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Abstract. Structure of real networked systems, such as social relationship, can be modeled as temporal
networks in which each edge appears only at the prescribed time. Understanding the structure of temporal
networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time.
In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths
which use the temporal vertex. The definition is free from parameters and robust against the change in
time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal
vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-
world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of
the highly central temporal vertices are located within a narrow time window around a particular time.
In other words, there is a bottleneck time at which most information sent in the temporal network passes
through a small number of temporal vertices, which suggests an important role of these temporal vertices
in spreading phenomena.

1 Introduction

Complex networks such as social networks, information
networks, and biological networks have been intensively
studied in the past decade to understand their behavior
under certain dynamics and develop efficient algorithms
for them. See [1–4] for extensive surveys.

However, many real-world networks are actually tem-
poral networks [5,6], in which a vertex communicates with
another vertex at specific time over finite duration. For
example, social interaction between individuals, passen-
ger flow between cities, and synaptic transmission between
neurons can be represented as temporal networks. When
we assume that the focal dynamical processes on net-
works, such as information propagation, occur on a time
scale comparable to the change in network structure, a
temporal-network representation gives us a precise way
to capture the processes. We can describe the advantage
of working with a temporal network using the example
shown in Figure 1. This temporal network consists of four
vertices and eight edges, each of which has the time it ap-
pears. Let us assume that it takes unit time to send the
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Fig. 1. Schematic of an example of temporal network. The
number associated with each edge represents the time at which
the edge appears.

information from the tail to the head of an edge. For ex-
ample, suppose that the information starts to propagate
from v1 at time 1. Then, it reaches v2 at time 2 through
edge (v1, v2), waits at v2 till time 3, then reaches v3 at time
4 through edge (v2, v3). The information never reaches v4

because the only edge incoming to v4 is (v2, v4) which ap-
pears at time 1, and v2 does not have the information at
that time. However, if we ignore the temporal informa-
tion and regard the network as a static directed network,
we mistakenly reach the conclusion that information in v1

at time 1 can reach v4 because there is a directed path
from v1 to v4. Therefore, we cannot dismiss temporal infor-
mation to properly understand the structure of temporal
networks.
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An important notion studied to understand the struc-
ture of (static) networks is vertex centrality, which mea-
sures the importance of a vertex. The following reasons
motivate the study of centralities. First, we can use cen-
tralities to find important vertices in several applications
such as suppressing the epidemics [7,8] or maximizing the
spread of influence [9]. Second, we can use them to under-
stand the structure of real-world networks by examining
the difference between the distributions of the centrality
values in such networks and in the randomized networks
(e.g, [10,11]). Third, we can examine the validity of gener-
ative network models by investigating the distribution of
centralities of the generated network (e.g., [12,13]).

Hence, it is natural to study centralities for temporal
networks. Since the most fundamental difference between
a static network and a temporal network is that the lat-
ter involves time, we define the centrality of a vertex at
a specific time. To distinguish from a vertex, we call the
pair of a vertex and time a temporal vertex. In the lit-
erature, multiple centrality notions of temporal vertices
based on temporal paths [5] have been proposed. Exam-
ples include the generalizations of the centrality notions
to temporal networks, such as betweenness [14–17], close-
ness [14,15,18], communicability [19–21], efficiency [22],
random-walk centrality [23], and win-lose score [24] (see
Ref. [25] for a review of some of them). However, each
previous centrality notion suffers from at least one of the
following two issues:

1. We need to carefully set parameter values and (or) the
time interval within which we consider temporal paths.

2. It is inefficient to compute the centrality.

For the first issue, the time interval length especially re-
quires careful tuning; if the time interval is too wide, then
the centrality of a temporal vertex v becomes negligible
because most of the paths finish before or start after v
appears. By contrast, if the time interval is too narrow,
again the centrality of v becomes negligible because paths
can pass by only a tiny fraction of vertices in the time
interval. It should be noted that our centrality measures
are free from any parameters not because we consider the
centrality of temporal vertex. The centrality measures of
a temporal vertex proposed in the previous work [14–25]
require some parameters for different reasons. Our central-
ity measures get around this issue by focusing on the lo-
cal structure of temporal paths around the focal temporal
vertex. For the second issue, even if we compromise to use
an approximation, computing the approximated centrality
value of a single temporal vertex requires computational
time at least linear to network size [26].

In this paper, we propose two novel centrality notions
for temporal networks that resolve these issues. The first
one, called temporal coverage centrality (TCC), measures
the fraction of pairs of (normal) vertices that have at least
one fastest temporal path that uses the focal temporal ver-
tex. The second one, called temporal boundary coverage
centrality (TBCC), measures the fraction of pairs of ver-
tices that have a unique fastest temporal path, which uses
the focal temporal vertex.

