 5 shows the friction as a function of L but
this time for U1 > U2. For the weakly bound dimers no
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Fig. 4. Comparison of the motion of the incommensurate (left
panel) and commensurate (right panel) rigid dimer in the sym-
metric potential with U1 = U2 = 1.00. The positions of the
dimer are shown at five successive, equally spaced, times. For
L/a = 1/2, motion increasing the potential energy of one par-
ticle is always compensated by the energy gain of the other.
This conservation of energy results in zero friction. For the
commensurate case L/a = 1, both particles always gain or lose
energy simultaneously resulting in maximal energy variations
and the highest friction.

large differences are observed, the friction remains (al-
most) independent of L. For the more strongly bound
dimers the minima and maxima have shifted (compared to
Fig. 3). The most important, although less apparent, dif-
ference is that an asymmetric incommensurate rigid dimer
(L/a = 1/2) has a small but non zero friction as we will
discuss next. For completeness, we notice that for all other
values of K > 0.20 the minimum is located at a smaller
value than L/a = 1/2 and the maximum is at a value
smaller than L/a = 1. This shift can be explained again
by considering the motion of the dimer. For simplicity we
consider the dimer being pulled to the right with particle 2
in front of particle 1 x2 > x1. Since U2 < U1 particle 2 is
less bound by the substrate than particle 1 causing par-
ticle 2 to move to the right and particle 1 to lag behind,
stretching the spring. A spring with shorter rest length
reduces this effect so that the minimum friction shifts to
a smaller value of L. From Figures 3 and 5 one can see
that a rigid dimer does not always have the lowest friction:
for L/a close to 0 or 1 the lowest friction is achieved by
strongly bound but not rigid dimers. This effect is stronger
for the asymmetric case. The possible relative motion of
the two particles allows the transformation of substrate
potential energy US in harmonic spring energy UH reduc-
ing the force on the pulling spring and thereby reducing
the friction.

The model of a dimer in an asymmetric potential
captures the effect of the flake edges on the friction.
In [12], it was shown that, under load, the atoms at the
edges of incommensurate graphene flakes have a larger
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Fig. 5. Friction of the dimer as a function of its rest length
L for an asymmetric potential U1 = 1.20 and U2 = 0.80 and
different values of K. The rigid dimer has K = ∞. For a rigid
dimer with L/a = 0.5, Ffriction is small but finite (see text).
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Fig. 6. Transition from continuous to stick-slip motion for the
rigid dimer and L/a = 0.5. The upper panel shows the spring
force for three different values of U1 and U2 as a function of
time and the lower panel shows the center of mass of the dimer.
The inset is a zoom-in on the motion to show the difference
between continuous and stick-slip motion. For U1 = U2 = 1.00
the dimer moves continuously yielding (almost) zero friction.
For U1 = 1.25 and U2 = 0.75 the motion evolves to stick-slip
and the friction grows to Ffriction = 2.6 × 10−3. For U1 = 1.50
and U2 = 0.50 the motion is clearly stick-slip and Ffriction =
2.8 × 10−2 (see also Fig. 7).

out-of-plane displacement than the central atoms. Since
particle 1 is meant to describe the edge of the flake, we
implement this effect by choosing a rigid incommensurate
dimer with U1 > U2. The effect of the asymmetry on the
motion and friction is shown in Figure 6. With increasing
asymmetry the motion goes from continuous to stick-slip
and the force in the spring becomes more sawtooth like,
with a small but non zero friction. In Figure 7 details of
the motion are illustrated (see also the animations in the
supplementary material). This change of behaviour with
asymmetry is only observed for the rigid or strongly bound
dimers, supporting this minimal model as representative
of the behaviour of incommensurate graphene flakes under
load.
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Fig. 7. Motion of the rigid dimer with L/a = 0.5. The posi-
tions of the dimer are shown at five successive, equally spaced,
times. The grey dashed line shows the position of the center
of mass. The left panels show the motion for U1 = U2 = 1.00,
the center of mass moves in a straight line: the motion is con-
tinuous. The right panels show the motion for U1 = 1.50 and
U2 = 0.50, now the center of mass makes a jump between t3
and t4: the motion is stick-slip.

4 Conclusion

We have discussed the motion and friction of asymmetric
dimers on a periodic potential and proposed this model
as a minimal description of the behaviour and friction of
incommensurate graphene flakes on graphite under load.
The asymmetry of the interactions of the two atoms with
the substrate is meant to describe the difference between
edge and central atoms of graphene flakes. The results
obtained for this model, give a simple qualitative descrip-
tion of the behaviour of graphene graphene flakes [2,12]
that can be insightful also for other situations in surface
science.
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