Our centrality notions address the two issues described
above in the following way. For the first issue, TCC and
TBCC are free from setting of any parameters or time
interval. To calculate the TCC or TBCC value of a tem-
poral vertex v = (v, τ), we only have to run over all pairs
of vertices (u, w). Namely, we consider temporal vertices
u = (u, τu) and w = (w, τw), where τu is the latest time at
which we can send information from u so that it reaches
v at time τ , and τw is the earliest time at which we can
receive information at w that is sent from v at time τ . It
should be noted that, if we fix focal temporal vertex v,
τu and τw are uniquely determined by u and w, respec-
tively, and that we thus do not have to care about the time
interval around v. Then, we check whether the informa-
tion sent from u = (u, τu) to w = (w, τw) can or should
drop by v.

For the second issue, although the definitions of TCC
and TBCC might look complicated and hard to compute,
this is not the case. Indeed, computing TCC and TBCC
can be reduced to the problem of deciding whether or
not there is a directed path between queried vertices in
an associated directed network (see Sect. 2.2 for details).
The latter problem is well studied in the database com-
munity [27–31], and it can be solved by constructing an
index of the directed network, which computes the reach-
ability between any pair of nodes by using information
of the reachability between a fraction of node pairs. If it
suffices to use approximations to the TCC and TBCC val-
ues, we only need to query the index at most O(log2 N)
times, where N is the total number of vertices in the net-
work (see Appendix A). Since we can efficiently process
queries to the index in practice, this method is advan-
tageous compared to the O(N) time for approximating
previous centrality notions.

With the aid of our centrality notions, we are able to
compute the centrality of all temporal vertices in a tem-
poral network and analyze the statistics of the whole net-
work. Using TBCC, we demonstrate that real-world tem-
poral networks have a small number of temporal vertices
without which information propagates more slowly. Sur-
prisingly, we reveal that the temporal vertices of large cen-
trality values form a narrow time region, and this time re-
gion seemingly corresponds to the beginning or the end of
a time interval in which temporal edges occur in a bursty
manner. In addition, by using TCC, we show that the re-
maining part of the temporal network is highly redundant
in the sense that there are many ways to send informa-
tion as quickly as possible. Although these properties are
recognized in the network science community [32–34], we
quantitatively confirm it for the first time using our cen-
trality notions. We also demonstrate that the removal of
temporal vertices according to their TBCC values is effec-
tive for hindering the propagation of information for both
delaying and stopping it.

The paper is organized as follows. In Section 2, we
introduce basic notions of temporal networks and the
directed network associated with a temporal network.
Section 3 introduces our centrality notions for tempo-
ral vertices, and Section 4 explains detailed methods of
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computing our centrality notions. Section 5 is dedicated
to demonstrating our experimental results. We give the
conclusion in Section 6.

2 Preliminaries about temporal networks

2.1 Basic notions

We introduce the terminology and symbols to describe
temporal network structure, which basically follow those
used in reference [35].

For integer k, let [k] denote the set {1, 2, . . . , k}. We
define R+ as the set of non-negative real numbers.

Let V be the set of vertices. A temporal edge is rep-
resented by quadruplet e = (u, v, τ, λ), where u, v ∈ V ,
τ ∈ R, and λ ∈ R+. For temporal edge e = (u, v, τ, λ),
we refer to τ , λ, and τ + λ as the starting time, the du-
ration, and the ending time of e, respectively. Temporal
network G = (V, E) is a pair of set of vertices V and set
of temporal edges E.

When we study temporal networks, a vertex at a cer-
tain time is of interest. Therefore, we define a temporal
vertex by a pair of vertex v ∈ V and time τ ∈ R. In the
following, we always use bold symbols such as v to de-
note temporal vertices. For temporal vertex v = (v, τ),
we denote the time τ by τ(v).

Temporal path P in temporal network G = (V, E) is
defined as an alternating sequence of temporal vertices
and edges P = 〈v1, e1, v2, e2, . . . , ek−1, vk〉 satisfying the
following properties. Let vi = (vi, τi) for each i ∈ [k]. Then
for each i ∈ [k−1], the ith temporal edge ei is of the form
ei = (vi, vi+1, τ, λ) such that τi ≤ τ and τ + λ ≤ τi+1. We
define the starting time, the duration, and the ending time
of P as τ1, τk − τ1, and τk, respectively. For two temporal
vertices u and v, relationship u � v indicates that there
is a temporal path from u to v.

We define the earliest arrival time at vertex w when
departing from temporal vertex v by the smallest τ ∈ R

such that v � (w, τ), and we denote it by τeat(v, w). If
there is no such τ , we define τeat(v, w) = ∞. Similarly,
we define the latest departure time from a vertex u for
arriving at v as the largest τ ∈ R such that (u, τ) �
v, and we denote it by τldt(v, u). If there is no such τ ,
we define τldt(v, u) = −∞. A fastest temporal path from
temporal vertex v to vertex w is a temporal path from
v to (w, τeat(v, w)), and a fastest temporal path from a
vertex u to a temporal vertex v is a temporal path from
(u, τldt(v, u)) to v.

2.2 Directed acyclic graph representation

A directed acyclic graph (DAG) is a directed network with
no directed cycle. In this section, we describe the DAG
representation of a temporal network, which is useful when
solving problems related to temporal paths and describing
the centrality notions we will introduce in Section 3. This
DAG representation and its variants have been considered
in the analysis of temporal networks [15,36–40].

1 2 3 4 5 6 7 8 9

Fig. 2. DAG representation of the temporal network shown in
Figure 1.

For temporal network G = (V, E), the DAG repre-
sentation of G, denoted by ̂G = (̂V , ̂E), is constructed
as follows. A vertex in ̂G represents a temporal vertex
in G. For each v ∈ V , we first add to ̂V two vertices cor-
responding to the temporal vertices (v,−∞) and (v,∞).
For each temporal edge (u, v, τ, λ) ∈ E, we add to ̂V two
vertices corresponding to temporal vertices u = (u, τ) and
v = (v, τ + λ) (if they do not exist in ̂V ) and add edge
(u, v) to ̂E. Finally, for each pair of temporal vertices
u = (u, τ), u′ = (u, τ ′) sharing the same vertex u, we add
edge (u, u′) to ̂E if there is no temporal vertex of the form
(u, τ ′′) in ̂V such that τ < τ ′′ < τ ′.

Figure 2 illustrates DAG representation ̂G of tem-
poral network G shown in Figure 1. The vertex in the
ith row and the jth column corresponds to the temporal
vertex (vi, j). For example, since there is temporal edge
(v1, v2, 1, 1) in G, we have an edge from (v1, 1) to (v2, 2)
in ̂G. For the ith row, the leftmost and rightmost vertices
correspond to the temporal vertices (vi,−∞) and (vi,∞),
respectively.

From the construction of the DAG representation, we
have the following useful properties:

Lemma 1. Let G be a temporal network. Then, ̂G is a
DAG.

Proof. This is clear as we only add edges of the form
((u, τ), (v, τ ′)), where τ < τ ′.

Lemma 2. Let G be a temporal network. Suppose that
temporal vertices u and v have corresponding vertices
in ̂G. Then, there is a temporal path from u to v in G

if and only if there is a directed path from u to v in ̂G.

Proof. Let P = 〈v1, e1, v2, . . . , ek−1, vk〉 be a temporal
path from v1 = u to vk = v. Without loss of general-
ity, we assume that the time of vi is equal to the starting
time of ei or the ending time of vi−1. Then, each vi has
a corresponding vertex in ̂G. Let vi = (vi, τ

v
i ) for each

i ∈ [k] and ei = (vi, vi+1, τ
e
i , λe

i ) for each i ∈ [k − 1].
Then, there is a directed path (v1, τ

v
1 ), (v1, τ

e
1 ), (v2, τ

e
1 +

λe
1), (v2, τ

v
2 ), (v2, τ

e
1 ), (v2, τ

e
2 + λe

2), . . . , (vk, τv
k ) in ̂G. The

converse easily follows the correspondence explained
above.
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Fig. 3. Schematic describing the concept of temporal coverage
centrality. The dashed polygonal lines represent the two tem-
poral paths from vertex v4 to v2 that contain temporal vertex v
in their durations.

3 Temporal coverage centralities

In this section, we introduce the temporal coverage
centrality and the temporal boundary coverage centrality.

3.1 Temporal coverage centrality

Before defining TCC, we define the notion of coverage
in temporal networks by generalizing its original version
in static networks [41] as follows. Let v be a temporal
vertex and u, w be vertices. Let u = (u, τldt(v, u)) and
w = (w, τeat(v, w)). Then, we say that v covers node pair
(u, w) if the following two conditions hold:

1. τeat(u, w) = τeat(v, w),
2. τldt(w, u) = τldt(v, u).

In words, the earliest arrival time at w when departing
from u does not change even if we drop by v (condition 1),
and the latest departure time from u for arriving at w does
not change even if we drop by v (condition 2). Figure 3
explains condition 1. Let us focus on v = (v1, 7). Then,
temporal vertices u = (v4, τldt(v, v4)) = (v4, 4) and w =
(v2, τeat(v, v2)) = (v2, 9) are determined as shown in the
figure. We observe that, if we depart from u and are not
forced to drop by v, we can arrive at w′ = (v2, 8), which
is earlier than w. Hence, node pair (u, w) is not covered
by v but by w′.

On the basis of this notion of coverage, the TCC value
of v is defined as the fraction of pairs (u, w) ∈ V × V
that are covered by v. By definition, the TCC value of a
temporal vertex takes a real number in [0, 1]. If the TCC
value is close to unity, the temporal vertex is said to be
central in the sense that it covers many pairs of nodes. The
formal definition is given in Algorithm 1 in an algorithmic
manner.

3.2 Temporal boundary coverage centrality

Let v = (v, τ) be a temporal vertex and u, w be vertices.
Let u = (u, τldt(v, u)) and w = (w, τeat(v, w)). Even if
the TCC value of v is large, it does not always imply that
removing the temporal edges involving v makes τeat(u, w)
larger or τldt(w, u) smaller. One particular reason for this

Algorithm 1 (The TCC value of v)
1: r ← 0.
2: for u ∈ V and w ∈ V do
3: u ← (u, τldt(v, u)).
4: w ← (w, τeat(v, w)).
5: if τeat(u, w) = τ (w) and τldt(w, u) = τ (u) then
6: r ← r + 1.
7: return r/|V |2.

Fig. 4. Schematic describing the concept of temporal bound-
ary coverage centrality. The dashed arrows represent the tem-
poral edges that do not contribute the centrality values of
the source temporal vertices.

is that sometimes we can reach v from u earlier than τ and
can leave v later than τ to reach w (see temporal vertices
v2 and v3 in Fig. 4). In some applications, we may want
to regard such v as unimportant.

To address this issue, we define TBCC by imposing ad-
ditional criteria to the notion of coverage as follows. Note
that, if focal temporal vertex v is an example of the situa-
tion stated in the previous paragraph, then τeat(u, v) < τ
or τldt(w, v) > τ should hold. Hence, we define that a pair
(u, w) of vertices is covered at a boundary by temporal
vertex v if the following hold:

1. (u, w) is covered by v, and
2. τeat(u, v) = τ or τldt(w, v) = τ .

We explain this definition using the example shown in
Figure 4. Let vi = (v, τi) for i ∈ [4]. Note that all vi

(i ∈ [4]) cover vertex pair (u, w) as u = (u, τldt(vi, u))
and w = (w, τeat(vi, w)) hold for all i ∈ [4]. In addition,
note that all vi cover (u, w). We can see that v1 and v4

cover (u, w) at the boundary because τeat(u, v) = τ1 and
τldt(w, v) = τ4. By contrast, v2 and v3 do not cover (u, w)
at the boundary.

On the basis of this notion of coverage at the bound-
ary, the TBCC value of v is defined as the fraction of
pairs (u, w) that are covered at the boundary by v. Sim-
ilar to TCC, the TBCC value of a temporal vertex takes
a real number in [0, 1] by definition. The formal definition
is given in Algorithm 2 in an algorithmic manner.

In closing this section, it should be noted the difference
between the previous notion of the temporal betweenness
centrality and TCC (and TBCC). The main difference lies
in the normalization of the number of vertex pairs covered
by the temporal vertex. The definitions of TCC and TBCC
do not normalize the number of such vertex pairs with the
number of the fastest temporal paths, whereas the previ-
ous temporal betweenness centrality divides the number
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Algorithm 2 (The TBCC value of v)
1: r ← 0.
2: for u ∈ V and w ∈ V do
3: u ← (u, τldt(v, u)).
4: w ← (w, τeat(v, w)).
5: if τeat(u, w) = τ (w) and τldt(w, u) = τ (u) then
6: if τeat(u, v) = τ (v) or τldt(w, v) = τ (v) then
7: r ← r + 1.

return r/|V |2.

of the fastest paths that use the focal temporal vertex by
the total number of the fastest temporal paths in the focal
time window, as the betweenness centrality for static net-
works does [14–17]. We took such definitions of TCC and
TBCC for the following reasons. First, TCC and TBCC
become free from any parameters because we do not need
to set the time window to count the number of the rele-
vant fastest temporal paths for the normalization. Second,
the TCC and TBCC values are easy to interpret as the
fraction of the vertex pairs that have a fastest temporal
path using the focal temporal vertex.

4 Computing temporal coverage centralities

We can straightforwardly calculate TCC and TBCC ac-
cording to Algorithms 1 and 2. In this section, to man-
age large temporal networks, we give efficient methods
for computing TCC and TBCC on the basis of a graph–
indexing technique developed recently in the database
community [42], in particular, the method proposed in ref-
erence [31]. The key idea is in how to speed up the compu-
tation of τeat and τldt in Algorithms 1 and 2. We describe
the exact computation of TCC and TBCC in this section,
and we also give the algorithms to approximate the TCC
and TBCC values whose running time is polylogarithmic
in the total number of vertices in G (see Appendix B).

In a directed network, we say that a vertex vt is reach-
able from vs if there is a directed path from vs to vt. With
respect to Lemma 2, to enumerate the number of pairs
(u, w) being covered by v (at the boundary, if needed), we
want to efficiently answer reachability in the DAG rep-
resentation ̂G of given temporal network G. To this end,
it is beneficial to construct an index of ̂G that computes
the reachability between any pair of nodes on the basis of
information of the reachability between a fraction of node
pairs. Such an index is often called a reachability oracle
in the database community [27–31].

The basic idea of the construction of a reachability or-
acle for the present problem is the following. Naively, we
want to compute a large table that stores the reachability
of every pair of temporal vertices. If this were possible,
we could answer reachability just by looking at that ta-
ble. Unfortunately, however, perfecting this table requires
O(|̂V |2) computation time and O(|̂V |2) space, which could
be prohibitively slow and large. The reachability oracle
overcomes this problem by carefully storing partial infor-
mation of the network. Based on the information, it effi-
ciently computes the reachability for the whole network.

Table 1. Basic statistics of the datasets. Variables n, m, n̂,
and τmax are the total number of vertices and temporal edges
in G, the total number of vertices in ̂G, and the maximum
ending time of a temporal edge, respectively. The datasets are
arranged in increasing order of m.

Name n m n̂ τmax

Infectious [43] 410 17 298 32 218 1393

HT09 [43] 113 20 187 48 477 5246

Hospital [44] 75 32 424 65 296 9454

Irvine [45] 1899 59 835 220 772 58 192

Email [46] 167 82 927 254 533 57 843

The method proposed in reference [31], which we will
use for the numerical experiments in Section 5, computes a
small table for each temporal vertex that stores reachabil-
ity from (and to) a smaller number of other certain tempo-
ral vertices than the number of all the temporal vertices.
It depends on the structure of each temporal network how
small the table becomes. Then, we can answer the reach-
ability from a temporal vertex u to a temporal vertex v
by checking whether there is another temporal vertex w
such that we can confirm the reachability from u to w and
from w to v using the small tables of u and v. If there is
such w, we indeed have a directed path from u to v. The
challenging part of the construction lies in guaranteeing
the other direction; if there is a directed path from u to v,
then there is always such w. In addition, we need to be
able to compute the small table for each vertex efficiently.
This method resolves these issues, so that it can handle
directed networks of millions of edges with the query time
of less than a microsecond on average (see Ref. [31] for
further technical details).

5 Results

The basic statistics of the datasets we use are summarized
in Table 1. It should be noted that we do not use the actual
time stamps in the datasets but define τ by the order
of unique values of the time stamps. For example, if the
dataset consists of two time stamps t = 1, 4, we translate
them into τ = 1, 2. In addition, we assume that λ is equal
to the finest time resolution of each dataset for all the
temporal edges. Although interactions in Irvine and Email
are directed (i.e., from sender to receiver(s) of messages),
we regard them as undirected.

5.1 Statistics of TCC and TBCC

Figure 5 depicts the rank plots of the TCC and TBCC val-
ues of temporal vertices in the decreasing order. In all the
datasets except for the Email data, at least 10% of tem-
poral vertices have TCC values larger than 0.1 (Fig. 5a).
This fact implies the redundancy of temporal networks
in the sense that, when information flows between tem-
poral vertices, it can drop by different vertices without
increasing the total duration of the temporal paths. How-
ever, there are a smaller number of temporal vertices with
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Fig. 5. Rank plots of the (a) TCC and (b) TBCC values.

Fig. 6. Rank plots of the (a) TCC and (b) TBCC values in
randomized temporal networks. The curves for Irvine are not
provided because the computation did not stop.

large TBCC values (Fig. 5b). This fact also implies the
redundancy of temporal networks in a different sense such
that, when information flows between temporal vertices, it
is not forced to exist at a certain vertex at a certain time.

To see the impact of the structural peculiarity of tem-
poral networks on these distributions, we computed the
centrality values of temporal vertices in randomized tem-
poral networks. We randomize an original temporal net-
work by replacing the two ends of each temporal edge
by vertices chosen uniformly at random (similar to the
procedure called randomized edges with randomly per-
muted times in Ref. [5]). The resultant centrality values
are shown in Figure 6. We notice that more temporal ver-
tices have sufficiently large centrality values (e.g., larger
than 0.1) in real-world temporal networks (Fig. 5) than
in randomized temporal networks (Fig. 6). The maximum
centrality values are larger in the randomized than in the
original networks for HT09 and Hospital, and vice versa
for Infectious and Email. This fact implies that the way
the flow concentrates upon temporal vertices depends on
each dataset.

It should be noted that the calculation for the random-
ized Irvine dataset did not stop even though the Email
dataset, which has larger n̂ than the Irvine, stopped. We
can explain this result with the increase in the number
of vertex pairs connected via temporal paths. The dom-
inant factor of the computational time is the number of
vertex connected via temporal paths because we have to
consider all of such vertex pairs to calculate the centrality

value of a temporal vertex. After the randomization, most
of the vertex pairs are likely to have temporal paths and
the number of such pairs scales with n2. If we take into
account that the Irvine dataset has the largest n value
among the five datasets we consider, it makes sense for
the Irvine dataset to require the far longer computational
time compared to the other four datasets.

Next, we examine how the centrality values change
over time owing to the structural transformation of the
temporal networks. Figure 7 depicts the change in the
maximum TCC and TBCC values over temporal vertices
at present and the number of temporal vertices at present
for Infectious and Hospital. In both datasets shown in Fig-
ure 7, we can see some periodic patterns in the number
of temporal vertices. However, the maximum centrality
values are not much affected by the patterns, which im-
plies that these values are determined not by the mere
activity level in the networks but by the structure of the
temporal network. In addition, the fact that the maxi-
mum centrality values vary considerably throughout the
observation periods suggests that we should carefully in-
corporate temporal structure to assess the importance of
vertices. Generally, the maximum TCC values are larger
than the maximum TBCC values, which makes sense ac-
cording to their definitions (i.e., TBCC only counts the
coverage of the temporal paths at the boundary but TCC
does not impose this boundary criterion).

When we focus on a particular vertex, two centrality
values of it also vary in a different manner over time. Fig-
ure 8 depicts the change in the TCC and TBCC values
of the vertex that are involved in the largest number of
temporal edges in the two datasets, Infectious and Hospi-
tal. The TCC value of the vertex increases with time in
Infectious (Fig. 8a), simply because the number of present
temporal vertices increases and thus the focal vertex can
reach these vertices in this period (also see Fig. 7a). By
contrast, the TBCC value does not exhibit such an in-
creasing trend. This fact supports our original purpose of
introducing TBCC, i.e., to discount the centrality values
of the temporal vertices of the dispensable temporal paths.
In addition, the plot of TBCC unveils that even the vertex
with the largest number of temporal edges does not always
bridge effective temporal paths. In Hospital (Fig. 8b), we
can observe that the temporal edges associated with the
focal vertex are partitioned into five time intervals, in each
of which temporal edges occur in a bursty manner, and the
centrality values of the vertex become larger at the begin-
ning and the end of each of these time intervals. This ob-
servation makes sense because, at the endpoints of a time
interval, a vertex tends to play the role as the gateway for
information flowing into or out of the time interval.

The computational efficiency of the two centralities
enables us to draw a map of the centrality values of all
the temporal vertices over time. This map reveals the ex-
istence of bottleneck time regions in the empirical tem-
poral networks. Figures 9a and 9b depict the TCC val-
ues of temporal vertices as a heat map for Infectious and
Hospital, respectively. In both datasets, most temporal
vertices have non-negligible TCC values, and these results
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Fig. 7. Change in the maximum TCC and TBCC values over temporal vertices at present in (a) Infectious and (b) Hospital.
For readability, we smoothed the curves by taking the average over a sliding window with a length of 100 units of time.
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Fig. 8. Change in the TCC and TBCC values of the vertex with the largest number of temporal edges. (a) Vertex with label 195
in Infectious and (b) vertex with label 1115 in Hospital.

support the notion of redundancy of temporal networks
(see Fig. 5a) such that all the vertices can belong to re-
dundant temporal paths. In addition, the temporal ver-
tices with the largest centrality values appear in the mid-
dle of the observation period (around time 700 and 6000
in Figs. 9a and 9b, respectively), and the temporal ver-
tices at the same time tend to have similar TCC values.
We found the same phenomenon in all the datasets (see
Electronic Supplementary Materials�� for the plots of the
other datasets), and the existence of this bottleneck time
period seems to be a common property of empirical tem-
poral networks.

If we are interested in when these bottleneck time pe-
riods begin and end, we can look at the heat map of the
TBCC values. As an example, Figure 9c magnifies a bot-
tleneck time period in Infectious (Fig. 9a) in which we
observe many temporal vertices with the largest TCC val-
ues. However, the boundary of the bottleneck period is
not clear in the figure. Figure 9d shows the heat map of
the TBCC values in the same area as shown in Figure 9c.
As we observe, the TBCC values indicate the boundaries
at τ � 660, 680, and 750. This boundary information
should be meaningful, for example, when we narrow the
candidates of the vertices to be vaccinated for epidemic
spreading on temporal networks [47–49].

We finally stress again that it becomes possible to com-
pute these statistics and analyze the structure of tem-
poral networks in such detail because of the efficient
computation of TCC and TBCC using the reachability
oracle.

5.2 Delay caused by removing a central
temporal vertex

In closing this section, to verify the relevance of the pro-
posed centrality notions at the microscopic level, we briefly
report that removing a temporal vertex with large TCC
and TBCC values is effective in delaying the propagation
of information.

Let G = (V, E) be a temporal network, where V =
{v1, v2, . . . , vn}. For a temporal vertex v = (v, τ), let vi =
(vi, τeat(v, vi)) for each i ∈ [n] and τ ′ be the (unique) time
such that v has an edge to v′ = (v, τ ′). We say that vi gets
prolonged by removing v if τeat(v, vi) becomes larger by
removing edges incident to v (and we keep edge (v, v′)).
In a similar manner, we say that vi becomes disconnected
by removing v if we cannot reach vi from v after removing
edges incident to v (where, again, we keep edge (v, v′)).

We investigate the fraction of prolonged or discon-
nected temporal vertices among v1, v2, . . . , vn, by remov-
ing one of the top 100 vertices with respect to the TCC
or TBCC values. It should be noted that the fraction
of temporal vertices becoming prolonged or disconnected
is nontrivial because the definition of TCC and TBCC
take into account temporal paths both before and af-
ter the focal temporal vertex. As a baseline for compar-
ison, we also conduct the same test by removing a tem-
poral vertex chosen randomly. For the random case, we
randomly choose 100 temporal vertices without replace-
ment and take the average of the fraction of prolonged or
disconnected temporal vertices for these 100 trials.
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Fig. 9. Heat maps of the TCC values for (a) Infectious and (b) Hospital. (c) Heat map magnifying the area with 650 ≤ τ ≤ 800
and 100 ≤ ID ≤ 220 in (a). (d) Heat map of the TBCC values in the same area as shown in (c).

Table 2. Results of the removal of temporal vertices. The number in each cell presents the average fraction of disconnected (or
prolonged) temporal vertices over the 100 trials of the removal based on the given procedure (i.e., according to the largest TCC
and TBCC values or random pick).

Dataset
TCC TBCC Random

Prolonged Disconnected Prolonged Disconnected Prolonged Disconnected

Infectious 0.013 0.001 0.014 0.232 0.010 0.001

HT09 0.082 0.001 0.264 0.069 0.031 0.007

Hospital 0.049 0.001 0.156 0.257 0.037 0.001

Irvine 0.014 0.003 0.006 0.508 0.018 0.012

Email 0.136 0.006 0.375 0.016 0.054 0.000

The results of the removal test of temporal vertices
are summarized in Table 2 for the five datasets. As we
expected, the removals according to the largest centrality
values make more temporal vertices prolonged or discon-
nected than the random removals. The removals according
to the largest TCC values tend to prolong a certain frac-
tion of temporal vertices for all the datasets considered.
However, it makes few temporal vertices disconnected.
These outcomes make sense because the number of other
temporal paths running alongside the temporal path go-
ing through the focal temporal vertex is not considered
in TCC (also see Sect. 3.1). By contrast, the removals ac-
cording to the largest TBCC values make a considerable
fraction of temporal vertices prolonged and disconnected.

Remarkably, 50.8% of the temporal vertices, on average,
become disconnected from a removed temporal vertex in
Irvine. There is no clear distinction between the results of
the offline (i.e., Infectious, HT09, and Hospital) and online
(i.e., Irvine and Email) networks.

6 Conclusions

We introduced two centrality notions for temporal net-
works – temporal coverage centrality and temporal bound-
ary coverage centrality – to represent the importance of
a temporal vertex by the fraction of vertex pairs that
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can or should use the temporal vertex when sending in-
formation as quickly as possible. Compared to central-
ity notions proposed in previous work, TCC and TBCC
have two advantages: (i) Parameters or time windows
do not need to be set and (ii) computation time is
reasonable.

Applying TCC and TBCC to multiple datasets of em-
pirical temporal networks, we revealed that there tends
to be particular bottleneck time periods that play a cru-
cial role in propagating information quickly and that the
rest of the networks is redundant in the sense that there
are many temporal paths to send information with the
same duration. Although such structural redundancy in
temporal networks was suggested in some previous stud-
ies [32–34], our centrality notions enable us to clearly
quantify and visualize this property. We believe that
the centrality notions we proposed are useful for further
studying the structure of temporal networks and verifying
generative models of temporal networks.
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Appendix A: Computational complexity
of calculating τeat and τldt

with the reachability oracle

With the aid of the reachability oracle, we can efficiently
compute τeat and τldt:

Lemma 3. Let G be a temporal network and ̂G be its
DAG representation. We can compute τeat and τldt with
O(log |E|) queries to the reachability oracle of ̂G.

Proof. We only consider τeat as τldt can be computed sim-
ilarly. Given temporal vertex v and vertex w, τeat(v, w) is

Algorithm 3 (Approximation to the TCC value of v)
1: r ← 0.
2: for i = 1 to k := 1

2ε2
log(2|V |2) do

3: Sample vertices u, w ∈ V uniformly.
4: u ← (u, τldt(v, u)).
5: w ← (w, τeat(v, w)).
6: if τeat(u, w) = w and τldt(w, u) = u then
7: r ← r + 1.

return r/k.

the minimum τ ∈ R such that there is a temporal path
from v to (w, τ). To find such τ , we perform a binary
search using the reachability oracle. Since the number of
possible values for τ is O(|E|), the number of queries is
O(log |E|).

Lemma 4. Let G be a temporal network and ̂G be its
DAG representation. For any temporal vertex v, we
can compute the TCC and TBCC values of v with
O(|V |2 log |E|) queries to the reachability oracle of ̂G.

Proof. The proof is immediate from Lemma 3 and the
algorithm definitions of TCC (Algorithm 1) and TBCC
(Algorithm 2).

Appendix B: Approximate computation
of temporal coverage centralities

By Lemma 4 (see Sect. 4), the number of queries to the
reachability oracle for computing the TCC and TBCC val-
ues is (almost) quadratic in the number of vertices of a
temporal network. However, in some applications, we may
want to compute these centralities faster. Here, we intro-
duce a standard technique that enables us to approximate
these centrality values with a sublinear number of queries.
We only explain the case of TCC; the case of TBCC is
performed in a similar way.

Algorithm 3 is an approximate method for comput-
ing the centrality value. The difference from Algorithm 1
is that, instead of enumerating all pairs (u, w), we only
sample O(1/ε2) pairs of vertices and take the average over
them, where ε is the parameter controlling the possible
error in approximation.

To show that Algorithm 3 gives a good approximation,
we need to recall Hoeffding’s inequality:

Lemma 5 (Hoeffding’s inequality [50]).
Let X1, X2, . . . , Xk be independent random variables in

[0, 1] and X = (1/k)
∑k

i=1 Xi. Then, for any positive real
number t,

Pr[|X − E[X ]| ≥ t] ≤ 2 exp(−2t2k).

Lemma 6. Let G be a temporal network and ̂G be its
DAG representation. For any temporal vertex v, with
O(log2 |V |/ε2) queries to the reachability oracle of ̂G, we
can compute the TCC value of v with additive error of ε
with probability of at least 1 − 1/|V |2.
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Proof. Consider Algorithm 3 and let ˜C(v) denote its out-
put. Algorithm 3 issues O(log2 |V |/ε2) queries since τldt

and τeat can be computed with O(log |V |) queries (see
Lem. 3). Let Xi be the temporal edge at which we in-
crement r in the ith loop and X = (1/k)

∑k
i=1 Xi. Note

that

E[ ˜C(v)] = E[X] = (1/k)
k

∑

i=1

E[Xi] = C(v),

where C(v) is the TCC value of v. Since X1, X2, . . . , Xk

are independent random variables in [0, 1], by Lemma 5,
we have

Pr
[

| ˜C (v) − C (v) | ≥ ε
]

= Pr
[|X − C (v) | ≥ ε

]

≤ 2 exp
(

−2ε2
1

2ε2
log

(

2|V |2)
)

= 2 exp
(− log

(

2|V |2))

=
1

|V |2 .

Hence, the lemma holds.

Recalling that the query time of the reachability oracle
is tiny, we find that the running time of Algorithms 3
can be seen as polylogarithmic in the input size. This
is the great advantage of TCC and TBCC against other
centrality notions.
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11. R. Guimerà, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc.
Natl. Acad. Sci. USA 102, 7794 (2005)

12. M. Kitsak, S. Havlin, G. Paul, M. Riccaboni, F. Pammolli,
H.E. Stanley, Phys. Rev. E 75, 056115 (2007)

13. J. Kumpula, J.-P. Onnela, J. Saramäki, K. Kaski, J.
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